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ORIENTABLY SIMPLE GRAPHS 

TORRENCE D. PARSONS—GIUSTINA PICA—TOMAZ PISANSKI— 
ALDO G S. VENTRE 

The genus y(G) of a graph G is defined to be the minimum genus of the 
orientable surfaces on which G is embeddable. Every graph is embeddable in a 
nonorientable surface, just as it is in an orientable one (since we may add a 
crosscap to an appropriate orientable surface). We define the nonorientable 
genus y(G) of a graph G to be the minimum number of crosscaps needed (there 
should be at least one) on a sphere to achieve embeddability. By our definition, 
which is slightly different from the one given by Whi te and Beineke [8] 
and White [7], all planar graphs have nonorientable genus equal to one. 

Recall that an embedding of G into a surface S is called a 2-cell embedding 
if and only if all regions of the embedding are 2-cells. By a region we mean a 
connected set of the complement of G relative to S. An embedding of G into the 
orientable surface of genus y(G) is called (orientably) minimal; see for instance 
Youngs [9]. Here we extend this definition to nonorientable surfaces. We 
call an embedding of G into the nonorientable surface of genus y(G) nonorient-
ably minimal. The well-known theorem of Youngs states the expected fact, 
namely that all orientably minimal embeddings of connected graphs are 2-cell 
embeddings. 

Theorem 1 (Youngs). An embedding of a connected graph G in a surface of 
genus y(G) is a 2-cell embedding. 

The purpose of this note is to clarify the situation with the nonorientable 
analog of this theorem which cannot be formulated without modifications. 
There are graphs G that have embeddings into the nonorientable surface of 
genus y(G) which are not 2-cell embeddings. For example, the complete 
graph K7 has an embedding into torus whereas it has no embedding into the 
Klein bottle, see F rank l in [2]. This means that its nonorientable genus is 
equal to 3 since we can attach a crosscap to the torus and thereby obtain a 
nonorientably minimal embedding that is not a 2-cell embedding. 

In a certain sense Youngs has resolved the issue by introducing the notion of 
the simplest embedding; see Youngs [9], and also Whi te [7], and Whi te 
and Beineke [8]. But he did not consider specifically nonorientable embed
dings. Before stating our result recall a folklore inequality 
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(1) y(G) ^ 2y(G) + 1 

between the orientable and nonorientable genus of a connected graph G that 
was probably first formally stated and proved by Stahl [6]. 

The following theorem shows that the Euler formula lower bound that is valid 
only for 2-cell embeddings and is frequently used for orientable embeddings can 
be applied to almost all connected graphs in the nonorientable case as well. 

Theorem 2. Let G be a connected graph. Then 
a) All nonorientably minimal embeddings of G are 2-cell embeddings if and 

only if 

(2) y(G) ^ 2y(G) 

b) All nonorientably minimal embeddings ofG are non-2-cell embeddings if and 
only if G is a tree. 

c) There are some 2-cell and some non-2-cell embeddings that are nonorient
ably minimal if and only ifG is not a tree and 

(3) y(G) = 2y(G) + 1 

Proof. Clearly all three cases are disjoint and cover all the possibilities. If 
the inequality (2) holds, then the simplest embedding in the sense of Youngs is 
nonorientable and according to [9], Theorem 4.2) it is a 2-cell; hence we have 
case a). Assume now that the inequality (2) does not hold. In this case we may 
easily construct a nonorientably minimal embedding which is not a 2-cell 
embedding; we only have to add a crosscap to the minimal orientable embed
ding. So we cannot have case a). 

To finish the proof we have to distinguish between cases b) and c). A graph 
embedding is 2-cell if and only if it can be described by a generalized embedding 
scheme of Stahl [6]. Furthermore, the embedding is nonorientable if and 
only if there exists a cycle in G which is 1 -trivial; see [6, Theorem 5], Therefore, 
the existence of a cycle in G is an obvious necessary condition for the existence 
of a nonorientable 2-cell embedding and hence for a nonorientably minimal 
2-cell embedding. This condition is also sufficient. Namely, let G be a connected 
graph containing a cycle and let N be a nonorientable surface of genus y(G) = 
= 2y(G) + 1. Furthermore, let S be the orientable surface of genus y(G). There 
is an obvious non-2-cell embedding of G into N which is obtained by adding a 
crosscap to the minima, embedding of G into S. Since G contains a cycle its 
orientably minimal embedding into S has at least two faces and there exists an 
edge e of G that lies on a common boundary of two distinct faces. By making 
a perturbation in the sense of Stahl of the edge e we obtain a 2-cell embedding 
of G into N. This proves the distinction between cases b) and c). 
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In the above proof we observed that a connected graph admits a 2-cell 
nonorientable embedding if and only if it is not a tree. 

Whi te and Beineke [8] have introduced the notion of an orientably 
simple graph, that is a graph for which the equality (3) holds. In order to 
stimulate research along these lines we propose that terms orientably neutral for 
graphs that satisfy the equality 

(4) y(G) = 2y(G) 

and orientably complicated for graphs that are neither orientably simple nor 
orientably neutral. Moreover, we call the difference n(G) = 2y(G) — y(G) the 
nonorientablity excess of G. Let us mention some known facts in this new 
terminology. 

All planar graphs are orientably simple. Note that they would be orientably 
neutral if we adopted White's definition of the nonorientable genus. 

Auslander, Brown and Youngs have proved that there exist graphs em-
beddable in a projective plane with arbitrarily large nonorientability excess. 

A connected graph of girth c having both an orientable and a nonorientable 
c-gonal embedding is orientably neutral. In particular, this is true for simplicial 
graphs having triangular orientable and nonorientable embeddings, or for 
bipartite graphs possessing both orientable and nonorientable quadrilateral 
embeddings. 

Ringel and others have considered minimal embeddings of several well-
known families of graphs. The complete graph Kn is orientably simple if and 
only if n = 1, 2, 3, 4, 7; it is orientably neutral if and only if n is congruent to 
0, 3,4, 7, 8,11 modulo 12. The complete bipartite graph Kq p is orientably simple 
if and only if p ^ 2 or q ^ 2, it is orientably neutral if and only if p or q is 
congruent to 2 modulo 4 or if p + q is congruent to 0 modulo 4. The «-cube 
graph Qn is orientably simple if and only if n = 1, 2, 3, 4, 5 and is orientably 
neutral otherwise. 

It would be of interest to know whether there exists a characterization of 
orientably simple graphs, that would not involve topological notions. But from 
the research into the nonexistence of graph embeddings it seems plausible that 
the characterization is difficult, see for instance Ringel [4]. Note that the 
problem of characterization of orientably simple graphs is related to the pro
blem of calculating the genus and the nonorientable genus of a graph. If the 
genera can be computed in polynomial time, then the characterization problem 
is solvable in polynomial time. 
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Резюме 

В 1963-ем году Й. В. Т. Янгс показал, что минимальные ориентируемые вложения графов 
всегда являются двухклеточными. Нами получены необходимые и достаточные условия для 
неориентируемого аналога теоремы Янгса. 
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