
Mathematica Slovaca

Marek Balcerzak
Classification of sigma-ideals

Mathematica Slovaca, Vol. 37 (1987), No. 1, 63--70

Persistent URL: http://dml.cz/dmlcz/129290

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/129290
http://project.dml.cz


Math. Slovaca 37, 1987, No. 1, 63—70 

CLASSIFICATION OF a-ideals 

MAREK BALCERZAK 

In the paper, cr-ideals of complete separable perfect metric spaces are con
sidered. For any tr-ideal J, let S(3&, J) denote the cr-field generated by Borel sets 
and sets from J. Ordinal numbers RT(J), RZ(J), characteristic of J, which 
describe some special properties of S(&, ^-measurable sets and functions, are 
investigated. Examples concerning meager sets and sets of measure zero are 
discussed. Connections with Mauldin's results on generalized Baire systems are 
observed. 

Throughout the paper, we shall assume that X is a complete separable perfect 
metric space. Let £8 denote the family of all Borel subsets of X. We shall also 
consider Borel classes Fa, Ga, a<cox, (comp. [2], pp.251—252). Here cox 

denotes the first uncountable ordinal number; co will denote the first infinite 
ordinal number. The closure of a set A .= X will be written as A. 

A family J of subsets of X will be called a cr-ideal if and only if it fulfils the 
conditions: 

(i) if AeJ and B ^ A, then Be J; 

(ii) if AneJ for all n < co, then \^J AneJ; 
n<(o 

(iii) if AeJ, then the interior of A is empty; 
(iv) if xeX, then {x}eJ. 
Assume that J is a cr-ideal. let S(38, J) denote the cr-field generated by all 

sets from SSKJ J. It is easily checked that 

S(@, J) = {BAA: Be J, AeJ} 

where B A A denotes the symmetric difference of the sets B, A. 
Define RT(J) as the first of ordinal numbers a^cox such that 

S(@,J) = {BAA:BeFa, AeJ} 

(here F^ = $8). Observe that it will not matter if we replace above Fa by Ga. We 
may interpret RT(J) as follows. Let £8\J denote the Boolean algebra of Borel 
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sets modulo . / , i.e. the set of all equivalence classes of the relation 

A~B if and only if A A Be J 

defined for all Borel sets. Then RT(J) means the first of numbers a such that 
equivalence classes generated by sets from Fa give the whole &/J. 

In the sequel, JT, S£ will denote, respectively, the a-ideal of all meager subsets 
of X and the cr-ideal of all subsets of R (the real line) of the Lebesgue measure 
zero. It is an easy exercise to show that RT(Jf) = 0, RT(<£) = 1 (comp. [4], [8]). 
In [7] Miller constructed, for each a < cox, a rr-ideal J of subsets of the Cantor 
set 2a, such that RT(J) = a (for related results, see [8]). 

Proposition 1. If J, f are o-ideals such that J c / , then RT(f) = RT(J). 
Proof. Let RT(J) = a and EeS(@, f). Then E= BAA where Be08, 

Aef. Obviously, BeS(@, J), and so B = CAD where CeFa, DeJ. Thus 
E =CA (A A D) and CeFa, (AAD)ef. Hence RT(f) ^ a. 

We shall say that the functions f g: X-+ R are ./-equivalent if and only if 
{x:f(x)*g(x)}eJ. 

Let XA denote the characteristic function of a set A and let f\ A be the 
restriction of a function/to A. 

Theorem 1. Let f X-> R. The following conditions are equivalent: 
(1) fis S(@, J)-measurahle; 
(2) there is a &-measurable function g: X-> R such thatf g are J-equivalent; 
(3) there is a set AeJ such that the function f\X\ A is ^-measurable. 
Proof. (\)=>(2). Assume first t h a t / = j A , AeS(08, J). Let A = B/\C 

where Be&, CeJ. Put g = XB- Then g is ^-measurable and we have 

{x:f(x) * g(x)} = A AB = CeJ. 

Thus f g are ./-equivalent. 
Next, assume that / i s a simple function 

f=taiXAil a.eR> AteS(@,J), i = n. 
/ = i 

Let gi be ^-measurable functions such that 

{x: xAj(x) 7- g,(x)} eJ, i^ n. 

n 

Put g = £ Qjgj. Then g is ^-measurable and we have 
/ = i 

{x:f(x) Ф g(x)} ç Џ í ^ L W Ф gi(x)}e J. 
i = i 

Hence/, g are ./-equivalent. 
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Now, le t /be an arbitrary S(38, y)-measurable function. Then there exists a 
sequence {/}„<«» ofS(&, ^-measurable simple functions which converges point-
wise t o / For any n < c0, let gn be a ^-measurable function such t h a t / , gn are 
./-equivalent. 

Let 
flim sup gn(x) if lim sup gn(x) < + oo 

(*) S(X) = ^ "-00 n->cc 

0̂ otherwise. 

Then g is ^-measurable and we have 

{x:Ax) * g(x)} c ( J {X:fn(x) * gn(x)}eJ. 
n<co 

Thus / g are ./-equivalent. 
(2)=>(3). Let A = {x:f(x) # g(x)}. By the assumption we have AeJ and 

since g is ^-measurable, f\X\ A is ^-measurable. 
(3) z-> (l). Denote h =f\ X\A. Let G be an arbitrary open subset of R. Since 

h is ^-measurable, there is a set Be38 such that h~\G) = B\A. So we have 

f-1(G) = ( J 5 \ ^ ) u C where C = (f\A)~x (G). 

Let D = (C\B)u(AnB\C). Since ^ e f and Z> c ,4, therefore D e / . It is 
easily checked that f '^G) = BAD. Thusfis 5 (^ , ./)-measurable. 

The proof is completed. 
Let M(J) denote the family of all S(38, Jr)-measurable functions/ X-> R. 
For a < cox, let M f l(i) denote the family of all functions/ X-> R such that 

there is a function g: X-> R, .^-measurable of class a (see [2], p. 280), a n d / g 
are ./-equivalent. Furthermore, put M^ (J) = M(J). 

Next, define RZ(J) as the first of ordinal numbers a ^ cox such that 
Ma(J) = M(J) (note that a similar classification for topological measure 
spaces was proposed by Zink in [10], [11]). We may interpret RZ(J) as 
follows. Consider the lattice of all equivalence classes of the relation 

/ ~ g if and only if/ g are ./-equivalent 

defined for all ^-measurable functions. Then RZ(J) signifies the first of num
bers a such that the above lattice consists of equivalence classes generated by all 
^-measurable functions of the class a. 

Proposition 2. RZ(J) > 0. 
Proof (comp. [11], th. 6). Suppose that RZ(J) = 0. This implies that the 

closure of every open set is again open, i.e. Xis extremally disconnected. Indeed, 
let U be an open set. By the supposition, there exists a continuous function 
/ X-> R such that ^ , / a r e ./-equivalent. Then the set {x:/(x)^{0, 1}} is open 

65 



and belongs to J, thus, in virtue of (iii), it is empty. Consequently, / is the 
characteristic function of some set V which must be open since/is continuous. 
Moreover, UAVe(9. Since V\U is open and belongs to J, therefore it is 
empty. Similarly, U\ V is empty since it is an open subset of U\ VeJ. Hence 
we conclude that U c V c U and, consequently, U = V. We have obtained a 
contradiction since a metric space X cannot simultaneously be perfect and 
extremally disconnected. Indeed, suppose that X has these two properties. 
Consider any point x0eX. Choose a sequence {xn}n<0) of distinct points converg
ing to x0 and sequence {U„}n<(0 of open pairwise disjoint sets such that for each 
n < 60 we have xn e Un and Un is contained in the ball with the centre x0 and the 

radius l/n. Then the set ^J U2n is open and easily seen to be equal to 
n<0) 

{x0} u v j V7n. Thus, it must contain almost all points xn, which is impossible. 

Proposition 3. If J, f are a-ideals such that J ^ f, then RZ(J) = RZ(J). 
The proof is analogous to that of Proposition 1. 
We shall now study the relationships between RT(J) and RZ(J). 

Theorem 2. RT(J) = RZ(J) = RT(J) + 3. 
Proof. Let RT(J) = a, RZ(J) = /?. First, we shall show that a = p. It is 

enough to consider the case (5 < cox. Assume, for example, that /? is even. Let 
feS(3S, J). Then A = B AC where Be®, CeJ. Since RZ(J) = (i, there is a 
function ge Mp(J) such that the set D = {x: xB(*) / / W } G / . Let E = g~]({\}). 
We have A = EA(EAA), EeFB, EAAeJ (because E A A = (EAB)AC, 
EAB^DeJ, CeJ). Hence a = /?. If a is odd, the proof is analogous. We 
shall now show that /? ̂  a + 3. Consider the non-trivial case a < cox only. Let 
feM(J). I f / = XA where AeS(®, J), then A = BA C, BeFa, CeJ by the 
definition of a. Put g = XB\ txien g is ^-measurable of class a + 1 (comp. [2], 
p. 281) a n d / g are ./-equivalent. Thus , /eM a + , (J). The same happens when 
/ i s a simple function. In the general case, choose a sequence {f„}„<m of S(@), 
</)-measurable functions converging t o / For any n < co, let g„ be a ^-measur
able function of the class a+ 1, such t h a t / , g„ are ./-equivalent. Let g be 
defined by formula (*) given in the proof of Theorem 1. Define E = {x\ lim sup 

n -» x 

g.(jc) = + co}. It is easy to verify that E belongs to Fa + 2 or Ga + 2. Moreover, 
g | X\ E is ^-measurable of class a + 3 since it can be obtained by starting from 
functions of the clas a + 1 and using twice the operation of pointwise conver
gence (comp. [2], p. 284). This implies that g is of class a + 3, too. Since/ g are 
^-equivalent, we conclude t h a t / e M 0 + 3(J

2r). Thus p= a+ 3. 

66 



Corollary 0. The conditions RT(J) = cox, RZ(J) = cox are equivalent. 
Below, we shall prove that, for some a-ideals, we can obtain more precise 

estimations of RZ(J) than the second inequality in Theorem 2. We shall need 
the following proposition which generalizes the well-known characterization of 
functions possessing the Baire property (see[2], p. 306). This result was already 
published in the cases a = 0 ([3], p. 408) and a = 1 ([4], 8 (ii)). In the general case, 
the proof is analogous and will be omitted. 

Proposition 4. Let a < cox and assume that 

K J) = {BAA: BeFa, AeJ}. 

A functionf:X -• R is S(3S, ^-measurable if and only if there is a set A e J such 
that the restriction f|X\-4 is ^-measurable of class a. 

Theorem 3. Let a < cox. Assume that each set AeJ is included in a Borel set 
Be J of the additive class a. Then RZ(J) = max (a, RT(J)). 

Proof. Let P=max(a, RT(J)). It is enought to show that 
M(J)^Mp(J). Let feM(J). Since RT(J) = P, therefore S(£, J) = 
= {B AA:BeFp, AeJ}. In virtue of Theorem 1, there is a set A eJ such 
that the functionfl X\^4 is ^-measurable of class /?. It follows from the assump
tion that there is a Borel set Be J of the additive class P, such that A .= B. The 
functionfl X\ B is ^-measurable of class P and the set X\ B is of the multiplica
tive classs P; thus (see [2], p. 341), there exists an extension of f|X\2? to a 
function g: X->R which is ^-measurable of class p. Since {x: 
f(x) T-= g(*)} ^BeJ, therefore f g are ./-equivalent. Hence feMp(J). 

Example 1. It follows from Theorem 3 that RZ(X)=\. Thus, by 
Proposition 2, we have RZ(Jf) = 1. 

Example 2. Theorem 3 easily implies that RZ(<£) = 2, which gives the 
well-known property that each Lebesgue measurable function is equal almost 
everywhere to a function of the Baire class 2. Consider a Borel set E ^ R which 
is of positive measure on every interval and whose complement has the same 
property. Then ££eM(j£0\M.(j£?). Thus RZ(&) = 2. 

Example 3. Consider the cr-ideal Jf n JSf of all meager subsets o R of 
measure zero. Observe that 

(**) S(@, X n JSO = S(®, X) n S(@, <£). 

Indeed, the inclusion "cz" is obvious. In order to prove the converse inclusion, 
assume that A eS(S8, X) n S(0$, i£). Then A has the Baire property, hence it 
can be expressed in the form A = B u C where B is of type G5 and CeX. We 
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may assume that B, C are disjoint. Since 5(^?, X) n S(^, se) is a tr-field and 
A, B belong to it C = A\B also belongs to this field. Then C is Lebesgue 
measurable, so it can be expressed in the form C = D\J E where D is of type Fa 

and EeSe. We may assume that D, E are disjoint. Thus we have 
A = (Bu D) A E, Bu De£ft,EeX n Se. In consequence, the inclusion " ^ " in 
(**) holds. Moreover, BKJD is of type Fa5, thus it turns out that 
RT(Jf nS?)<L2. The inequality RT(jf n if) = 2 will be proved when we find 
a set £ G J such that DA E$ X n j£? for each set D of type F,,. Let A, Be 38 be 
disjoint sets such that A u B = (0, 1), AeJT, BeSe (see [9]). Put 
F = (A + \)u B where ^ + 1 = {a + 1: aeA}. Of course, EeSS. Let D be an 
arbitrary set of type Fa. If Dn(0, 2)eif, then (^ + l)\D<£if, and so, 
DAF^Jf nSe. Next, consider the case D n (0, 2)<£if. If D n (0, l)^JSf, then 
D\B$Se, and so,DAE£Xn if. If D n (0, l )eif , then D n (0, 1), being a set 
of type Fa and of measure zero is meager. Thus B\D$X and, consequently, 
D AE$ Jfn Se. Hence, we have proved that RT(Jfn Se) = 2. Observe now that 
Theorems 2, 3 easily imply RZ(JS n if) = 2. 

Problem. Do there exist cr-ideals J, / such that RZ(J) = RT(J) + 2, 
IvZ(/) = KF(/) + 3? 

We shall now show that Mauldin's results concerning generalized Baire 
systems have some connections with RZ(J), RT(J). 

Let C , denote the family of all functions f: X -» R whose sets of points of 
discontinuity belong to J. Define the Baire system @a(J), a = &>,, as follows 
(see [5]): let <P0(J) = Cj and, for each a, 0 < a = co{, let <Pa(J) be the family 

of all pointwise limits of sequences with terms from ^J Ov(J)- The first of 
v< a 

ordinal numbers a such that 0a (J) = @a(f) will be called the Baire order of 
J. Observe that the Baire order is always positive since if A denotes any 
countable dense subset of X, then we have ^ e $ , ( / ) \ $ 0 ( / ) . 

Let <Pa, a = &>,, denote the usual Baire system (defined analogously as above 
by taking @0 equal to the family of all continuous functions). 

Denote by Jx the cr-ideal of all sets from J which have supersets from J, of 
typeFCT. 

Theorem I ([5]). Let 0 < a < cox. Then fe (Pa(J) if and only if there exists 
ge0a such that f g are J ^equivalent. 

Theorem II ([6]). The Baire order of Se is cox. 
Proposition 5. Let 0 < « _ cox. Then 

0 (j\ = \Ma(^\) if is finite or equal to cox 

l M a + , ( / , ) otherwise. 

Proof. For a < cox, the assertion follows from Theorem I and the known 
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fact that g belongs to <2>aif and only if it is ̂ -measurable of class a or a + 1 when 
a is finite or infinite, respectively (see [2], p. 299). Next, observe that 

^(J) = U <W) = U MJiJ,) = M^SJ, 
V<(0\ V<Oi\ 

hence the assertion holds for a = cox, as well. 
Remark. Since, for any function, its set of points of discontinuity is of 

type FG9 we always have C, = Cj . Thus the Baire systems and orders of,/, J x 

are identical. 

Corollary 1. If J c £,, then RZ(J) = RT(J) = cox. 
Proof. By Theorem II and Propositions, we have RZ(JX) = cox. Thus, 

by Proposition 3, RZ(J) = cox, and Corollary 0 gives RT(J) = cox. 
Since RZ(X) = 1 (comp. Example 1) and Jf = Jf',, therefore Proposition 5 

implies the known result: 

Corollary 2 ([1]). The Baire order of X is 1. 
Remarks , (a) From Theorem 2 and Miller's result ([7]) stating that there 

is a cj-ideal J of subsets of 2" with arbitrary RT(J), we conclude that there are 
cr-ideals J with arbitrarily high RZ(f). The question may be posed whether, for 
each a < cox, there exists a cr-ideal J such that we have exactly RZ(J>) = a. 
Theorems 2, 3 suggest a method for seeking such cr-ideal. Miller's construction 
is expected to be useful as well. 

(b) Mauldin in [6] asked whether, for each a < cox, there exists a cr-ideal with 
the Baire order a. One may associate this problem with that posed in (a) and try 
to solve it in the affirmative by using Proposition 5. 
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КЛАССИФИКАЦИЯ сг-ИДЕАЛОВ 

Магек Ва1сеггак 

Резюме 

Пусть ^ — сг-идеал множеств в полном, сепарабельном, совершенном метрическом 
пространстве. Пусть 5($, У) — сг-поле, порожденное борелевскими множествами и 
множествами из .У. В статье исследуются ординалы КТ(У), К2.(У), описывающие спе
циальные свойства 5(<%, ./)-измеримых множеств и функций. Приведены примеры и указама 
связ с обобщенными системами Бэра. 
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