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A RELATIONSHIP BETWEEN INTERSECTION 

CONDITIONS AND POROSITY 

CONDITIONS FOR LOCAL SYSTEMS 

TOMASZ FILIPCZAK 

(Communicated by Ladislav Misik) 

ABSTRACT. In the paper, we prove tha t if a local system S fulfils an inter
section condition, then the porosity of the sets from S(x) at x canno t be too 
large. 

First, we recall some definitions from B . T h o m s o n ' s book [1]. Let A 
be a subset of the real line R. Then by \A\e we denote the exterior Lebesgue 
measure of A and we put x + A = {x + a; a G A} , — A = {—a ; a ~ A} , 
.4+ = A n [0, co) and A~ = A n ( -co , 0]. 

By the right-hand porosity of A at x we mean 

+ , A \ v \(A,x,x + h) 
p^ (A, x) = hm sup v ' , 

h—o+ h 

where \(A,x,x + h) denotes the length of the largest open subinterval of 
(x,x + h)\A. 

Similarly, the left-hand porosity of A at x is defined as 

X(A,x-h,x) 
p (A, x) = hm sup £ . 

h-+Q+ h 

By a local system,, we mean a family S = {§(.T) ; x ~ IR} of nonempty 
collections of subsets of the recti line such that, for any a: £ IR, 

(i) {x} ^ S ( x ) , 
(ii) if 5 G S>(x), then x e S, 
(iii) if S e S(x) and Sf D S, then S' e S(x), 
(iv) if S G S(x) and 6 > 0 , then S n (x - 6, x + 6) E S(x). 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26A99, 26A21. 
K e y w o r d s : Local system, Intersection condition, Porosity. 
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We say that a local system § satisfies the parametric intersection condition of 
the form Sx n Sy n [x - X(y - x), y + X(y — x)] ^ 0 if, for each choice of sets 
{Sx ; x G K} with Sx G §(x) , there is a positive function 6 on IR such that 

S,nS^n[x—X(y—x), y+X(y—x)] ^ 0 whenever 0 < y - x < mm{6(x).S(y)}. 

It is easy to see that if § satisfies the above-mentioned intersection condition, 
then there exists a sequence {En} of subsets of the real line such that 

R = ( J En and Sx n Syn[x- X(y ~x),y + X(y - x)] ^ 0 

n = l 

whenever x, y £ .En . 

THEOREM. Let § be a /Oca/ system such that: 
(a) §(x) = {x + S ; S G §(0)} /Or eneru x . 
(b) 5+ U - S + G §(0) and S~ U -S~ G §(0) ivfteneDer 5 G §(0), 
(c) § satisfies the parametric intersection condition 

SxnSyn[x - X(y -x),y + X(y - x)] ^ 0 for some X > -— . 

Then, for any x G IR and S G §(x) . 

(d) p+(S,x) < f ^ - and p~(S,x) < 1 ± ^ . 

R e m a r k . It is easy to observe that if a system § is filtering (i.e. 
S inS2 £ §>(x) for Si, S2 G §(x)) , then condition (b) from Theorem is equivalent 
to: 

(b') - S G §(0) whenever S G §(0). 

P r o o f of T h e o r e m . Suppose that conditions (a) - (c) hold, but con
dition (d) is not true. We can assume that there is a set S G §(0) such that 

p+(S, 0) > "I" x for some a with — < a < min{ l , l -f A} (in the case 
1 -f" A 2 

p~(S, 0) > x the proof is analogous). Hence, there are sequences {an} . 
1 + A 

{bn} of positive numbers, converging to zero, such that bn+i < an < bn . 

S n U (an,bn) = 0 and ^ - 1 - ^ ± - f = | + f . Put S0 = 5+ U - 5 + 
n = l °n 1 ~r A 1 +- A 

and S , = x + So for x G IR. Conditions (a) and (b) guarantee that Sx G §(x) . 
and 

S , П [J (x -f an, x -f òn) U U (x _ Ьn' x ~ an) 
7 1 = 1 

;V 
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... INTERSECTION AND POROSITY CONDITIONS ... 

From (c) it follows that we can find a sequence {En} of subsets of the real line 
oo 

such that R = (J En and, for every positive integer n, 
n=l 

Sx n Sy n [x - X(y - x), H + X(y - x)] ^ 0 whenever x, H E En . (2) 

Let n0 be a positive integer for which \Eno\
e > 0> and let x0 £ F?no be an 

exterior density point of Eno . Then there is a positive number 6 such that 

|JSno n (x0,t) 

t -XQ 
> 2 - 2 a for t Є (x0,x0 + 6). (3) 

Let k0 be a positive integer with bko < (1 + X)6. Then (3) implies that the 

set Eno n (x0 + ~ ^-ftfc0, ^o + y3rX & f e ° ) i s nonempty. Choose any point y0 

from this set. Then H0 € Eno and — 6feo < Vo ~ x0 < . bko . 

Hence, 

Ho - x0 + A(H0 - -co) < f̂c0 , (4) 

and 

— (Ho - -co) > " f ^ X ^ o = ak0 > (1 - a)(-yo - -co) > -A(H0 - x 0 ) . (5) 

Inequalities (4) and (5) imply that 

Ik) - ho < %o- X(y0 - x0) < xo + ako < H0 - afco < Ho + A(H0 - x0) < x0 + bko , 

and, consequently, 

[x0 - A(H0 - x0), 2/o + A(H0 - xo)] C (H0 - bko, y0 - afco) U (x0 + ako, x0 + bko). 

This inclusion and (1) show that 

s*o n svo n [xo - A(H0 - x0) , H0 + A(H0 - xo)] = 0 • 

However, the last condition contradicts (2) because xo, Ho £ Eno . This ends the 
proof. 

COROLLARY 1. If a local system § fulfils conditions (a) - (c) of Theorem, then 
any set S from §(x) is neither right-hand strongly porous at x nor left-hand 
strongly porous at x (i.e. p+(S,x) < 1 and p~(S,x) < 1) . 
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COROLLARY 2. If a local system § fulfils conditions (a) - (b) of Theorem 

and an intersection condition Sx H Sy H [a?, T/] 7-= 0. lhen p + ( 5 , x) < — and 

p~ (S, x) < — for any S £ S(x) . 

COROLLARY 3. If a local system § fulfils conditions (a) - (b) of Theorem and 

(c') § satisfies the parametric intersection condition 

Sx n Sy n [x — A(H — x), y + A(H — a;)] ^ 0 /Or eacb A > — — , 

lben ang sel: £ /ram S>(x) is neither right-hand porous at x nor left-hand porous 
at x (i.e. pJr(S) x) — p~(S, x) —- 0 ) . 
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