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EVERY /-VARIETY SATISFYING 
T H E AMALGAMATION P R O P E R T Y 

IS REPRESENTABLE 

S E R G E I A. G U R C H E N K O V 

(Communicated by Tibor Katrindk ) 

A B S T R A C T . We show t h a t every l-variety satisfying the ama lgamation property 
is representab le. Furthermore, we construct an infinite set of varieties of weakly 
abelian l-groups which fail the ama lgamation property . 

Introduction 

A variety Q of Z-groups is said to satisfy the amalgamation property in the 
Z-variety jVf if, first, Q C JVI, and, second, if for any Z-groups A,B:C £ Q and 
embeddings a: A —> B, /i: A —> C there exist an Z-group D G M and embed-
dings 4>: B —-> D, if: C —» D such that <j>a -= I/J/JL. The quintuple (A} 5 , C, <r, fi) 
is called a V-formation in Q, and the triple ((/>, ip,D) is called an amalgamation 
in jVl of this V-formation. An Z-group A, -4 G Q, is said to be an amalgamation 
base for Q in JVf if every V-formation (A, S , C, <T, /i) in C/ has an amalgamation 
(0,-0, D) in JVi. 

The amalgamation class of C? in JVI, Amal^(C/), is the class consisting of 
all amalgamation bases for Q in A4. For the case Q — JVi all these definitions 
are usual (see P o w e l l , T s i n a k i s [9; p. 308]). In this article, we use the 
following notation 

C - variety of all Z-groups, 
TZ - variety of all representable Z-groups, 
JV - variety of all normal-valued Z-groups, 
Wa - variety of all weakly abelian Z-groups, 
A - variety of all abelian Z-groups, 
S - Scrimger Z-variety for prime p , 
JVn - variety of all nilpotent of class < n Z-groups, 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06F15. 
K e y w o r d s : l-variety, amalgamation . 
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A4+, Ai~ - solvable non-nilpotent representable covers of A, 
AXB - semidirect extension of a group B by a group A, 

A X B - lexicographic semidirect extension of an Z-group B 
by a totally ordered group A, 

Z - additive group of integers, 
Pn = { l , 2 , . . . , n } . 

We recall the main results in the theory of Z-groups connected with the amal
gamation property. 

The variety A satisfies the amalgamation property ( P i e r c e [7]). 

If an Z-variety K4 contains S for some prime p , then Ai fails the amalga
mation property ( P i e r c e [6]). 

If a representable Z-variety M. contains one of the Z-varieties J\A+ , Ad~ , then 
M. fails the amalgamation property ( P o w e l l , T s i n a k i s [9], or P o w e l l , 
T s i n a k i s [10]). 

The Z-variety W a of all weakly abelian Z-groups fails the amalgamation prop
erty ( G l a s s , S a r a c i n o , W o o d [1]). 

Every totally ordered archimedian Z-group belongs to Amal(£) ( P i e r c e [6]). 

Amal(JVn), for n > 1, does not contain non-trivial totally ordered abelian 
groups ( P o w e l l , T s i n a k i s [8]). 

The following important questions related to the amalgamation property in 
Z-varieties remain open. 

1. Which Z-varieties satisfy the amalgamation property? (See P o w e l l , 
T s i n a k i s [9] and [11].) 

2. Is A the only non-trivial Z-variety satisfying the amalgamation property? 
(See P o w e l l , T s i n a k i s [9] and [11].) 

3 . Which Z-varieties have Z in their amalgamation class? (See [11].) 

The purpose of this article is to establish the following results related to the 
aforementioned questions. 

1. If a non-representable Z-variety M contains Z in its amalgamation class, 
then A4 includes the variety JV of normal-valued Z-groups. 

2. If an Z-variety satisfies the amalgamation property, then it is representable. 

3. If an Z-variety M. includes an Z-variety A2 D W a , then M. fails the amal
gamation property. 
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Preliminaries 

DEFINITION 1. We say that an /-group G has finite conjugate-orthogonal rank 
n (and we write co(G) = n) if there are elements g,a E G, g > e, a > e , such 
that a A g~~lagl = e for i G P n , and for every elements x,y £ G, x > e, y > e, 
the following implication holds: 

(z A y" ? : .V = e for i G P n ) = > (xA y - f n + 1 ) x y n + 1 ^ e) . 

DEFINITION 2. An /-variety M is said to have a finite conjugate-orthogonal 
rank n , denoted co(.M) = n , provided every /-group H £ Ai satisfies co(H) 
< n , and there exists G £ M with co(G) = n . 

DEFINITION 3. An /-variety M is said to have an infinite con jug ate-ortho
gonal rank, denoted co(JVi) = oo, provided for every integer n there exists 
G G M with co(G) > n . 

The proof of the following lemma may be found, for example, in [3]. 

LEMMA 1. For any variety of l-groups Ai. if co(M.) = oo. then M D A2 . 

The ideas used in the proof of the following lemma are due to K o p y t o v , 
G u r c h e n k o v [4]. 

LEMMA 2. Let G be a normal-valued l-group with co(G) = n . where n > 1. 
Let g G G, and r;/ie non-trivial convex l-subgroup H of G satisfy the conditions 
H H g~iHgi = E for i <E Pn. Then the l-subgroup l(gn+1,H) of the l-group G 
is representable. 

P r o o f . Let p denote the integer n+ 1. Consider the /-subgroups 

X = l({g-»Hg*, j e Z } ) , 

Y = g-'Hg x . g-2Hg2 x . • • • x . 5 - " H p n 

of the /-group G. We claim that X C\Y — E. Firstly we verify by induction on 
m, ra > 0, that 

g-™PHgmpnY = E. (1) 

For m = 0 condition (1) follows by assumption. Suppose next by induction 
hypothesis that condition (1) is true for all m < k, and for m = k condition 
(1) fails, that is, g~kpHgkp D Y / E. Then necessarily exists an element a, 
e < a e g-^-VrHg^-1^, such that g~pagp G g~kpHgkp nY.lt follows by 
induction hypothesis that 
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g-(k-l)PHg(k-l)pnY = E, 

and (2) 

a A g~pagp = e . 

Conditions (1) and (2) above yield HC\g~iHgi = E, i <E { 1 , . . . ,n}, 

g-(k-i)pHg(k-i)p n g-(k-i)pg-iHgig(k-i)p 

= g-(k-i)pHg(k-i)p n ^g-(k-i)pHg(k-i)pY =E^ ie{l,...,n}, 

and hence, 

a Ag~1agl = e for i e { l , . . . , n } . (3) 

But (2), (3) contradict co(G) = n . This establishes condition (1). In the same 
way, we can prove that (1) is true in the case m < 0. It is easy to see that 

XHg-'Xg^E, t e { l , . . . , n } , (4) 

and that a convex /-subgroup X is ^-invariant (i.e., g~pXgp = X ) . Let S be 
any non-trivial polar of an /-subgroup X . Suppose that g~pSgp ^ S. It follows 
from the definition of the polar there exists a set M, M C X , such that 5 = 
M 1- . Suppose the element a, e < a G 5 , exists such that g~pagp G g~pSgpDM. 
Then, a A a~pagp = e. But a G X and condition (4) is true, that contradicts 
co(G) = n . 

Thus for every polar S C X , we have g~pSgp = 5 . Let us prove that X is 
representable. Suppose that X is not representable. Then there exist elements 
a, b, e < a, b G X , such that a Ab _ 1ab = e. Let us consider elements / , y = gb 
in an /-group G. We have y^ = (gb)k = g ^ bp .. .b9b. For fc G P n , by con
dition (4) and a,b G X , it follows that [a9\b9] = [a*\&-*2] = • • • = [ a ^ \ b ^ _ 1 ] 
= e, hence a A y~kayk = a A g~kagk = e, a A y~payp = a A (gb)~1g~nagngb 
= a A [L7-(n + 1)apn + 1]6 = e (as we established earlier, ( a - 1 )^* 1 = a1-). This 
contradicts co(G) = n and establishes that X is representable. It follows by the 
condition of the lemma G G Af. For every element a G X we have |a|p A |a| = e, 
and, in the /-variety JV, the identity \[x,y]\ <C |x| V \y\ is true . Hence we im
mediately have in G that \a\ < \a~xa9\ = \a\\a9\ < |a| V |#|. Thus \a\ < Inl
and an /-subgroup l(gp,X) admits a representation l(gp,X) — (gp)XX. It is 
easy to see that any polar in l(gp, X) is a polar in X . As we established earlier, 

any polar in an /-subgroup X is normal in (c7p)AX, and hence the /-subgroup 
l(gp,X) is representable. The proof is now completed. • 
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LEMMA 3. Let var,(G) D Ak for some k>2, and Amal(varz(G)) 3 Z. Then 
JVC varz(G). 

P r o o f . It is well known that Ak = varz(wvk Z) (see H o l l a n d , G l a s s , 
M c C 1 e a r y [5]). Let (a), (a{), i = 1 , . . . , k + 1, be an infinite cyclic groups, 
where a > e , a?; > e , i = 1 , . . . , fc + 1, and let B = ( . . . ((a2) wr(a3)) wr . . . 
. . . ) wr(a f c + 1) , G = (a 1 )wr(a) . Consider a V-formation (Z, B, G, cr, / i) , where 
cr(l) = a2 , / i(l) = a. It follows from the conditions of the lemma that there exist 
D G var^(G) and embeddings 0: B —> D, -0: G —> D such that 0cr(l) = ip/i(l). 
Let bj = V>(ai)> b2 = 0<7(1) = 0 / i ( l ) , and b^ = 0 ( a j for i > 3. It is easy to see 
that for the elements b1?... , b/e+1 in an Z-group Z) the following conditions are 
true: 

V f l » 6 k » - ' - » 6 2 » & l > e > 

b. Ab7sb.b* = e , l < i < j < f c + l , 5 G Z . 

Hence, the Z-subgroup Z(bx, b2,..., bk+1) is Z-isomorphic to a wreath product 

w r k+i ^ Thus, for every Z-group G that satisfies the conditions of the lemma, we 
immediately have the inclusion varz(G) D As for every s G N . It is well known 

oo 

(see H o l l a n d , G l a s s , M c C l e a r y [5]) that M = (J As, and therefore 
s = l 

varz(G) D J\f. The proof is completed. • 

LEMMA 4. If Amal(yVt) 3 Z and co(M) > 1, then co(M) = oo. 

P r o o f . Suppose that co(yV() = n for some n G N. Let a, b be the elements 
of any Z-group G £ M. such that a A g~lag% = e for i G P n . Let FT denote 
a convex Z-subgroup of G generated by the set {a}. It is easy to see that this 
implies the conditions H 0 g~lHg% = E for i G Pn. It follows from Lemma 2 
that the Z-subgroup B = l(g,X) of the Z-group G, where X = l({g~ipHgtp , 

z G Z, p = n + 1 } ) , admits representation B = (#) A(X x^X p x ; - • • x z X ^ n ) . Let 

B = (g) X (X xtX
9 xL • • • x / X^ ) denote an Z-isomorphic copy of an Z-group B. 

Consider a V-formation (Z, B, B, a, / i) , where cr(l) = a, /i(l) = g. It follows 
from the conditions of the lemma that there exists an amalgamation (0, -0, J9). 
Let b = 0cr(l) = 0(a) = V;/^(l) = ip(g), c = 0(g), and / = ip(a). It is easy to 
see that, in an Z-group D , we have conditions 

O b » / > e ; bAc"*bc* = e, / A i " 7 6 ' = e, i e { l , . . . , n } . (5) 

Let j4 b e a convex Z-subgroup of the Z-group D generated by the element b. 
From (5), we immediately have Anc~lAcl = E, i G Pn. It follows from Lemma 2 
that the Z-subgroup yl is representable, but b, / G A and / A b-1/b = e. This 
contradiction establishes the proof of the lemma. • 
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LEMMA 5. Let co(M) = n > 1 . There exists an l-group G G M such that 
G = l(X,g), g>e, X is convex in G, XHg-iXgi = E, g-^+^Xg"*1 =X, 
i = l , . . . , n , and l(X,gn+1) ~1l. 

P r o o f . Consider any Z-group A G J\f with co(.A) = n . Then A has el
ements a,g > e such that a A g-%agl = e for i G P n . Let IF denote a con
vex Z-subgroup of the Z-group A generated by the element a. It is easy to 
see that H n g~lHgl = E, i £ Pn, and the Z-subgroup G = l(X,g) where 
X = l({g-^n^'1"}Hg^n+1^ , j G Z}) has the necessary properties (it follows 
from Lemma 2). The proof is completed. • 

PROPOSITION 1. Le£ co(.M) = n > 1. Then M fails the amalgamation 
property in C. 

P r o o f . It follows from Lemma 5 that there exists an Z-group G which 
admits representation 

G = {g)\(X0xlX1xlX2xr.-xlXn), 

where X0 = X, Xt =g~iXgi, i = l , . . . , n , a n d l(X,gn+1) <E K. Let G0 denote 

an /-subgroup {gn+1) \{X xtX
9 x^9* xr • • x , X 5 " ) of the /-group G. Let G1 

denote an /-group G0xlG1xlG2xl---xl Gn, where Gi = {gi)\Xi, and for 
n-\-l 

h G X}, h9i = h9 , i = 0 , 1 , . . . , n . It is easy to see that G0, Gx G M. Con
sider the embeddings a: G0 -+ Gx, [i: G0 —> G defined as follows: a(h) = ft, 
//(ft) = h for h G X-, z = 0 , 1 , . . . , n , M .9n+1) = 2 n + 1 , and cr(L7n+1) = 
g0g1 ... gn. We show that the V-formation (G0, G1? G, cr, /i) has not the amalga
mation in C. Suppose it is not the case, and let (</>, ̂  D) be an amalgamation for 
(G0, GJJGJCT, / i ) . Let us use the following notation in an Z-group D: (j)a(h) = 
Vyi(ft) = ah for h G X-, i = l , . . . , n , ^(5.) = b., z = l , . . . , n , ^(5) = 6. 
Then the following conditions are true in the Z-group D: ah A b~lahb

l = e, 
where h € X, ft > e, z = 1 , . . . , n ; bn+1 = bQb1...bn, where b- G </>(G-), 
and </>(G?:) n 0(G^.) = i5 for z ^ j , z, j G { 0 , 1 , . . . , n } . It is easy to see 
that e < b < bn+1, and hence, the element b may be written in the form 
b = fQf1 . . . fn for some /^ G Hi, where IJ^ denotes a convex Z-subgroup of 
I) generated by the Z-subgroup (f>(G{), i = 0 , 1 , . . . , n . Since (G0) H [^(Gj) x-
<£(G2) xz • • • x- <£(GJ] = £ , it follows that H0 n (II\ x- PI2 x- • • • xz Hn) = E. 
Since / 0 G II0, f,f2 ... / n G # i # 2 • • • ^ n ^or e v e r Y element ft, e < ft G X , we 
have a£ = ^(ft)^k) G ^(X*) = ^ P - \ ) = # 1 • This contradicts II0 n II1 = £ , 
and completes the proof of the proposition. • 

COROLLARY 1. ( P i e r c e [6]) If an l-variety M contains S for some 
prime p, then M fails the amalgamation property. 
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Remark . There exist non-representable /-varieties M such that Mf\S — A 
for every p. 

The main results 

THEOREM 1. Let an l-variety M satisfy M C)TZ / M and Amsl(M) ^ Z. 
Then M _ Af. 

P r o o f . Ifco(A/f) = oo, then it follows from Lemmas 1 and 3 that M _ A2 

and M_Af. Let co(M) = n < oo. Note that n > 1 since Mn71 ^ M. Thus, 
by Lemma 4, co(M) = oo, in contradiction with the assumption. • 

THEOREM 2. Every non-representable l-variety fails the amalgamation prop
erty. 

Proof. Let M be a non-representable /-variety satisfying the amalga
mation property. In particular, Amal(M) 3 Z. It follows from Theorem 1 
that M I) Af. It is well known that Af contains some /-varieties G with 
co(G) = n > 1. It follows from Proposition 1 that the /-variety G fails the 
amalgamation property in C, so M fails the amalgamation property. The proof 
is completed. • 

Let W denote a group gr(a,b || [b-2ab2, b~^aV] = e, j , i G Z) . It is easy 

to see that W = Z w r Z . It is well known the group W admits total orders 

and weakly abelian total orders (see, for example, G u r c h e n k o v [2]). Let P 

denote one such order. Let T denote a subgroup gr({6~2ab* , i G Z}) of the 

group W with a total order induced on T by the total order P of the group W. 

Let A — T x (c) be a lexicographic product of an infinite cyclic group (c), c > e, 

and a totally ordered group T. 

Now we define two automorphisms a , j3 of the group A as follows: 

0 _ p _ ( anc if n = 0 (mod p) , 

~ C ' a n ~ \ an if n ^ O ( m o d p ) , 

where an denotes the element b~nabn, n G Z . It is easy to see that the auto
morphisms a, /3 preserve the total order on A. Let Aut A denote the group of 
order-preserving automorphisms of the abelian totally ordered group A. Since 

arlaPv = Kc^r"? 
n 

K + p c X)P = a if n = 0 (mod p), 
+p } n+p 

+ p / n+p 
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and a^f = a n + , then f3~lap(3 = ap, but (5~la(5 ^ a in the group A u t A . Set 

g — aP, 7 = /3_1a/3 in the group Aut^4. 

Consider the totally ordered groups G3 = (g)XA, G2 = (a)XA, Gx — 

(7) A A, where g > e, a > e, 7 > e . I t i s easy to see that Gj E 1Z and G- £ W a 

if P is weakly abelian, i = 1,2,3. Define embeddings ji, a, a: G3 —> Gx, 
/1: G3 —+ G2 as follows: 

M(c) = c, 11(a) = a , ji(g) =ap, a(c)=c, a(a) = a, a(g) = Y. 

Suppose there exists an amalgamation ((j),if;,D) in 7£ for the V-formation 
(G3,G1,G2,a, /i). Let a = (j>(a) = z/J(a) f° r a E A, ^(7) = 7 , i/j(a) = a. 
We have, in the Z-group D, d p = 7 P , but 7 - 1 d 7 / d - 1 a o ; , thus the /-group D 
cannot be representable. Thus the V-formation (G3,G1,G2,a, /i) does not have 
an amalgamation in 71 (in W a , if P is weakly abelian). 

THEOREM 3. Let M D A2 n W a . T/ien M fails the amalgamation property. 

P r o o f . If M CMZ / M, then the result follows from Theorem 2. Let 
M C 7£. In this case, for the V-formation (G3,G1,G2,cr, /i) the amalgamation 
(cf),ip,D) in 7£ exists. As we established earlier, this is impossible. • 
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