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DIRECT PRODUCT DECOMPOSITIONS OF 
g-DIGRAPHS 

PAVEL KLENOVCAN 

The direct, subdirect and weak direct product decompositions of partially 
ordered sets and the decompositions of their covering graphs were investigated, 
e.g., in [2], [4], [5], [6], [7], [8]. The direct product decompositions of a covering 
graph C(G) of a digraph G and the direct product decompositions of G were 
studied in [9]. 

The relation between the direct product decompositions of a covering graph 
C(G) of a g-digraph G and the direct product decompositions of G will be 
studied in the present paper. The notion of a g-digraph will be introduced in the 
Section 2. 

1. Preliminaries 

We start by recalling some notions concerning graphs, digraphs and direct 
products (cf. also [7] and [9]). For all further notions concerning digraphs and 
graphs we refer the reader to [3]. 

Let G = (F, E) be a digraph. By the covering graph ofG we mean a graph 
C(G) = (V, E) whose edges are those pairs {a, b}, for which (a, b)e£ or 
(b, a)eE. 

Let / be a nonempty set and G, = (Vh Et) (iel) be graphs. Let V be the 

cartesian product of the sets V{ ( V = f ] VA. The elements of V will be denoted 

a = (a,), iel, where at = a(i)e Vt. Let G be a graph whose set of vertices is Fand 
whose set of edges consists of those pairs {x, y}, x, yeV which satisfy the 
following condition: there is iel such that {xh yjeis, and x/ = y/ for each 
jel\{i}. Then G is said to be a direct product of the graphs Gt (iel) and we write 
G = f ] G> We omit the symbol ielvery often if no misunderstanding can arise. 

iel 

The direct product of digraphs is defined similarly. 
If a mapping f: Vx -* V2 is an isomorphism of a graph Gx = (Vu Ex) into a 
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f 

graph G2 = (V2, E2), then we shall write G, ~ G2. If such an isomorphism does 
exist, then we write shortly Gxc^G2. 

f 
If G ~ n G„ then we shall say that n G, is a decomposition ofG (with respect 

to the map f). 
In the present paper every decomposition ITG,, where G, = (Vt, Et), is sup­

posed to be nontrivial (i.e. |^ | > 1 for each iel). 
f 

If G ~ PJ G, where G is connected, then / must be finite (cf. [11]). 
! € / 

The subgraph of a graph G = (V, E) induced by a set W .= V will be denoted 
byG<W>. 

An analogous terminology and notions are used for digraphs and partially 
ordered sets. 

Let G = (V, E) be a graph. If there exists a four-element set W = {a, b, 
c, d} c Fsuch that G< W} = (W, F), where F = {{a, b}, {b, c}, {c, d}, {a, d}}, then 
we say that the graph G< W} is a square (in G) and we denote it by S(a, b, c, d). 
If G is a digraph and C(G{ W}) = S(a, b, c, d), then G< W> is called a square 
(in G) and denoted by £(#, b, c, d). 

Let keL The edge {a, b) of IIG, will be called a k-edge whenever a, = by for 
eachje/\{k}. 

Lemma 1 [9]. Let S(a, b, c, d) be a square in IT G,. //'{a, b} is an r-edge and 
{b, c] is an s-edge, r ^ s, then ar = dr and cs = ds. 

Lemma 2 [9]. Let S(a, b, c, d) be a square in IT G,. If {a, b) is an r-edge and 
{b, c) an s-edge, then {c, d] is an r-edge and {a, d] an s-edge. 

A square S(a, b, c, d) in IT G, (iel) will be called an r-square whenever all its 
edges are r-edges for some re I. If such re I does not exist, it will be called a 
mixed square. 

Let G = (V, E) be a digraph and C(G) L YV G„ where G, = (Vh Et) (iel). We 
shall say that the decomposition IIG, (wit/* respect to the mapf) ofC(G) induces 
a decomposition ofG if there exist such diagraphs G, = (Vt, Et) that C(Gl) = Gt 

for each i e / and G -̂  IIG,. 

Let C(G) .4 n G;. We shall say that the edge (a, b) of G and the edge {a, b) 
of C(G) are k-edges (with respect to the isomorphism f) if {f(a),f(b)} is a k-edge 
of II Gf. In an analogous way the other notions concerning the direct product 
IIG, can be introduced for G and C(G). 

Let Si (i = 1, 2, 3) and 5 be as in the Figure: 

Sl' 

Fig. 1 

216 



Theorem 1 [9]. Let C(G) ^ TlGi9 where G = (V9 E) is a weakly connected 
digraph. The decomposition II Gt of C(G) induces a decomposition of G iff the 
following condition is fulfilled: 

If S(a9 b, c, d) is a mixed square in G9 then there exists ie{\9 2, 3} with 
S(a9 b9c9d)^ S(. 

2. Decompositions of g-digraphs 

A path from a to b in a graph (a digraph) will be said to be an a — b path. 
Let G = (V9 E) be a digraph. An edge (a, b) e E will be called transitive if there 

exists a vertice ceV9c^a9c^b such that there is a (directed) a — c path and 
also a (directed) c — b path. 

The following lemma is easy to verify (cf. also [9], Lemma 8). 
Lemma 3. If S(a9 b, c, d) is a square of an acyclic digraph G with no transitive 

edge9 then S(a9 b, c, d) is isomorphic either to Sx or to S. 
We say that an acyclic digraph G is a g-digraph iff all (directed) paths between 

the same vertices have the same length. 
For the vertices a, b of G9 R(a9 b) shall denote the length of a shortest a — b 

path and d(a9 b) shall denote the length of a shortest a — b semipath (i.e. the 
length of a shortest a — b path in C(G)). Obviously, <7(a, b) ^ d(a9 b). 

A source in G is a vertex which can reach all the others. 
Lemma 4. Let G = (V9 E) be a g-digraph and let zeV be a sQurce ofG. Then 

R(z9 a) = d(z9 a) for each aeV. 
Proof. If d(z9 a) = k9 then there exist vertices a0, a,, ..., ake V such that 

(1) z = a09 a,, ..., ak = a 

is a z — a semipath. Let a, be the first vertex of the semipath (1) such that 
(a„ ai_x)eE (clearly, i ^ 3). Since G is a g-digraph, 3(z9 a,) + 3(ai9 af_x) = 
= 3(z9 a, _ i) = i — 1. So <7(z, af) = i — 2. Thus d(z, a,) ^ / — 2, a contradiction. 

Using Lemma 4 from [10] the following lemma is easy to verify. 
Lemma 5. Let a = (a,), b = (b.) be the vertices of\\ G„ / = {1, 2, ..., n}. Then 

I S / 

rf(a, A) = f rf(a„ 6,). 
' = 1 

Lemma 6, Let G = (V9 E) be a g-digraph9 zeV be a source of G and let 

C(G) L n G{ (iel)91 = {1, 2, ..., n}. Then every mixed square in G is isomorphic 

to Sx. 
Proof. Suppose that a mixed square S(p, q, x9 y) in G is not isomorphic 

to Sx. Then (Lemma 3) S(p9 q9 x9 y) ^ S. Let (p9 q)e£. Then (x9 q)eE9 (x9 y)e 
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G £, (p, y) G E. Since z is a source of G we get J(z, p) + 1 = d(z, q) and d(z, x) + 
+ 1 = d(z, y). From Lemma 4 it follows that d(z, p) + 1 = d(z, q) and d(z, x) + 
+ 1 = d(z, y). Further (since the map f is an isomorphism) we get 

(2) d(f(z), f(p)) + 1 = d(f(z), f(q)) 

and 

(3) d(f(z), f(x)) + 1 = d(f(z), f(y)). 

Since S(f(p),f(q),f(x),f(y)) is a mixed square in n G„ then there exist r, sel, 
r * s, such that {f(p),f(q)}, {f(x),f(y)} are r-edges and {f(x),f(q)}, {f(p),f(y)} 
are s-edges. If we denote/(z) = (z,),f(p) = (p,),f(q) = (q,),f(x) = (x,),f(y) = 
= (yd, iel, then (Lemma 1) we get 

(4) ps = qs, qr = xr, x, = ys, pr = yr and pt = qt = xt = y, 

for each iel\{r, s}. 
From (2), (3) and Lemma 5 we have 

(5) I d(z{, />,) + d(zr, pr) + d(zs, ps)+\ = 

i # r, s 

Z d(Zi> ti + d(Zr> 9r) + d(Zs, qs) i ¥" r, s 

and 

(6) X <%?* x>) + d(zn xr) + d(z5, xs) + 1 = 
i ¥" r, s 

= Z d(z„ yd + d(zr, yr) + d(zs, ys). 
i # r, s 

Hence (with respect to (4)) it follows immediately that 

(7) d(zr,pr)+l=d(zr,qr) 

and 

(8) d(zr,qr)+l=d(zr,pr), 

a contradiction. In the case when (q, p) e E we obtain a contradiction in a similar 
way. 

Theorem 1 and Lemma 6 imply the following 
Theorem 2. Let a g-digraph G have a source. Then every decomposition IT G, 

of C(G) induces a decomposition of G. 

3. Decompositions of graded partially ordered sets 

All partially ordered sets dealt with in this paper are assumed to be almost 
discrete. 
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Every partially ordered set (P, = ) (shortly P) may be represented as a 
digraph G = (P, E) such that (a, b) E is iff b covers a (a -< b) (cf. also [9] and [12]). 
Clearly, this digraph is acyclic and has no transitive edge. 

Every acyclic digraph G = (P, E) with no transitive edge represents a parti­
ally ordered set (P, = ) such that a -< b iff (a, b) e is (the ordering on P is 
determined by this covering relation). 

If G = (P, E) represents a partially ordered set (P, = ) , we shall say that G 
w a digraph of(P, = ) . From the above mentioned facts it follows that a = b in 
(P, = ) iff there exists an a — b path in G. 

The direct product of partially ordered sets is defined in the usual way. For all 
further notions concerning the partially ordered sets we refer the reader to [1]. 

From definitions of the direct product of the digraphs and of the partially 
ordered sets we obtain immediately. 

Lemma 7. Let (Ph = ) be a partially ordered set and G, = (Ph is,) be their 
digraph for each iel. Then II G, = (P, E) is a digraph of (IT Ph = ) = (P, = ) . 

Lemma 8. Let (Px, = 1 ) , (P2, = 2 ) be partially ordered sets and Gx = (Pl9 is,), 
G2 = (P2, E2) be their digraphs. If a map f: Px -» P2 is an isomorphism of Gx 

into G2, then f is an isomorphism of(Px, = 1 ) into (P2, = 2 ) . 
Proof. Let a, bePx, a^xb. Then there exists an a — b path in G-. Since 

Gx L G2 there exists anf(a) -f(b) path in G2. Hence/(f l) ^2f(b) in (P2, = 2 ) . 
Similarly we obtain that if a, bGP2, a = 2 b , thenf"1 (A) = 1 f _ 1 (b ) . 

The covering graph C(P) of a partially ordered set P is the graph whose 
vertices are the elements of P and whose edges are those pairs {a, b}, a, b e P, for 
which a-ib or b -{a. 

If a partially ordered set P has a least element and all maximal chains between 
the same endpoinds have the same length, then we say that P is a graded partially 
ordered set. 

Obviously, C(P) = C(G\ where G is the digraph of P. 
Let P be a graded partially ordered set and G be a digraph of P. Then G is 

a g-digraph and it obviously has a source. By Theorem 2 and Lemma 7 this 
implies the following corollary, which is a generalization of a result from [2]. 

Corollary. Let P be a graded partially ordered set and let C(P) ~ J~[ G„ / = 
iel 

= {1, 2, ..., n}, where G, = (/), is,) (iel) are graphs. Then the decomposition Y\ G, 
of C(P) induces a decomposition of P. 

Proof. Let G = (P, E) be a digraph of P. Then (Theorem 2) G ~ IIG, 
and C(Gt) = G, for each iel, where G, = (Ph is,) ( ie /) are acyclic digraphs with 
no transitive edges. Hence G, is a digraph of a partially ordered set /• for each 
i e / . From Lemma 7 it follows that IIG, is a digraph of a partially ordered 
set n Pt. Then, by Lemma 8, P ~ n î  and (since C(Gt) = C(Pi)) C(P;) = G, for 
each iel. 
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РАЗЛОЖЕНИЯ ^-ОРГРАФОВ НА ПРЯМЫЕ ПРОИЗВЕДЕНИЯ 

РаVе1 К1епоVсап 

Резюме 

В статье рассматриваются некоторые отношения между разложениями ^-орграфов 
и градуированных частично упорядоченных множеств на прямые произведения и раз­
ложениями их покрывающих графов. 
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