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A NOTE ON THE WEAK CONVERGENCE
OF PROBABILITY MEASURES ON C(K, L)

FRANTISEK RUBLIK

1. Introduction

The aim of this note is to establish a sufficient condition for weak convergence of
probability measures on C(K, L), where K is an arbitrary compact metric space.
The proof of this result is performed by means of piecewise linear functions and
Wichura’s theorem, similarly, as it has been done in [4] in the case of C((0, 1)).

2. Polygonal function

Let Q= ]—l (aj, b;) be an n-dimensional cube. Let us denote by P the system of
j=

all (n+ 1)-tuples (P, ..., P.+1) which satisfy the following conditions.
(i) There are a variation ji, ..., j.—2 of 1,..., n and numbers c € {a;, b;},

i=1,..., n—2 such that for k=1, ..., n—2 the point P is the barycenter of the
face

Fji e, .., a)={xeQ;xi=c, i=1, .., k},

i.e. Pc=(x1, ..., Xa), Where x;=cy, ..., x;, = ¢« and x;=(a@; + b;)/2 for
J€{jr, -0y ja-2}.

(ii) Pa-1, P are vertices of the cube Q and belong to the faceF;, ...;,_,(c1,
Cn—z).

(iii) Pn+1 is the barycenter of the cube Q, i.e., Pns1=((a1+ b1)/2, ..., (@ +
+ bn)/2.

(iv) The points P, ..., P.., are linearly independent.

Let us recall that points P, ..., P, are said to be linearly independent if the
vectors P,— P, 1=j=s, j# i have this property. We remark that for n=2 the
system Do is the division of the square Q into triangles which are determined by
some side of the square and by its barycenter.

A set Qc(0, 1)" will be called an n-cube (n is a positive integer) if

Q=[(kn™, (k+n™")
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and k; are non-negative integers. If we denote by P, the union of all sets
{Py, ..., Pni1}, where (P, ..., P,i1)€ Do, and put

(2.1) Po=U P, J= U 0O,

Qe J(n) Qe J(n)

where J(n) is some non-empty system of n-cubes, then the following assertion
holds.

Proposition. Let L be a normed linear space and a: P,— L. If we put for t
belonging to J

n+1

(2.2) Yo(t, @)= 2, @a(P)

n+1 n+1

whenever t= a;P,, =0, > a,-; and (Py, ..., Pni1)€ Do, Qe J(n), then
e =

(i) The function Y.(., a) is well defined and continuous on J.
(ii) If we put for f: J>L

111 =sup {lfC)l: x e I},
where ||.|| is the norm on L, then
(2.3) 11 Ya(, @) = Ya(., b)||| =max {||la(P) - (P)||: Pe ?.}.

To prove the proposition we shall need sone lemmas and the following notations.
If y=(y, ..., y;) belongs to R’, then we denote

n_

(e, )=(c, y1, s ¥)s Y'=2 s ), (1, )=y, .0y Y5, €)
and put
Q"={y":ye Q)

for Q = R’. As usual, the symbols 3Q, Q°, co(Q) denote the boundary, the interior
and the convex hull of the set Q, respectively.

Lemma 1. If (P, ..., P.+1), (PY, ..., P%.1) belong to 2o, then
(2.4) co(P, ..., Pari)nco(PT, ..., Phi)=co({Pi, ..., Pasi)n{PT, ..., P%.1}).
Proof. First we prove that

(2.5)
co(Py, ..., Pasi)nco(PY, ..., Phi1) =co(co(Py, ..., P.)nco(PT, ..., PE)U{Pns1}).

If y belonging to the left-hand side of (2.5) is an inner point of Q, then according to
Lemma 2.2.1 in [2] there is a unique Bo>0 such that the point G=
Pni1+ Po(y — Pas1) belongs to 3Q. This means that G is an element of the
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right-hand side of (2.5), hence y has this property, and (2.5) is proved. Now we
prove that

(2.6) co(P, ..., P.)nco(Pt, ..., PE)=co({Py, ..., P.}n{Pt, ..., P%}).

Obviously, this equality holds for n=2, 3. Let (2, 6) be valid for n—1=3. If
P, = P%, then assuming j; =1, denoting

(Wi, .., W)= (P, ..., Py {Pt", ..., P}
and making use of both (2.5) and the induction assumption we see that
2.7) co(PY, ..., PMnco(Pt!, ..., Py =co(W,, ..., W,).

Obviously, P,= Pt together with (2.7) implies (2.6). Further, if the number
k=min {r; P,= P%} is greater than 1, then

co(P,, ..., P.)nco(Pt, ..., P¥)=co(Px, ..., P.)nco(P%, ..., P¥)=
=co({Px, ..., Pa}{P%, ..., P%}).
which implies (2.6). Finally, combining (2.5) and (2.6) we obtain (2.4).

Lemma 2. Let Q be a cube and y e Q.
(i) There is an (n+ 1)-tuple (P, ..., Pas1) € Do such that y eco(Pi, ..., Pai1).
(ll) If (Pl, ceey Pn+1), (PT, veny Pﬁ+1) belong to @o and

y=§afﬂ=§ﬁf"i

is a convex combination of {P%} and {P;}, then ¢ is positive if and only if there is
an index i such that P;= P%, a;5;, f:>0.

(iii) If Q, Q* are n-cubes and y € QN Q*, then there exist (P, ..., P..1) € Do,
(Pt, ..., P%.1) € Do- such that

y=§ai“/ir a; =0, ié;ajsl

2.8)
{Wl, aesy m}={P1, veoy Pn+1}n{PT, ceey Pﬁ+1}.

P f. Let Q= aj, b;).
roo Il:l( { l)

(i) Let the assertion hold for n —1=2. If ye3Q, we may assume that y; = a;.
Choosing points (P, ..., Pa.1) € Do[1] such that y"'€ co(P;, ..., Pa+1) and putting

P1 =(a11 P'H'l)’ I)j=(£11, f’l)j=2’ ey ny Pn+1 = ((al + bl)/2, Pn+1)

we see that (i) holds. Further, if y € Q°, then according to Lemma 2.2.1 in [2] the
halfline
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{(T+a(y—T): a=0, T=(a+ b1)/2, ..., (a. + ba)/2)}

intersects the boundary of Q for a unique ao>1. Denoting G= T+ ao(y — T) we
can find (P, ..., Pn+1) € Do such that Geco(P,, ..., P.+1) and therefore y belongs
to this set.

(ii) The proof follows from Lemma 1 and from the fact that coefficients in any
convex combination of linearly independent points are uniquely determined.

(iii) Let the assertion hold for n—1=2, Q*=H(a’f, b*) and (a*, b*)
2

= (ay, b;) i=1,...,r for some 1=r=n-1. To avoid complications with
notations, we assume that {ji, ..., j;} < {2, ..., n}. According to the assumptions
there are (P, ..., P..i) € DQ[1], (P4, ..., P%:1) € Do-[1] such that the relation
(2.8) holds for y"!. Let us denote

Pir=(y, Pn+l)7 P, =(y, P,) i=2,..,n, Poo=((a1+ b1)/2, Pn+1),
Pt=(y, P.*.\)), Pt=(y, P¥) j=2, ..., n, Pi.a=((at+b1)/2, P%.)).

n+1

Since any convex conbination Y, a.P: with a,.1>0 belongs to Q°, the lemma is
i—1

proved.
Proof of Proposition. If Qe j(n) and te Q, then according to Lemma 2 the
mapping Y is well defined. Further, if we denote for teco(P,, ..., Pa+1)
s(t)=(a1, veoy a,,+1)

n+1 n+1

whenever t=> P, > a,=1, then s is a continuouns mapping, which implies
=1 j-1

continuity of Y,. The last assertion follows from the inequality

n+1

” Y"(t’ a)_ Y"(t’ b)”sz ailla(PI)_ b(P,)”,

where the equality sign can be written for te %,.

3. Weak convergence of probability measures

Let K be a compact metric space and L be a normed linear space. We shall
denote by C(K, L) the linear space of all continuous L-valued function on K with
the norm |||f||| =max {||f(k)||; ke K}, & the o-algebra generated by closed
subsets of C(K, L) and vs: C(K, L) — (0, =), the modulus of continuity defined
by the formula

vs() = {sup [|f(e) = f(s)||: L(1, 5)<86, 5, te K},

where & is the metric on K.
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Let X, X, (n=1) be C(K, L)-valued #-measurable random variables. We shall
establish a sufficient conditon for

3.1) LX) —> LX),

where £(X) is the probability distribution induced by the mapping X, and the
convergence in (3.1) is the usual weak convergence of probability measures on
metric spaces (cf. [1]). We remark, that if & € K, then X,(k)(w) = (Xa(w))(k),
hence X.(k) is an L-valued random variable. Similarly (X.(k), ..., X.(k,)) is an
L’-valued random variable for any ki, ..., k, belonging to K.

Theorem. Let
3.2) L(Xa(kr), ..oy Xu(kr))> E(X(K1), ..., X(k))
for every finite subset {ki, ..., k,} of some dense subset U of K. If
3.3) lél_l'.l'; lirr:gslup Plvs(X,)=e]=0

for each ¢ positive, then
(34) LX) — L(X).

Proof. According to Proposition 1 in [4] it is sufficient to construct mappings
T.: C(K, L)— C(K, L) such that the conditions

(3.5) LTy (X)) — LT(X)),
(3.6) lim lim sup P[||| X, - T.(X.)||| Z¢€] =0,
G.7) lim P[||| X ~ Tn(X)||| Z¢] =0

are fulfilled for any positive integer g and any positive number ¢.
Let N be the set of all positive integers and H be the cube (0, 1)" with the

metric J(x, y)=>|x—y]|2”. Since K is a separable metric space, there is
=

a continuous mapping e: K— H which is a homeomorphism from K on e(K)

(cf. [3], §22).

Let n be a positive integer and Q be an n-cube. Let us put
O={xeH:(x, ..., x) € Q}
and denote by J(n) the system of all n-cubes satisfying the relation
Qne(K)+0.

Further, let ;(y) be the j-th member of the sequence (or vector) y. For every point
Pe (0, 1)" we denote by P~ the point from H defined by the formula
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- m(P) j=1,..,n
mer)=(" 12

and choose Pe e(U) such that
(3.8) «(P”, P)y<n~' +inf {2(P~, e(k)): ke U}.

Now we are able to define the mentioned mapping T,. Let ge C(K, L). If x
belongs to

J= Q,
Qe lJ(n)
then denoting #'"'(x) = (m(x), ..., T.(x)) we obtain from Lemma 2 that
n+1
(3.9) A= 3 o P,
i—1

for some (P, ..., P.ri)€ Do, Qe K(n) and the combination (3.9) is convex.

Taking into account the proposition on piecewise linear functions we see that the
function

dx)= z ag(e(P))

is well defined and continuous on J, hence the function

T.(9)(k) = g(e(k))

belongs to C(K, L). Making use of (2.3) we see that T, is a continuous linear
operator, which implies its #-measurability. Now if k& € K and #'"'(e(k)) e co(Pi,

s Pas1), (Py, ..., Pu1) € Do, QeJ(n), then the inequality (3.8) implies
1(P;, e(k))<5/n, hence

3.10)  [[IT.(9)—gll|=sup {llg(e”*(x) — g(e” WNIs w(x, y)=5/n}.

Since the set e(K) is compact and e”' is a continuous mapping, taking into account
both (3.10) and (3.3) we obtain (3.6) and (3.7).

Finally, let Vi, ..., V, be an ordering of the set 2, (cf. (2.1)). If we definne
a mapping F: L"— C(K, L) by the formula

F(1,,..,1,)= Yq(n[ql(e(')) -b), b(V)=1,,
then

(3.11) T,(X)=F(X(e '(V1)), ..., X(e"' (V).

Since (2.3) implies continuity of F, both (3.11) and (3.2) imply (3.5), which
completes the proof.
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3AMETKA O CJIABON CXOIMMOCTH BEPOATHOCTHBIX MEP HA C(K, L)
FrantiSek Rublik

Pe3tome

Mycts %n— £ 0603HAYaET, YTO BEPOATHOCTHBIE Mephl {£.} cnaGo CXOAATCH K BepOSTHOCTH Z.
Mycts C(K, L) — HOpMHPOBaHHOE JIMHEHHOE MPOCTPAHCTBO HEMPEPLIBHBIX OTOGPaXKeHUit MeTpUYEeC-
Koro komnakTa K B HOpMHPOBaHHOE NMHeHOe npocTpancTBo L. Ecau cnyyaiinble Bennyunuet { X, }, X,
npunumatoume 3uavenns B C(K, L), Takue, uto pacnpenenenus {£(Xn)}, £(X) ynoenetsopsior
ycnosusiM (3.2) u (3.3), To L(X)—- L(X).
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