Mathematica Slovaca

Ivan Dobrakov
On extension of submeasures

Mathematica Slovaca, Vol. 34 (1984), No. 3, 265--271

Persistent URL: http://dml.cz/dmlcz/129282

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON EXTENSION OF SUBMEASURES

IVAN DOBRAKOV

Let \mathscr{R} be a ring of subsets of a non-empty set T. According to Definition 1 in [1] we say that a set function $\mu: \mathscr{R} \rightarrow[0,+\infty)$ is a submeasure if it is 1) monotone, 2) continuous: $A_{n} \in \mathscr{R}, n=1,2, \ldots$, and $A_{n} \searrow \emptyset$ implies $\mu\left(A_{n}\right) \rightarrow 0$, and subadditively continuous: For every $A \in \mathscr{R}$ and $\varepsilon>0$ there is a $\delta>0$ such that $B \in \mathscr{R}$ and $\mu(B)<\delta$ implies $\mu(A)-\varepsilon \leqq \mu(A-B) \leqq \mu(A) \leqq \mu(A \cup B) \leqq \mu(A)+\varepsilon$. If the δ in condition 3) is uniform with respect to $A \in \mathscr{R}$, then we say that μ is a uniform submeasure. It is easy to verify, see page 68 in [2], that subadditive continuity is equivalent to the following property 3$)^{*}$: If $A, A_{n} \in \mathscr{R}, n=1,2, \ldots$ and $\mu\left(A \triangle A_{n}\right) \rightarrow 0$, then $\mu\left(A_{n}\right) \rightarrow \mu(A)$. Similarly, the uniform subadditive continuity is equivalent to the following one: 3 u$)^{*}$: for each $\varepsilon>0$ there is a $\delta>0$ such that A, $B \in \mathscr{R}$ and $\mu(A \triangle B)<\delta \Rightarrow|\mu(A)-\mu(B)|<\varepsilon$. If instead of 3) we have $\mu(A \cup B) \leqq$ $\mu(A)+\mu(B)$ for every $A, B \in \mathscr{R}$, or $\mu(A \cup B)=\mu(A)+\mu(B)$ for every $A, B \in \mathscr{R}$, $A \cap B=\emptyset$, then we say that μ is a subadditive or an additive submeasure, respectively. Obviously subadditive, and particularly additive submeasures (i.e., countable additive measures) are uniform.

We say that a set function $\mu: \mathscr{R} \rightarrow[0,+\infty]$ is exhaustive if $\mu\left(A_{n}\right) \rightarrow 0$ for each infinite sequence $A_{n} \in \mathscr{R}, n=1,2, \ldots$ of pairwise disjoint sets. In Theorem 18 in [1] we proved, see also [3] for another proof, that a uniform, subadditive or additive submeasure $\mu: \mathscr{R} \rightarrow[0,+\infty)$ has a unique extension of the same type to $\sigma(\mathscr{R})-$ the σ-ring generated by \mathscr{R}, if and only if it is exhaustive. Two additional, rather clumsy, conditions were needed to obtain the extension theorem for non-uniform submeasures. In this note, using a more transparent approach we show that these conditions may be replaced by the following: (ii) below, and $A_{n} \in \mathscr{R}, n=1,2, \ldots$ and $\mu\left(A_{n} \Delta A_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$ implies that $\mu\left(A_{n}\right)-\mu\left(A_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

We start with a set function $\mu: \mathscr{R} \rightarrow[0,+\infty)$ having the following properties:
(i) μ is monotone and $\mu(\emptyset)=0$,
(ii) μ has the pseudometric generating property, briefly the (p.g.p.), see Theorem 1 in [2]: For each $\varepsilon>0$ there is a $\delta>0$ such that $A, B \in \mathscr{R}, \mu(A)$, $\mu(B)<\delta$ implies $\mu(A \cup B)<\varepsilon$, and
(iii) μ has the Fatou property, briefly the (F.p.): $A, A_{n} \in \mathscr{R}, n=1,2, \ldots$ and $A_{n} \nearrow A$ implies $\mu\left(A_{n}\right) \nearrow \mu(A)$.

Put $\mathscr{R}_{\sigma}\left(\mathscr{R}_{\delta}\right)=\left\{A\right.$; there are $A_{n} \in \mathscr{R}, n=1,2, \ldots$ such that $\left.A_{n} \nearrow(\searrow) A\right\}$, and $\mathscr{R}^{*}=\left\{\boldsymbol{A}: \boldsymbol{A} \subset \boldsymbol{B}\right.$ for some $\left.\boldsymbol{B} \in \mathscr{R}_{\sigma}\right\}$. Clearly μ has a unique extension $\mu: \mathscr{R}_{\sigma} \rightarrow$ $[0,+\infty]$ defined by the equality $\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$, where $A_{n} \in \mathscr{R}, n=1,2, \ldots$ and $A_{n} \nearrow A$, and μ on \mathscr{R}_{σ} shares the properties of μ on \mathscr{R}.

For $A \in \mathscr{R}^{*}$ define $\mu^{*}(A)=\inf \left\{\mu(B): B \in \mathscr{R}_{\sigma}, B \supset A\right\}$. Then:
a) $\mu^{*} / \mathscr{R}_{\sigma}=\mu$,
b) μ^{*} is monotone, and
c) there is a sequence of positive numbers $\delta_{k}, k=1,2, \ldots$ such that $\delta_{k} \searrow 0$, $0<\delta_{k} \leqq 2^{-k}$, and $A_{k} \in \mathscr{R}^{*}, \mu^{*}\left(A_{k}\right)<\delta_{k}, k=1,2, \ldots$ implies

$$
\mu^{*}\left(\bigcup_{i=k+1}^{\infty} A_{i}\right) \leqq \delta_{k} .
$$

Obviously $\mathcal{N}^{*}=\left\{N: N \in \mathscr{R}^{*}\right.$ and $\left.\mu^{*}(N)=0\right\}$ is a hereditary σ-ring.
We shall also need another extension of μ, namely we put
$\hat{\mathscr{R}}_{\sigma}=\left\{A\right.$: there are $A_{n} \in \mathscr{R}, n=1,2, \ldots$ such that $A_{n} \nearrow A$ and $\left.\mu\left(A-A_{n}\right) \rightarrow 0\right\}$,
$\hat{\mathscr{R}}_{\boldsymbol{d}}=\left\{A\right.$: there are $A_{n} \in \mathscr{R}, n=1,2, \ldots$ such that $A_{n} \searrow A$ and $\left.\mu\left(A_{n}-A\right) \rightarrow 0\right\}$,
$\hat{\mathscr{R}}=\left\{A: A \subset B\right.$ for some $\left.B \in \hat{\mathscr{R}}_{\sigma}\right\}$,
and for $A \in \hat{\mathscr{R}}$ we define $\hat{\mu}(A)=\inf \left\{\mu(B), B \in \hat{\mathscr{R}}_{\sigma}, B \supset A\right\}$.
Then it is easy to see that $\hat{\mathscr{R}}$ is a hereditary ring, the restriction of $\hat{\mu}$ to $\hat{\mathscr{R}}_{\sigma}$ equals μ, and
c) there is a sequence of positive numbers $\delta_{k}, k=1,2, \ldots$ such that $\delta_{k} \searrow 0$, $0<\delta_{k} \leqq 2^{-k}$, and $A_{k} \in \hat{\mathscr{R}}, \hat{\mu}\left(A_{k}\right)<\delta_{k}, k=1,2, \ldots$ implies that $\bigcup_{i=k+1}^{\infty} A_{i} \in \hat{\mathscr{R}}$ and $\hat{\mu}\left(\bigcup_{i=k+1}^{\infty} A_{i}\right) \leqq \delta_{k}$.
Clearly $\hat{\mathcal{N}}=\{N: N \in \hat{\mathscr{R}}, \hat{\mu}(N)=0\}$ is a hereditary σ-ring, and since $\hat{\mu}(A) \geqq \mu^{*}(A)$ for each $A \in \hat{R}, \hat{\mathcal{N}} \subset \mathcal{N}^{*}$.

For $\mathscr{2} \subset \mathscr{R}^{*}$ we define its closure $\overline{2}$ by the equality $\overline{\mathscr{2}}=\left\{\boldsymbol{A}: A \in \mathscr{R}^{*}\right.$, and there are $A_{n} \in \mathscr{Q}, n=1,2, \ldots$ such that

$$
\mu^{*}\left(A_{n} \triangle A\right) \rightarrow 0
$$

Similarly for $2 \subset \mathscr{R}$ we define its closure $\overline{\mathscr{Q}}$ using $\hat{\mathscr{R}}$ and $\hat{\mu}$.
Theorem 1. Let $\mathscr{2} \subset \mathscr{R}^{*}$ be a ring, and let $E_{n} \in \mathscr{Q}, n=1,2, \ldots$ be such that $\mu^{*}\left(E_{n} \triangle E_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. Then there is a subsequence $\left\{E_{n_{k}}\right\}_{1}^{\infty} \subset\left\{E_{n}\right\}_{1}^{\infty}$ such that:

1) $F_{k}=\bigcup_{i=k}^{\infty} E_{n_{i}} \in \hat{\mathscr{Q}}_{\sigma}, G_{k}=\bigcap_{i=k}^{\infty} E_{n_{i}} \in \hat{\mathscr{L}}_{\delta}$, and $\mu^{*}(F-G)=0$, where $F=\bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} E_{n_{i}}=$ $\lim _{k} \sup E_{n_{k}}$ and $G=\bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} E_{n_{i}}=\lim _{k} \inf E_{n_{k}}\left(\hat{2}_{\sigma}\right.$ and $\hat{2}_{\delta}$ are defined using $\left.\mu^{*}\right)$, and
2) $\mu^{*}\left(E_{n} \Delta F\right) \rightarrow 0$ as $n \rightarrow \infty$.

Analogous results hold in \hat{R} with $\hat{\mu}$.
Proof. Take a sequence $\left\{\delta_{k}\right\}_{k=1}^{\infty}$ according to the property c) of μ^{*} above, and then a subsequence $\left\{E_{n_{k}}\right\} \subset\left\{E_{n}\right\}$ such that $\mu^{*}\left(E_{n_{k}+1} \triangle E_{n_{k}}\right)<\delta_{k}$ for each $k=$ $1,2, \ldots$ Then

$$
\mu^{*}\left(\bigcup_{i=k}^{\infty}\left(E_{n_{i+1}} \Delta E_{n_{i}}\right)\right) \leqq \delta_{k-1} \quad \text { for } \quad k=2,3, \ldots
$$

hence

$$
F_{k}=\bigcup_{i=k}^{\infty} E_{n_{i}}=E_{n_{k}} \cup \bigcup_{i=k}^{\infty}\left(E_{n_{i+1}} \Delta E_{n_{i}}\right) \in \hat{\mathscr{Q}}_{\sigma}
$$

and

$$
G_{k}=\bigcap_{i=k}^{\infty} E_{n_{i}}=E_{n_{k}}-\bigcup_{i=k}^{\infty}\left(E_{n_{i+1}} \Delta E_{n_{i}}\right) \in \mathscr{2}_{\delta} .
$$

Further, since

$$
\begin{gathered}
F_{k}-G_{k}=\bigcup_{i=k}^{\infty}\left(E_{n_{i+1}} \Delta E_{n_{i}}\right) \\
0 \leqq \mu^{*}(F-G) \leqq \mu^{*}\left(F_{k}-G_{k}\right) \leqq \delta_{k-1} \rightarrow 0
\end{gathered}
$$

Hence $\mu^{*}(F-G)=0$.
2) now follows immediately from the inclusions

$$
\begin{aligned}
& E_{n} \Delta F=E_{n} \Delta E_{n_{k}} \Delta E_{n_{k}} \Delta F_{k} \Delta F_{k} \Delta F \subset\left(E_{n} \Delta E_{n_{k}}\right) \cup \\
& \left(E_{n_{k}} \Delta F_{k}\right) \cup\left(F_{k} \Delta F\right) \subset\left(E_{n} \Delta E_{n_{k}}\right) \cup \bigcup_{i=k}^{\infty}\left(E_{n_{i+1}} \Delta E_{n_{i}}\right)
\end{aligned}
$$

Analogous arguments yield the corresponding assertions for \hat{R} and $\hat{\mu}$.
Corollary 1. Any σ-ring $\mathscr{Q} \subset \mathscr{R} *(\hat{\mathscr{R}})$ is complete with respect to $\varrho, \varrho(E, F)=$ $\mu^{*}(E \Delta F)(=\hat{\mu}(E \Delta F))$.

Corollary 2. $\mathscr{R}^{*}(\hat{\mathscr{R}})$ is complete with respect to ϱ.
Corollary 3. The closure $\overline{\mathscr{Q}}(\overline{\mathscr{Q}})$ of a ring $\mathscr{Q} \subset \mathscr{R}^{*}(\hat{\mathscr{R}})$ is a ring which is complete in ϱ, and $\overline{\mathscr{2}} \subset \sigma(2) \cup \mathcal{N}^{*}(\overline{\mathscr{2}} \subset \sigma(2) \cup \hat{\mathcal{N}})$.

Theorem 2. Let $\left.{ }^{2}\right) \subset \mathscr{R}^{*}$ be a ring and let $\mu^{*}: 2 \rightarrow[0,+\infty]$ be exhaustive. Then $\bar{y}=\sigma(9) \cup \mathcal{N}^{*}$, and $\mu^{*}\left(A_{n} \triangle A\right) \rightarrow 0$ whenever $A_{n} \in \overline{\mathscr{V}}, n=1,2, \ldots$ and $A_{n} \rightarrow A$ (i.e. if $\lim \inf A_{n}=\lim \sup =A$), particularly μ^{*} is exhaustive on $\overline{2}$. Analogous results hold in \mathscr{R} with $\hat{\mu}$. Particularly, if $\mu: \mathscr{R} \rightarrow[0,+\infty)$ is exhaustive, then $\hat{R}_{\sigma}=\lambda_{\sigma}$, hence $\hat{R}=\mathscr{R}^{*}, \hat{\mu}=\mu^{*}$ on $\mathscr{R}^{*}, . \lambda^{*}=\hat{\mathcal{N}}=\hat{N}, \overline{\mathscr{R}}=\overline{\mathscr{R}}=\sigma(\mathscr{R}) \cup \mathcal{N}$, and $\mu^{*}: \sigma(. \hat{R}) \cup \dot{l}^{\prime} \rightarrow$ $[0,+\infty]$ is continuous.

Proof. First we show that $\mu^{*}: \bar{Q} \rightarrow[0,+\infty]$ is exhaustive. Suppose the contrary. Take a sequence $\left\{\delta_{k}\right\}_{1}^{\infty}$ according to the property c) of μ^{*}. Then there is a positive integer k and a sequence of pairwise disjoint sets $A_{n} \in \bar{Q}-2, n=1,2, \ldots$ such that $\mu^{*}\left(A_{n}\right)>\delta_{k}$ for each $n=1,2, \ldots$. For each $n=1,2, \ldots$ take $\left.B_{n} \in\right)$ so that $\mu^{*}\left(A_{n} \triangle B_{n}\right)<\delta_{k+3+n}$. Since for $n \neq m \quad B_{n} \cap B_{m} \subset\left(A_{n} \triangle B_{n}\right) \cup\left(A_{m} \triangle B_{m}\right)$, $\mu^{*}\left(B_{n} \cap B_{m}\right)<\delta_{k+2+n \wedge m}$. Put $C_{1}=B_{1}$ and $C_{n}=B_{n}-\left(B_{1} \cup \ldots \cup B_{n}\right)$ for $n>1$. Then $C_{n}, n=1,2, \ldots$ are pairwise disjoint elements of $\mathscr{2}$, hence by exhaustivity of μ^{*} on . $)$ there is an n_{0} such that $\mu^{*}\left(C_{n}\right)<\delta_{k+3}$ for each $n \geqq n_{0}$. Since $B_{n}-C_{n}=$ $\left(B_{1} \cap B_{n}\right) \cup \ldots \cup\left(B_{n}, \cap B_{n}\right), \mu^{*}\left(B_{n}-C_{n}\right)<\delta_{k+2}$ for each $n=1,2, \ldots$. Thus $\mu^{*}\left(B_{n}\right) \leqq$ $\mu^{*}\left(\left(B_{n}-C_{n}\right) \cup C_{n}\right)<\delta_{k+1}$ for each $n \geqq n_{0}$. Hence for $n \geqq n_{0}$ we have the contradiction $\mu^{*}\left(\boldsymbol{A}_{n}\right) \leqq \mu^{*}\left(\left(A_{n} \triangle B_{n}\right)<\delta_{k}\right.$.

The inclusion $\overline{\mathscr{Y}} \subset \sigma(2) \cup \mathcal{N}^{*}$ follows from Corollary 3 above. Since clearly $\overline{\mathcal{L}}$ is a ring containing \mathscr{V}^{2} and.*, to show that $\sigma(\mathscr{Q}) \cup \mathcal{N}^{*} \subset \overline{\mathscr{Q}}$ it is enough to prove that $\overline{2}$ contains the union of any sequence of pairwise disjoint sets from $\overline{2}$.

Let $A_{n} \in \overline{\mathscr{Y}}, n=1,2, \ldots$ be pairwise disjoint sets. Since $\mu^{*}: \overline{\mathcal{L}} \rightarrow[0,+\infty]$ is exhaustive, for each $k=2,3, \ldots$ there is an $n_{k}>n_{k}$, such that $\mu^{*}\left(\bigcup_{1}^{n_{n}} \bigcup_{n_{k}}^{+p} A_{i}\right)<\delta_{k}$ for each $p=1,2, \ldots$ Thus $\mu^{*}\left(\bigcup_{i=n,}^{n,+1} A_{i}\right)<\delta_{j}$ for each $j=1,2, \ldots$, hence

$$
\mu^{*}\left(\bigcup_{i=1}^{\infty} A_{i}-\bigcup_{i=1}^{n_{k}} A_{i}\right)=\mu^{*}\left(\bigcup_{i=n_{k}}^{\infty} A_{i}\right)=\left(\bigcup_{j=k}^{\infty} \bigcup_{i-n_{k}}^{n_{i}+} A_{i}\right) \leqq \delta_{k-1}
$$

for each $k=2,3, \ldots$ Hence $\bigcup_{n=1}^{\infty} A_{n} \in \overline{2}$, which we wanted to show. Thus $\overline{\mathcal{I}}=$ $\sigma(\mathbb{2}) \cup$. V *.

Since $A_{n} \rightarrow A$ means $\lim _{n} \sup \left(A_{n} \triangle A\right)=\emptyset$, and since $\overline{2}$ is a σ-ring, for the second assertion of the theorem it is enough to show that μ^{*} is continuous on $\overline{2}$. Let $A_{n} \in \overline{\mathcal{P}}, n=1,2, \ldots$, and let $A_{n} \searrow \emptyset$. Then $B_{n}=A_{n}-A_{n+1}, n=1,2, \ldots$ are pairwise disjoint and $A_{n}=\bigcup_{i=n}^{\infty} B_{i}$. Now in the same way as in the paragraph above we obtain that $\mu^{*}\left(A_{n}\right) \rightarrow 0$.

Analogous arguments yield the results for $\hat{\mathscr{R}}$ and $\hat{\mu}$. The rest of the theorem is evident.

Let $\mu: \mathscr{R} \rightarrow[0,+\infty)$ be a subadditive or a uniform submeasure. Then it is easy to see that $\mu^{*}: \mathscr{R}^{*} \rightarrow[0,+\infty]$ is subadditive, or is uniformly subadditively continuous, respectively. Hence, as a corollary, we immediately have the extension theorem for such submeasures, see also Theorem 18 in [1].

Corollary. An additive, subadditive or uniform submeasure $\mu: \mathscr{R} \rightarrow[0,+\infty)$ has a unique extension $\mu: \sigma(\mathscr{R}) \rightarrow[0,+\infty)$ of the same type if and only if it exhaustive.

The uniqueness of the extension follows immediately from Corollary 3 of Theorem 15 in [1]. If $\mu: \mathscr{R} \rightarrow[0,+\infty)$ is additive, then the additivity of μ^{*} : $\sigma(\mathscr{R}) \rightarrow[0,+\infty)$ may be proved in the following way: Let $A, B \in \sigma(\mathscr{R})$, and let $A \cap B=\emptyset$. Take $A_{n}, B_{n} \in \mathscr{R}, n=1,2, \ldots$ so that $\mu^{*}\left(A_{n} \triangle A\right) \rightarrow 0$ and $\mu^{*}\left(B_{n} \triangle B\right) \rightarrow$ 0 . Then $\mu^{*}\left(A_{n}\right) \rightarrow \mu^{*}(A)$ and $\mu^{*}\left(B_{n}\right) \rightarrow \mu^{*}(B)$, hence by additivity of μ on \mathscr{R} we have:

$$
\begin{gathered}
\mu^{*}(A \cup B)=\mu^{*}(A \Delta B)=\lim _{n \rightarrow \infty} \mu\left(A_{n} \Delta B_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}-B_{n}\right)+ \\
\lim _{n \rightarrow \infty} \mu\left(B_{n}-A_{n}\right)=2 \mu^{*}(A \cup B)-\mu^{*}(A)-\mu^{*}(B),
\end{gathered}
$$

hence $\mu^{*}(A \cup B)=\mu^{*}(A)+\mu^{*}(B)$.
Concerning subadditively continuous extensions we have
Theorem 3. The following conditions are equivalent:
a) $\hat{\mu}: \bar{R} \rightarrow[0,+\infty)$ is subadditively continuous,
b) If $A_{n} \in \mathscr{R}, n=1,2, \ldots$ and $\mu\left(A_{n} \triangle A_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$, then for each $\varepsilon>0$ there is a $\delta>0$ such that $B \in \mathscr{R}$ and $\mu(B)<\delta$ implies $\mu\left(A_{n}\right)-\varepsilon \leqq \mu\left(A_{n}-B\right) \leqq$ $\mu\left(A_{n}\right) \leqq \mu\left(A_{n} \cup B\right) \leqq \mu\left(A_{n}\right)+\varepsilon$ for each $n=1,2, \ldots$, and
c) If $A_{n} \in \mathscr{R}, n=1,2, \ldots$ and $\mu\left(A_{n} \triangle A_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$, then $\mu\left(A_{n}\right)-\mu\left(A_{m}\right) \rightarrow$ 0 as $n, m \rightarrow \infty$.

Proof. a) \Rightarrow b). Let $A_{n} \in \mathscr{R}, n=1,2, \ldots$ be such that $\mu\left(A_{n} \triangle A_{m}\right) \rightarrow 0$ as n, $m \rightarrow \infty$. By Corollary 2 of Theorem 1 there is an $A \in \mathscr{R}$ such that $\hat{\mu}\left(A_{n} \triangle A\right) \rightarrow 0$. Let $\varepsilon>0$. By the subadditive continuity of $\hat{\mu}$ on $\overline{\mathscr{R}}$ there is a $\delta_{A}>0$ such that $B \in \overline{\mathscr{R}}$ and $\hat{\mu}(B)<\delta_{A} \quad$ implies $\hat{\mu}(A)-2^{-1} \cdot \varepsilon \leqq \hat{\mu}(A-B) \leqq \hat{\mu}(A) \leqq \hat{\mu}(A \cup B) \leqq \hat{\mu}(A)+$ $2^{-1} \cdot \varepsilon$. Further, by the (p.g.p.) of $\hat{\mu}$ there is a $\delta_{0}<\delta_{A}$ such that $B, B_{1} \in \mathscr{R}$ and $\hat{\mu}(B)$, $\hat{\mu}\left(B_{1}\right)<\delta_{0}$ implies $\hat{\mu}\left(B \cup B_{1}\right)<\delta_{A}$. Take n_{0} so that $\hat{\mu}\left(A \triangle A_{n}\right)<\delta_{0}$ for $n \geqq n_{0}$. Then for $n \geqq n_{0}$ and for $B \in \mathscr{\mathscr { R }}$ with $\hat{\mu}(B)<\delta_{0}$ we have the inequalities $\hat{\mu}(A)-2^{-1} \cdot \varepsilon \leqq$ $\hat{\mu}\left(A-\left(B \cup\left(A-A_{n}\right)\right)\right) \leqq \hat{\mu}\left(A_{n}-B\right) \leqq \hat{\mu}\left(A_{n}\right) \leqq \hat{\mu}\left(A_{n} \cup B\right) \leqq \hat{\mu}\left(A \cup\left(A_{n}-A\right) \cup B\right) \leqq$ $\hat{\mu}(A)+2^{-1} \cdot \varepsilon$. Hence for such n and B we have the inequalities $\hat{\mu}\left(A_{n}\right)-\varepsilon \leqq$ $\hat{\mu}\left(A_{n}-B\right) \leqq \hat{\mu}\left(A_{n}\right) \leqq \hat{\mu}\left(A_{n} \cup B\right) \leqq \hat{\mu}\left(A_{n}\right)+\varepsilon$. Finally, by the subadditive continuity of $\hat{\mu}$ we take $\delta_{1}, \ldots, \delta_{n 0}$ corresponding to ε and $A_{1}, \ldots, A_{n_{0}}$ respectively, and we put $\delta=\min \left\{\delta_{0}, \delta_{1}, \ldots, \delta_{n_{0}}\right\}$.

Clearly b) \Rightarrow c).
c) $\Rightarrow \mathrm{a})$. For $A \in \overline{\mathscr{R}}$ put $\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$, where $A_{n} \in \mathscr{R}, n=1,2, \ldots$ and $\mu\left(A_{n} \Delta A\right) \rightarrow 0$. By c) μ is clearly unambiguously defined. First we show that μ : $\bar{R} \rightarrow[0,+\infty)$ is subadditively continuous, and then that $\mu(A)=\hat{\mu}(A)$ for each $A \in \overline{\mathscr{R}}$.

Suppose $\hat{\mu}: \overline{\mathscr{R}} \rightarrow[0,+\infty)$ is not subadditively continuous. Then there is an $\varepsilon>0$ and $A, A_{n} \in \overline{\mathscr{R}}, n=1,2, \ldots$ such that $\mu\left(A_{n} \triangle A\right) \rightarrow 0$ and $\left|\mu\left(A_{n}\right)-\mu(A)\right|>\varepsilon$ for each $n=1,2, \ldots$ Take $A_{0, k}, A_{n, k} \in \mathscr{R}, k, n=1,2, \ldots$ so that $\hat{\mu}\left(A_{0, k} \triangle A\right) \rightarrow 0$ and $\hat{\mu}\left(A_{n, k} \Delta A_{n}\right) \rightarrow 0$ as $k \rightarrow \infty$, for each $n=1,2, \ldots$ Then $\mu(A)=\lim _{k \rightarrow \infty} \mu\left(A_{0, k}\right)$, $\mu\left(A_{n}\right)=\lim _{k \rightarrow \infty} \mu\left(A_{n, k}\right) \quad$ for \quad each $\quad n=1,2, \ldots \quad$ and $\quad \lim _{n \rightarrow \infty} \mu\left(A \triangle A_{n}\right)$ $=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \mu\left(A_{0, k} \triangle A_{n, k}\right)=0$.
Take a sequence $\left\{\delta_{i}\right\}_{1}^{\infty}$ according to the property c) of μ^{*}. By the last equality for each $i=1,2, \ldots$ there is an n_{i} such that $\lim _{k \rightarrow \infty} \mu\left(A_{0, k} \triangle A_{n_{i}, k}\right)<\delta_{i}$. But then for each i there is a k_{i} such that $\mu\left(A_{0, k_{i}} \triangle A_{n_{i}, k_{i}}\right)<\delta_{i}$ and $\left|\mu\left(A_{n_{i} k_{i}}\right)-\mu\left(A_{n_{i}}\right)\right|<i^{-1}$. By the properties of the sequence $\left\{\delta_{i}\right\}_{1}^{\infty}$ the first inequality implies that the sequence $\left\{A_{0, k_{1}}, A_{n_{1}, k_{1}}, \ldots, A_{0, k_{i}}, A_{n_{i} k_{i}}, \ldots\right\}$ is ϱ-Cauchy, where $\varrho(E, F)=\mu(E \Delta F)$, hence by c) and the second inequality we have the contradiction

$$
\mu(A)=\lim _{i \rightarrow \infty} \mu\left(A_{n_{i}, k_{i}}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{n_{i}}\right) .
$$

There remains to be shown that $\mu(E)=\hat{\mu}(E)$ for each $E \in \overline{\mathscr{R}}$. Let $E \in \overline{\mathscr{R}}$. Take a sequence $E_{n} \in \mathscr{R}, n=1,2, \ldots$ so that $\mu\left(E \triangle E_{n}\right) \rightarrow 0$, and let have the notations of Theorem 1. Then $\hat{\mu}(E)=\inf \left\{\mu(B): E \subset B, B \in \hat{\mathscr{R}}_{\sigma}\right\} \leqq \inf _{k} \mu\left(F_{k}\right)=\lim _{k \rightarrow \infty} \mu\left(F_{k}\right)=$ $\lim _{k \rightarrow \infty} \mu\left(E_{n_{k}}\right)=\mu(E)$, since $\mu\left(F_{k} \Delta E_{n_{k}}\right) \rightarrow 0$ as $k \rightarrow \infty$.

On the other hand, for each $\varepsilon>0$ there is a $B \in \hat{R}_{\sigma}$ such that $B \supset F$ and $\hat{\mu}(F)+\varepsilon \geqq \mu(B) \geqq \mu\left(B \cap F_{k}\right) \geqq \mu(F)$ for each k, hence $\hat{\mu}(F) \geqq \mu(F)=\mu(E)$. There remains to be shown that $\hat{\mu}(F)=\hat{\mu}(E)$. Since $\mu: \hat{R} \rightarrow[0,+\infty)$ is subadditively continuous, and since $\hat{\mu}=\mu$ on \hat{R}_{σ}, by the definition of $\hat{\mu}, \hat{\mu}: \hat{R} \rightarrow[0,+\infty)$ is subadditively continuous from the right, i.e., for each $A \in \hat{\mathscr{R}}$ and $\varepsilon>0$ there is $a \delta>0$ such that $B \in \hat{R}, \hat{\mu}(B)<\delta$ implies $\hat{\mu}(A \cup B) \leqq \hat{\mu}(B)+\varepsilon$. From this, since $\hat{\mu}(E \triangle F)=0$ we immediately have the required equality $\hat{\mu}(F)=\hat{\mu}(E)$. The theorem is proved.

From Theorems 2 and 3, and Theorem 3-b) in [1] we immediately have (the uniqueness follows easily from Corollary 3 of Theorem 15 in [1]) our extension theorem for submeasures, compare with Theorem 18 in [1].

Theorem 4. (Extension Theorem for Submeasures.) A submeasure $\mu: \mathscr{R} \rightarrow$ $[0,+\infty)$ has a unique extension to $\sigma(\mathscr{R})$ - the σ-ring generated by \mathscr{R}, if and only if it is exhaustive on $\mathscr{R}, A_{n} \in \mathscr{R}, n=1,2, \ldots$ and $\mu\left(A_{n} \triangle A_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$ implies $\mu\left(A_{n}\right)-\mu\left(A_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$, and for each $\varepsilon>0$ there is a $\vartheta>0$ such that A, $B \in \mathscr{R}$ and $\mu(A), \mu(B)<\delta$ implies $\mu(A \cup B)<\varepsilon$.

REFERENCES

[1] DOBRAKOV, I.: On submeasures I, Dissertationes Math. 112, Warszawa 1974, 1-35.
[2] DOBRAKOV, I., FARKOVÁ, J.: On submeasures II, Math. Slovaca 30, 1980, 65-81.
[3] DREWNOWSKI, L.: On the continuity of certain non-additive set functions, Colloquium Math. 38, 1978, 243-253.
[4] DREWNOWSKI, L.: On complete submeasures, Commentationes Math. 18, 1975, 177-186.
Received September 1, 1981
Matematický ústav SAV
Obrancov mieru 49
81473 Bratislava

О РАСШИРЕНИИ СУБМЕР

Ivan Dobrakov

Резюме

Пусть \mathscr{R} кольцо подмножеств непустого множества Т. Согласно с [1] функция множеств μ : $\mathscr{R} \rightarrow\left\langle 0, \infty\right.$) называется субмерой, если она монотонна, непрерывна ($A_{n} \backslash \emptyset \Rightarrow \mu\left(A_{n}\right) \rightarrow 0$), и полуаддитивно непрерывна ($\forall A \in \mathscr{R}$ и $\forall \varepsilon>0 \exists \delta>0, B \in \mathscr{R}, \mu(B)<\delta \Rightarrow \mu(A)-\varepsilon \leqq \mu(A-B) \leqq$ $\mu(A) \leqq \mu(A \cup B) \leqq \mu(A)+\varepsilon)$. Последнее условие можно заменить следующим: $A, A_{n} \in \mathscr{R}, n=$ $1,2, \ldots$ и $\mu\left(A_{n} \Delta A\right) \rightarrow 0 \Rightarrow \mu\left(A_{n}\right) \rightarrow \mu(A)$. Необходимые и достаточные условия для расширения субмеры из кольца \mathscr{R} на порожденное им сигма кольцо были установлены Теоремой 18 в [1]. Условия II и III этой теоремы слишком громоздкие. В настоящей работе показывается, что их можно заменить более простыми условиями. А, именно, справедлива следующая

Теорема о расширении субмеры. Субмера $\mu: \mathscr{R} \rightarrow\langle 0,+\infty)$ однозначно расширается до субмеры на сигма кольце, порожденном \mathscr{A} тогда и только тогда, когда она не имеет ускользающей нагрузки на $\mathscr{R}, A_{n} \in \mathscr{R}, n=1,2, \ldots$ и $\mu\left(A_{n} \Delta A_{m}\right) \rightarrow 0$ для $n, m \rightarrow \infty \Rightarrow \mu\left(A_{n}\right)-\mu\left(A_{m}\right) \rightarrow 0$ для n, $m \rightarrow \infty$, и для каждого $\varepsilon>0$ существует $\delta>0$ так, что $A, B \in \mathscr{R}$ и $\mu(A), \mu(B)<\delta \Rightarrow \mu(A \cup B)<\varepsilon$.

