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(Communicated by Miloslav Duchon) 

ABSTRACT. If the introduced Condition (GB) is fulfilled, then everywhere con
vergence of nets of measurable functions implies convergence in semivariation on 
a set of finite variation of a measure m : £ —* L(X, Y) which is <r-additive in 
the strong operator topology ( £ is a cr-algebra of subsets, and X , Y are both 
locally convex spaces). In the case of the purely atomic measure Condition (GB) 
is fulfilled. 

Introduction 

In the operator valued measure theory in Banach spaces pointwise conver
gence of sequences of measurable functions on a set of finite semivariation implies 
convergence in (continuous) semivariation of the measure m : £ —> L(X,Y), 
where £ is a a-algebra of subsets of a set T ^ 0 , and X , Y are Banach spaces, 
cf. [1]. If X fails to be metrizable, the relation between these two convergences 
is quite unlike the classical situation, cf. [6, Example after Definition 1.11]. 

The importance of Condition (B) (for sequences) in the classical measure 
and integration theory was stressed by N . N . L u z i n in his dissertation [5]. 
Condition (B) for nets in the classical setting was introduced and investigated by 
B . F . G o g u a d z e , cf. [2]. We introduce Condition (GB), see Definition 1.2, 
which generalizes Condition (B) to the case of a measure m : £ —> L(X,Y) 
which is cr-additive in the strong operator topology, where £ is a cr-algebra of 
subsets, and X , Y are both locally convex spaces. If the introduced condition 
(GB) is fulfilled, then everywhere convergence of a net of measurable functions 
implies convergence in semivariation on a set of finite variation of the measure 
m . The new condition concerns families of submeasures. If the measure m is 
purely atomic, then Condition (GB) is fulfilled. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 46G10. 
K e y w o r d s : Semivariation of operator valued measures, Locally convex topological vector 

spaces, Atomic measures, Convergences of measurable functions. 

185 



JAN HALUSKA 

1. P r e l i m i n a r i e s 

By a net (with values in a set D ) we mean a function from I to D , where 

I is a directed partial ly ordered set. To be more exact we will sometimes specify 

t h a t , for instance, the net is an /-net to indicate that I is an index set for a 

given net . For terminology concerning the nets see [4]. N = {1, 2,. . . } . 

Let X , Y be two Hausdorff locally convex topological vector spaces over 

t h e field K of real K. or complex C numbers . Let V and Q be two families of 

seminorms which define the topologies on X and Y , respectively. Let L(X, Y ) 

denote the space of all continuous linear operators L: X —> Y . 

Let T 7̂  0 be a set and let E be a cr-algebra of subsets of T . Denote by \ E 

the characterist ic function of the set E . 

Let m : E —• L(X,Y) be an operator valued measure cr-additive in the 

s trong operator topology, i.e. if E E E , then m ( F ) x is an Y-valued measure 

for every x E X . 

DEFINITION 1.1. Let peV, qe Q. Let E eY,. 

(a) By the p, q-semivariation of a measure m , cf. [6], we mean a set function 

m p,я : E —* [0, oo] , defined as follows: 

PìЯ(E) = sup q í ] Г m ( F n ) x n j , 

where the supremum is taken over all finite disjoint partitions {En E E ; E = 
N 

IJ En, En fl Em = 0 , n ^ m , m, n = 1,2,... , N} of E and all finite sets 
n = l 

{xn E X ; p ( x n ) < 1, n = l ,2 , . . . ,N } . NeN. 
(b) By the p,q-variation of a measure m we mean a set function 

xPiq(m. -): E —> [0, CXD] , defined as follows: 

N 

vp,q(m,E) = supS^ qp(m(En)), E <E E, qp(m(E)) = sup q(m(E)x), 
n^l P(x)<l 

where the supremum is taken over all finite disjoint partitions {En E E ; E — 
N 

U Fn, EnnEm = 0 , n^m, n,m = 1,2,..., N, NEN} of E. 
n = l 

T h e proof of the following lemma is trivial. 

L E M M A 1.2. The p,q -(semi)variation of m is a monotone and a-additive 

(a-subadditive) set function, and v P s 9 ( 0 ) = 0 ( m p ^ ( 0 ) = 0 ) for every p E V 

and q E Q . 

Note t h a t rhP,q(E) < vPjq(E) for every o E Q , PEP, FEE. 
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D E F I N I T I O N 1.3. We say that a set E £ E is of positive variation of a mea
sure m if there exist q £ Q, p £ V such that vpq(m,E) > 0 . 

We say that a set E £ E is m-null if mPyq(E) = 0 for every a £ Q, p £ V. 

We say that a set E £ E is of finite variation of a measure m if to every 

q £ Q there exists p £ V such that vP}q(m,E) < oo . We will denote this 

relation briefly Q —># V, or, q V-*E P, q € Q, P £ V . 

Note tha t the relation Q —•# V in Definition 1.3 may be different for different 
sets E £ E of finite variation of m . 

D E F I N I T I O N 1.4. A measure m is said to satisfy Condition (GB) if for every 
E £ E of finite variation and every net of sets Ei £ E , Ex; C E, i £ I, there 
holds 

lim sup Ei 7-: 0 
.61 

whenever there exist real numbers 8(q,p,E) > 0 , p € V , q E Q , such that 
mPiq(Ei) > S(q,p,E) for every i £ / and every couple (p,q) £ V x Q such that 

q ^E p-

D E F I N I T I O N 1.5. We say that a set A £ E of positive semivariation of a 
measure m is an m-atom if every subset E of A is either 0 or E £ E . We 
say that a measure m is purely atomic if each E £ E can be expressed in the 

oo 

form E — IJ Ak , where Ak, fc £ N , are m-atoms. 
k=i 

D E F I N I T I O N 1.6. A function f: T —• X is said to be measurable if 

{teT; p(f(*)) > >/} € E 

for every 77 > 0 and p £ V. 

L E M M A 1.7. If there exists a nonmeasurable set E such that E C EQ , 
EQ £ E , and every finite subset of E is measurable, then the set of all measurable 
functions is not closed with respect to pointwise limits of measurable functions. 

P r o o f . In [2, 10.1, p . 126], there is shown the assertion for increasing nets 
of measurable , real and uniformly bounded functions . 

D E F I N I T I O N 1.8. We say that a net f,, i £ I, of measurable functions is 
eventually m-convergent on E £ E to a measurable function f if for every 
q £ Q there is p £ V, such that for every rj > 0 , 

)immp,,({teE; p(f.(t) - f(*))>»?})= «• (1) 
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2. C o n d i t i o n ( G B ) and pure ly a t o m i c F(X,Y)-valued m e a s u r e s 

In this section we show that a class of measures satisfying Condit ion (GB) is 
non empty. First , we prove a lemma. 

L E M M A 2 . 1 . Let E G S be a set of positive and finite variation of a (countable) 

purely atomic measure m. 

Lf Ak , k G N , is a class of m-atoms such that Ak C E, k G N . then 

oo 

vPiq(m,E) = YJ™P,q(Ak) 
k=l 

for every couple (p,q) G V X Q such that q i—># P-

P r o o f . Let q \->E P, Q € Q, p € V. Then by Definition 1.1 and Lemma 
1.2 we obta in 

oo oo 

vPiq(m,E) = ]T vp>(7(m, A*) = ^qp(m(Ak)) 
*=i *=i 
oo oo 

= 5Z sup Q(m(A*)x) = YlmP^Ak^ 
k=1p(x)<l fc=1 

because Ak , k G N , are m - a t o m s . 

T H E O R E M 2 . 2 . If m is a (countable) purely atomic L(X,Y)-valued measure, 

then m satisfies Condition (GB). 

P r o o f . Let E G S be an arbi trary set of finite variation. Let K, G S , 
i G I, be an I-net of sets such that there are 8(q,p,E) > 0 with S(q,p,E) < 
mp^q(Ei) for every i G I and every couple (p,q) G V x Q, satisfying q *->E P-

Denote by {Ak ; k G N} the class of atoms of the measure m such tha t 
Ak C E, k G N . Clearly 

oo 

S(q,p,E) < ^ m p > g ( A j b ) = \Piq(m,E) < oo . 

To prove the assertion, it is enough to show that for every cofinal J-subnet 
of the I-net I^GS, iGI, JCI, there exists an a tom A such tha t A. is a 
subset of each element of a cofinal A r-subnet of this J-net of sets, A ' c J . 

Suppose this is not t rue for some J-subnet. Wi thout loss of generality let it 
be the / -ne t Ei, i G I , itself. So, for every a tom Ak , k G N , there exists an 
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index i* G I such that Ak <f. E{ for every i > ik , i G I. Take real numbers 
e(q,p,E) > 0 such that e(q,p,E) < S(q,p,E). Then there are non-negative 
integers N(q,p,E) such that 

oo N(q,P,E) 

^2mPtq(Ak)- Yl mP,q(Ak)<e(q,p,E). 
fc=i * = i 

The existence of such N(q,p,E) follows from the series convergence on the left 
hand side of the inequality. 

Taking the atom A\ we find an index i\ & I such that A\ (£_ E{ for every 
i > i\ , i G I • Thus, from the <j-subadditivity of the p, q -semivariation of the 
measure m , for i >i\ , we obtain 

mPiq(Ei) < ^ m p > g ( A f c ) - m p > g ( . A i ) . 
* = i 

Further, we find an index i2 G / , i2 > i\ , such that A2 (jt E{ for every i > i2 , 
i G I, and 

oo 

mPlq(Ei) < ^2mPiq(Ak) - mPyq(A\) - mPyq(A2) 
A r = l 

for every i > i2 , i: G I- Repeating this procedure by induction we can write: 

oo N(q,P,E) 

mPiq(Ei) < J2 mp,i(Ak) - Yl mp,i(A*) < £(2>P' E) 
fc=l A : = l 

for every i > iN(q,P,E) > h^Niq^E) € I -

This contradicts mPiq(Et) > S(q,p,E), i G I. The theorem is proved, cf. 
also [3]. 

3. Condition (GB) and eventual m-convergence 
of measurable functions on measurable sets 

In this section we show that Condition (GB) is a necessary and sufficient 
condition for the assertion that everywhere convergence of measurable functions 
implies eventual m-convergence in locally convex setting. Further, as an appen
dix, we show that a Egorov theorem cannot hold for arbitrary nets of measurable 
functions without some restrictions putting on the measure, net convergence of 
functions, or class of measurable functions. 
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T H E O R E M 3 . 1 . Let a measure m satisfy Condition (GB) . If a net of measur
able functions fi, i G I, converges everywhere on a set E G £ of finite variation 
to a measurable function f, then it eventually m-converges to f on E . 

P r o o f . Let f be a measurable function and f j , i G I, be a net of measur
able functions such tha t for every p G V the equality 

l i m p ( f , « ) - f « ) = 0 (2) 

is t rue for every t G E. Show that the net f,, i G I, is eventually rh-convergent 
on E to f. 

Let us denote 

^ ( P , v ) = { < ^ ; p(ft(t)-f(t)) > r l } G £ , 

for every rj > 0, p E {p € V; q >-+E P, </ £ 2 } , i € I. 

Now, suppose tha t there are ao £ Q , Po € P , r/o > 0 , <50 > 0 , such tha t 

ŁPo, o (Ei(po,7]0)) >60 (3) 

holds for a cofinal J-subnet E'.(po,rjo), j E J, J C I of the J-net Ei(po,r)o), 

i G I. Consider the J-net Ej(po,r)o), j G J. From (3) and Condit ion (GB) we 
see t h a t there is a cofinal A-subnet E^(p0,rjo), k G K of the net F^(p0,^o), 
j E J, K C J, such t h a t 

s"= n^'(po.t/o)^0. 

fc€K 

Take a point £0 G K" and k G A'. Then clearly 

P o ( f * ( M - f ( M ) > T 7 o . ( 4 ) 

Pointwise convergence (2) of the net ft, i G I, to f implies pointwise con

vergence of every subnet of the net ft, i G I, to the same function f. Thus , the 

net fk(to), k G K, converges to the point f(to). This is a contradict ion with 

(4 ) . 

T H E O R E M 3 .2 . Let E G £ be a set of positive and finite variation. Let 

Ei G £ , Ei C E, i G I, be a net of subsets such that for every couple 

(p,q) G V x Q , q i->£ p, there is 8 = 8(q,p,E) > 0 such that the inequal

ity mp,q(Ei) > 8 is true for every i G I, but l imsupF ' . = 0 . 
•€I 
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Then there exists a net of uniformly bounded measurable functions such that 
it converges everywhere on the set E to a measurable function, but it does not 
eventually m -converge to this function on E. 

P r o o f . Let x G X be an arbi t rary nonzero element . P u t f(r) = 0 G X for 
every t G E. It is easy to see tha t 

l i m p ( x - X E , - ( 0 - - " ( * ) ) = 0 

for every t G E and p G V. Indeed, let to G E. So, there is io G I such tha t 
t0 G E[ — E \ Ei for every i > i0 , i G I. Thus x • xE, (^o) = 0 for every i > io , 
? G I, and 

limx-xE.^o) = 0 . 
i€1 

On the other hand, for every i G I we have 

m M ( { < e £ ; P(x-xE , (*)-f(r)) > y } ) > * , 

and the / -ne t x • xE, > i G I, of functions does not eventually m-converge 
to f. 

T H E O R E M 3 . 3 . Let E G E be a set of finite variation. Everywhere convergence 
of an I-net f , , i E I, of measurable functions to a measurable function f on 
E implies eventual m -convergence of the net fi,i£l,tofonE if and only 
if the measure m satisfies Condition (GB). 

P r o o f . Combining Theorem 3.1 and Theorem 3.2 we obta in this criterion 
directly. 

T H E O R E M 3 .4 . Let E G E be a set of positive and finite variation. Let 

{t} G E , mp,q({t}) = 0 for every t G E, peV, q£ Q-

Then there exists a net of uniformly bounded measurable functions fi, i G I, 

such that l imp(f i ( r ) — f(r)) = 0 for every t G E and for every F C E, F G E , 

of positive semivariation, pointwise convergence of the net fi, i G I, on F is 
not uniform. 

(We consider the uniform convergence with respect to the system of semi-
norms \\f\\F,P = s u p p ( f f r ) ) , peV, FcF, KGE.) 

teF 

P r o o f . Let I denote the direction given by the inclusion of sets. Let x G X 
be an non-zero element. Let E%\ C E, i G I, be a net of complements of finite 
subsets of the set E to E. It is ecisy to see that x • xE, , i G / , is a (decreasing) 
I-net of functions converging to 0 G X at each point of the set E. But there 
does not exist an infinite subset F C E such that the / -ne t x • xE, - i £ I, 
would converge uniformly. It follows from the fact that x • XE. ( 0 = 0 only on a 
finite subset of the set E. 
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