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THE FIRST KIND PERIODIC SOLUTION4? 
OF DIFFERENTIAL EQUATIONS 

OF THE SECOND ORDER 
j ,* * t 

I REN A RACHONKOVA 

The purpose of this paper is to prove some existence and uniqueness theo
rems for the problem 

(0.1) U*=f(t9U,u') 

(0.2) u(b) - u(a) = A , u'(b) - u'(a) = B, 

where a, b, A, Be (-co, +oo), a < b. The problems of such type have been 
already solved in many works, for example [1—11], [13]. Here, the problem 
(0.1), (0.2) is solved by means of lower and upper functions and there is used the 
method of [12]. This approach enables us to find the conditions for the existence 
of the first kind periodic solutions of (0.1). 

1. Notations and definitions 

£?= ( -oo , +oo), ffl+ = [0, +oo), r = b ~ a , c, -=max{l,|/*/T|};a.e. ---almost 
every, p,, q,e[l, +oo], 1/p, + 1/q, = 1, / = 1, ..., n; AC](a, b) is the set of all 
absolutely continuous functions with their first derivatives on [a, b]; 
Carloc(Z)) is the set of all real functions satisfying the local Caratheodory 
conditions on D. 

Definition. A function ueAC\a, b) which fulfils (0.1) for a.e. te[a, b] will be 
called a solution of the equation (0.1) on [a, b]. Each solution o/(0.1) on [a, b] 
satisfying (0.2) will be called a solution of the problem (0.1), (0.2). Each solution 
o/(0.1) on R will be called the first kind T-periodic solution (resp. T-periodic 
solution) o/(0.1) ifu' (resp. u) is a T-periodic function. 

Definition. A function axeACl(a, b) will be called a lower function of the 
problem (0.1), (0.2) if 

(1.1) cr'[(t) = / ( t , cr„ a\) for a.e. t e (a, b), 

(1.2) ax(b) - ax(a) = A, a\(b) - a\(a) = B. 
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A function G2eACx (a, b) will be called an upper function of the problem (0.1), (0.2) 
if 

(1.3) G'{(t) _if(/, a2, G'2) for a.e. te(a, b), 

(1.4) G2(b) - G2(a) = A , G'2(b) - G'2(a) = B. 

Throughout the whole paper we suppose that f: /T?3 -+ IR is a 7-periodic 
function in its first argument and the restriction off on [a, b] x iR2 belongs to 
Carloc([a, b] x R2). We denote rt = maxllofWI + I^COI: a ^ t = b}, i = 0, 1, 
and say that some condition is satisfied on S(a, b) if it is satisfied for a.e. t e (a, b) 
and for every xetcr^t), G2(t)], \y\ = c,. 

2. The main results 

The following two theorems deal with the property (E): 

1. The problem (0.1), (0.2) has at least one solution. 
( . . 2. If A = B = 0, then there exists at least one T-periodic solution of (0.1). 
^ ' * 3. If A ^ 0, 2? = 0 andfis |^|-periodic in its second argument, then there 

exists at least one first kind T-periodic solution of (0.1). 

Theorem 1. Let GX be a lower function and G2 an upper function of the problem 
(0.1), (0.2) and Gx(t) = G2(t) for a^t^b. Let on the set S(a, b) the inequality 

(2.1) |/(/, x, y)\ = a>(y) £ *,(<)*.(*) (1 + \y\) 

be satisfied, where gi^I^i(a, b), ^ e l ^ - r o , r0), i = 1, .., n, and coeC(R) is a 
positive function such that 

Jc, 0)(S) Jc, 
(2.2) | - ^ = j - У - - - - + 0 0 

77*en (is) is satisfied. 
Theorem 2. Let cr,, G2 satisfy the conditions of Theorem 1 and let on the set 

S(a, b) the inequality 

(2.3) \f(t,x,y)\^co(t,\y\) 

be fulfilled, where G)eCarioc([a, b] x /r?+) is a non-negative function, non-decreas
ing with respect to its second variable and 

1 cb 

(2.4) limsup - co(t, g)dt<l. 
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Then (E) is satisfied. 
Note. For the assertions 1, 2 of (E) we can use the following criterions: 
1. Let g0(t) = (Bt2 + 2At - B{b + a)t)(2b - 2a)~\ If there exists 

re(0, +oo) such that/satisfies for a.e. te(a, b) and each xeR 

(2.5) (At, x + g09 g'0)-B/(b - a))sgnx ^ 0 for |x| ^ r, 

then (j,(t) = g0(t) - r is a lower function and a2(t) ==• g0(t) + r is an upper 
function of (0.1), (0.2). 

2. Letfbe continuous on [a, b] x R2 and let there exist ce (0, + co) such that 
8f(t, x, y) ^ ^ o n ^ fcj x ^2 T h e n ( 2 5 ) .s s a t i s f i e d for r = m a x { | / ( ^ g o j gj) _ 

9x 
-B/(b-a)\c-l:a^t^b}. 

Theorem 3. Let there exist a non-negative function h e L(a, b) such that for a.e. 
t e (a, b) and every (x, y) e IR2 there is satisfied the inequality 

(2.6) f(t, x„ yx) - / ( / , x2, y2) + h(t)|y, - y2| > 0 for x1 > x2. 

Then the problem (0.1), (0.2) has not more than one solution. 

3. Lemmas 

Lemma 1. Let ke(0, + oo) andG: [a, b] x [a, b]^> Rbe the Green function for the 
problem 

(3.1) v" = k2.v 

(3.2) Kb) - v(a) = 0, i/(b) - v'(a) =-= 0. 

Then there exists cfc£(0, +oo) such that the inequality 

6G(t, s) 
ôt 

+ |G(t, j)| = ck fora^t,s = b (3.3) 

is fulfilled. 
Proof. It is easy to show that the constant ck = 2(k+ l)(e*m + \)e2km/kD, 

where m = max{|a|, \b\} and D = 2 (e*6 — eka). (e"*a — e~**) satisfies the inequa
lity (3.3). 

Lemma 2. (Conti Theorem). Let there exist h e L(a, b) such that 

\f(t, x, y)\ = h(t) for (t, x, y) e [a, b]xlR2. 

Then for any ke(0, +oo) the problem 

(3.4) u" = k2u+f(t,u,u'), 
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(3.5) u(b) - u(a) = A , u'(b) - u'(a) = B 

has a solution. 
Proof. Put g0(t) = (Bt2 + 2At-B(b + a)t)(2b-2a)'] for a=t^b, 

g(t,x, y) =f(t, x + g0,y + g'0) + k2g0(t) - B(b - a)"1 on [a, b] x ?2 and con
sider the differential equation 

v" = k2v-\-g(t, v, v'). 

Analogously as in the proof of Lemma 3 in [12], denote by SA the Banach space 
of all functions from C1 (a, b) with a norm 

|MI = max{|z(f)| + \z'(t)\: a^t^b} for zeC](a, b) 

and consider the operator H: & -> 0& defined by 

H(z(t)) = \ G(t, s)g(s, z(s), z'(s))ds for a ^ t = b, 
Ja 

where G is the Green function of the problem (3.1), (3.2). By the Schauder 
fixed-point theorem, since H is continuous and maps & into its compact subset, 
there exists v e 0$ such that 

v(t)= J G{t9s)g{s9v{s)9v
/{s))ds. 

Therefore u = v + g0 is a solution of (3.4), (3.5). 
Lemma 3. {A priori estimate). Let re(0, +oo), g,eZ/'(a, b) / i , e L V r » r) , 

i = 1, ..., n, and coe C{R) be a positive function satisfying (2.2). Then there exists 
r*G(c,, +oo) such that for any function ueACx{a9 b) the conditions 

(3.6) u{b) - u{a) = A , \u{t)\ = r for a = t = b 

and 

(3.7) |«"(0I ^ ®(«'(0) I *.(0*.("(0)0 + l«'(OI)"" 
1 = 1 

for a.e. tG(a, b), |w'(t)| = ci 
imp/y //ze estimate 

(3.8) | n ' ( 0 l ^ r * fora=t = b. 

P r o o f Lemma 3 can be proved in the same way as Lemma 4 in [12]. 
Lemma 4 {A priori estimate). Let re(0, +oo) and aw e Car,oc ([a, b) x /jf+) 

satisfy the conditions of Theorem 2. Then there exists r* e (c,, + oo) swch that for 
any function ueACx{a9 b) the conditions (3.6) and 

(3.9) \u"{t)\£aw{t9\u'(t)\) 
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for a.e. te(a, b), where \u'(t)\ 2: c,, 
imply the estimate (3.8). 

Proof. Let ueAC](a, b) satisfy (3.6) and (3.9). From (3.6) it follows that 
there exists a,e(a, b) such that w'(aj) = A/(b — a). Let Q* = max{\u'(t)\: 
a ^ t ^ b} and t*e[a, b] be such that |w'(t*)| = £*. If p* > c,, then there exists 
t*e(a,, t*) (or t*e(f*, a,)) such that 

\u'{t*)\ = c„ |f*'(/)| > ci for t* < t < t* (or t* < t < / # ) . 

Integrating (3.9) from t* to t* (or from t* to t*), we get 

(3.10) Q*£cx+ I Qi(/, £>*)dt. 

Since (2.4), there exists r*e(c,, +oo) such that for any .p > r* the inequality 

(3.11) \>C]/Q+(l/Q)\ (D(t,Q)dt 
J a 

holds. By (3.10), (3.11), we have Q* ^ r*. 
Lemma 5 (On the solvability of the problem (0.1), (0.2)). Let ax be a lower 

function and a2 an upper function of the problem (0.1), (0.2) and ax(t) S Oi(t)for 
a ^ t ^ b. Further, let on the set S(a, b) the inequality 

\f(t,x,y)\=g(t) 

be valid, where geL(a, b). 

Then the problem (0.1), (0.2) has a solution u satisfying the condition 

(3.12) ax(t) S u(t) ^ a2(t) fora = t^b. 

Proof. Similarly as in the proof of Lemma 8 in [12], we put 

w,(t, x, y) = (- \)'m(x - at)[f(t, at, a',) -f(t, a„ y) + (- \)'rjm], i=\,2 

and 

' f(t, ax, a\) - rjm for x = ax(t) - \/m 
f(t, ax,y) + wx(t, x, y) for ax(t) - \/m < x < ax(t) 

fm(t, x,y) = { f(t, x, y) for ax(t) = x^ a2(t) 
f(t, <r2, y) + wi(t, x, y) for a2(t) <x< a2(t) + \/m 

, f(t, 02, a'2) + rjm for x = a2(t) +\/m, 

where (t, x, y)e[a, b] x IR2 and m is a natural number. 
Then, by Lemma 2, the problem 

u" = (\/m)u+fm(t,u,u'), 
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u(b) - u(a) = A , u'(b) - u'(a) = B 

has a solution. First, let us prove that 

(3.13) <7,(t) - \/m = um(t) = cr2(t) + \/m for a = t = b. 

Put i;(t) = ( - \y(um(t) - <7,(t)) - \/m for a = t = b, ie{l, 2}. Then, by (1.2), 
(1.4), 

(3.14) i;(b) - v(a) = 0, i/(b) - " » = 0. 

Let t;(t) > 0 for tela [a, b]. Then, in view of (1.1), (1.3), 

(3.15) v"(t) = (-\y(u'm(t)-G';(t)) = r0/m + (-\yujm = l/m2 for tel. 

From this it follows according to (3.14) that there exists t0e(a, b) such that 

(3.16) K'o) = 0. 

Now, suppose that (3.13) does not hold on [t0, b], i.e. that for certain ie{l , 2} 
and t*e(t0, b) 

t ; ( t * ) > 0 . 

Let (a, fJ) cz (t0, b) be the maximal interval containing t* in which v(t) > 0. Then 
v(a) = 0, i;r(a) = 0 and, by (3.15), v"(t) = m~2 for a = t = )9. Therefore /? = b 
and i;(b) > 0, v'(b) > 0. Since (3.14), v(a) > 0, v'(a) > 0. Let (a, a0) c: (a, t0) be 
the maximal interval in which v(t) > 0. Analogously as above we can prove 
ao = 'o> whence v(t0) > 0, which contradicts (3.16). Consequently 

(3.17) v(t) ^ 0 for t0 = t = b, and by (3.14), v(a) = 0 . 

Supposing that (3.13) does not hold on [a, t0], we obtain a contradiction similar 
to (3.16). Hence um satisfies (3.13) on [a, b]. 
Finally, since the sequences (um)f and (u'm)™ are uniformly bounded and equi-
continuous on [a, b], by the Arzela-Ascoli lemma we can suppose without loss 
of generality that they are uniformly converging on [a, b]. Consequently the 
function u(t) = lim um(t) for a = t = b is a solution of the problem (0.1), (0.2) 

m—> oo 

and satisfies the condition (3.12). 

4. Proofs of Theorems 

P r o o f of T h e o r e m 1. Let r* be the constant constructed by Lemma 3 
for r = r0. Put Q0 = r* + r0 + r,, 
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for 0 Ss < Q0 

for Q0 < s < 2Q0 

for s ^ 2Q0 

(4.1) / ( t , x, y) = x(Qo, W + l-KD/C *, >0 for (t, x, y)G[a, b] x ^2 

and consider the equation 

(4.2) ll" « / ( / , ! * , l l ' ) . 

Since max{|cr,(t)| + |<T,'(0I: a ^ t g b} < tp0, / = 1, 2, <T, is a lower function and 
<j2 an upper function of the problem (4.2), (0.2). Moreover |/(t, x, y)| = g(t) for 
(t, x, y)e[a9 b] x /^2, where g(t) « sup{|/(t, x, y)|:|x| + |y | = 2f t}eL(fl, b). 
Therefore, by Lemma 5, the problem (4.2), (0.2) has a solution u satisfying 
(3.12). Clearly u fulfils (3.6) for r = r0 and (3.7) and so, by Lemma 3, the estimate 
(3.8) is valid. Therefore 

(4.3) Mt)| + \u'(t)\ <:Q0 for a = t = b. 

In view of (4.1), (4.2) and (4.3), u is a solution of the problem (0.1), (0.2). 
Now, let A = B = 0 and w* : ffi-> Rbe the T-periodic extension of u. Then w* is 
a T-periodic solution of (0.1). 
Finally, let A # 0, B = 0 and / be ^-periodic in its second argument. Let 
w* : zr?-> zrf be defined by ^ ( t ) = w(t) + n^4 for te [a + n(b — a), b + n(b — a)]9 

n = 0, + 1 , +2 , . . . . Then ŵ  is a T-periodic function and w* satisfies (0.1) for 
a.e. teR. Therefore u* is the first kind T-periodic solution of (0.1) and we have 
proved Theorem 1. 

Theorem 2 can be proved analogously as Theorem 1 only instead of 
Lemma 3 we use Lemma 4. 

P r o o f of T h e o r e m 3. Let us assume that the problem (0.1), (0.2) has 
two solutions w,, w2. Put v = w, — u2 on [a9 b]. Then 

(4.4) v(a) = v(b)9 v'(a) = v'(b). 

Let us suppose that v(a) 9-= 0. Without loss of generality we may consider that 

(4.5) i ; (a )>0 . 

Since (4.4), there exists t0e(a, b) such that v'(t0) = 0. Now, let v(t) > 0 for 
a = t = b. Then, by (2.6), v"(t) + fi(t)v'(t) > Q for a.e. te(a, b), where 
h = hsgni;'. Therefore the inequality 

(4.6) (exp(J K(s)ds\v'(f)Y > 0 
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is satisfied for a.e. te(a, b). Integrating (4.6) from a to t0 and from t0 to b, we 
get v'(a) < 0 and v'(b) > 0, which contradicts (4.4). Therefore there exists 
t, e(#,b) such that 
(4.7) »(/•) = 0. 

In view of (4.4), (4.5), (4.7), there exist a,, b,e(a, b) such that v(t) > 0 for te 
e[a, a,) u (b,, b] and v(ax) = v(b{) = 0. Then (4.6) holds on [a, a,) u (b,, b] and 
integrating it from a to a, and from b, to b, we get (as above) the contradiction 
to (4.4). Hence 

(4.8) v(a) = v(b) = 0. 

Let there exists Te (a, b) such that v(t) > 0 and let (a, p) c= (a, b)be the maximal 
interval containing Tin which v(t) > 0. Then, by (4.8), v'(a) = 0, v'(p) = 0. 
Moreover (4.6) holds on (a, (5). Integrating (4.6) from a to /?, we get 
0 = v'(P) — v'(a) > 0. This contradiction proves Theorem 4. 
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О ПЕРИОДИЧЕСКИХ РЕШЕНИЯХ ПЕРВОГО РОДА 
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА 

1гепа КасЬйпкоуа 

Резюме 

В статье доказаны достаточные условия для существования и единственности решения 
задачи 

и" =/(/, и, и'), и(Ь) — и(а) = А, и'(Ь) — и'(а) = /?, а, Ь9 А, # е ( —со, со), а < Ъ. 

В случае А Ф О, В = 0 показаны условия для существования решения и уравнения и" = 
= /(/, и, и) такого, что и' периодическая функция. 
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