Ivan Chajda Congruence factorizations on distributive lattices

Mathematica Slovaca, Vol. 28 (1978), No. 4, 343--347

Persistent URL: http://dml.cz/dmlcz/129413

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

CONGRUENCE FACTORIZATIONS ON DISTRIBUTIVE LATTICES

IVAN CHAJDA

G. A. Fraser and A. Horn [1] gave conditions for direct decompositions of congruences on a direct product of two algebras. The aim of this paper is to give some sufficient conditions for the direct factorization of congruences on distributive lattices, which are directly decomposable to an arbitrary number of chains.

Let A_i for $i \in I$ be lattices, θ_i be a congruence on A_i , $i_0 \in I$ and $J = I - \{i_0\}$.

Denote by $A = \prod_{i \in I} A_i$ the direct product of A_i and let $\theta = \prod_{i \in I} \theta_i$ be a binary relation on A defined by:

 $a\theta b$ if and only if $pr_ia\theta_i pr_ib$ for each $i \in I$, where pr_i denotes the projection of A onto A_i . Evidently, θ is a congruence on A. Further, denote by $a(i) = pr_ia$ and by

a(J) the projection of $a \in A$ onto $\prod_{i \in J} A_i$. If θ is a congruence on A and $\theta = \prod_{i \in J} \theta_i$ for some congruences θ_i on A_i $(i \in I)$, θ is called *directly factorizable*.

Let L be a conditionally complete lattice (see [2], p.64). Then there exist the supremum and infimum of every bounded family $\{a_{\mu}; \mu \in M\}$ of elements $a_{\mu} \in L$; denote it by $\bigvee_{\mu \in M} a_{\mu}$ or $\bigwedge_{\mu \in M} a_{\mu}$, respectively. A congruence θ on L is said to be conditionally complete, whenever

$$a_{\mu}\theta b_{\mu}$$
 for $\mu \in M$ imply $\left(\bigvee_{\mu \in M} a_{\mu}\right) \theta\left(\bigvee_{\mu \in M} b_{\mu}\right)$

and

$$\left(\bigwedge_{\mu \in M} a_{\mu}\right) \theta \left(\bigwedge_{\mu \in M} b_{\mu}\right)$$

for every two bounded families $\{a_{\mu}; \mu \in M\}$ and $\{b_{\mu}; \mu \in M\}$ of elements from L.

Theorem 1. Let A_i be conditionally complete chains for $i \in I$ and θ be a conditionally complete congruence on $A = \prod_{i \in I} A_i$. Then there exist congruences θ_i on A_i such that $\theta = \prod \theta_i$.

i∈I

343

Proof. Denote by $\{M_{\gamma}; \gamma \in \Gamma\}$ the set of all congruence classes of θ . The case card $\Gamma = 1$ is trivial. Suppose card $\Gamma \ge 2$ and denote $M_{\gamma}(i) = pr_i M_{\gamma}$ for $i \in I$.

a) First we prove that for each $i \in I$ the family $\{M_{\gamma}(i); \gamma \in \Gamma\}$ forms a partition of

 A_i . As $\bigcup_{\gamma \in \Gamma} M_{\gamma} = A$, clearly $\bigcup_{\gamma \in \Gamma} M_{\gamma}(i) = A_i$. It remains to prove that for all $\gamma', \gamma'' \in \Gamma$ and $i \in I$, $M_{\gamma'}(i) \cap M_{\gamma'}(i) = \emptyset$ implies $M_{\gamma'}(i) = M_{\gamma''}(i)$.

Let $i \in I$, γ' , $\gamma'' \in \Gamma$, $\gamma' \neq \gamma''$ and $M_{\gamma'}(i) \cap M_{\gamma'}(i) \neq \emptyset$. If both $M_{\gamma'}(i)$ and $M_{\gamma'}(i)$ have no least and no greatest bound, then $M_{\gamma'}(i) = A_i = M_{\gamma'}(i)$ because A_i is a chain and the convexity of the congruence class M_{γ} on A implies the convexity of the set $M_{\gamma}(i)$ on A_i .

Suppose $a_0 \in M_{\gamma'}(i) \cap M_{\gamma'}(i)$ and $M_{\gamma'}(i)$ has an upper bound. As θ and A_i are conditionally complete, we have $j' = \sup M_{\gamma'}(i) \in M_{\gamma'}(i)$. Suppose the existence of $b \in M_{\gamma'}$ with $b(i) = b_0 > j'$ and put $J = I - \{i\}$. Since $a_0 \le j' < b_0$, there exists $h \in M_{\gamma'}$ with h(i) = j' (with respect to the convexity of $M_{\gamma'}(i)$). Let $x \in M_{\gamma'}$ with x(i) = j' and choose $y \in A$ with $y(i) = b_0$, y(J) = x(J). Then $y \in M_{\gamma}$ for some $\gamma \in \Gamma$ and $\gamma \neq \gamma'$ because of y(i) > j'.

Since b, $h \in M_{\gamma'}$, there exists $\gamma_1 \in \Gamma$ with $p = x \lor h \in M_{\gamma_1}$, $q = x \lor b \in M_{\gamma_1}$. Then there exists $\gamma_2 \in \Gamma$ with $y \land p \in M_{\gamma_2}$, $y \land q \in M_{\gamma_2}$. However,

$$y(i) \wedge p(i) = b_0 \wedge (x(i) \vee h(i)) = b_0 \wedge j' = j'$$

$$y(J) \wedge p(J) = y(J) \wedge (x(J) \vee h(J)) = x(J) \wedge (x(J) \vee h(J)) = x(J),$$

i.e. $y \wedge p = x \in M_{\gamma'}$, and

$$y(i) \land q(i) = b_0 \land (j' \lor b_0) = b_0$$

$$y(J) \land q(J) = x(J),$$

i.e. $y \land q = y \in M_x.$

Further, $\gamma \neq \gamma'$ implies $M_{\gamma} \cap M_{\gamma'} = \emptyset$, which contradicts the existence of γ_2 .

Hence b(i) > j' for no element b of $M_{\gamma'}(i)$, thus j' is also an upper bound of $M_{\gamma'}(i)$. Denote $j'' = \sup M_{\gamma'}(i) \in M_{\gamma'}(i)$. By the foregoing part of the proof, we have $j'' \leq j'$. The converse inequality can be proved analogously, thus j'' = j'.

Provided $M_{\gamma'}(i)$ has a lower bound, then also $M_{\gamma'}(i)$ has a lower bound and $\inf M_{\gamma'}(i) = \inf M_{\gamma'}(i)$; it can be proved by dualization. Hence $M_{\gamma'}(i) = M_{\gamma'}(i)$ with respect to the convexity of the sets $M_{\gamma}(i)$.

b) Prove $M_{\gamma} = \prod_{i \in I} M_{\gamma}(i)$ for each $\gamma \in \Gamma$. If $\gamma_0 \in \Gamma$ and M_{γ_0} has not this property, then there exists $a \in A$ with $a(i) \in M_{\gamma_0}(i)$ for each $i \in I$ and $a \notin M_{\gamma_0}$. Then $a \in M_{\gamma}$, for some $\gamma' \in \Gamma$, $\gamma' \neq \gamma_0$. Hence $a(i) \in M_{\gamma'}(i)$ for each $i \in I$, i.e. $a(i) \in M_{\gamma_0}(i) \cap M_{\gamma'}(i)$, thus, by the foregoing part of the proof, $M_{\gamma_0}(i) = M_{\gamma'}(i)$ for all $i \in I$. As M_{γ_0}, M_{γ} , are congruence classes, we obtain easily $M_{\gamma_0} \cap M_{\gamma'} \neq \emptyset$, which is a contradiction.

Accordingly, $M_{\gamma} = \prod_{i \in I} M_{\gamma}(i)$ for each $\gamma \in \Gamma$, thus $\theta = \prod_{i \in I} \theta_i$, where θ_i is an equivalen-

ce on A_i induced by the partition $\{M_{\gamma}(i); \gamma \in \Gamma\}$; evidently, every θ_i is a congruence on A_i .

Let *L* be a lattice and \mathfrak{M} a cardinal number. *L* is said to be *join-\mathfrak{M}-complete* provided the supremum $\bigvee_{\mu \in M} a_{\mu}$ exists for every family $\{a_{\mu}; \mu \in M\}$ of elements $a_{\mu} \in L$ with card $M \leq \mathfrak{M}$. A congruence θ on a join- \mathfrak{M} -complete lattice *L* is called *join-\mathfrak{M}-complete* provided $a_{\mu}\theta b_{\mu}$ for $\mu \in M$, card $M \leq \mathfrak{M}$ imply $\left(\bigvee_{\mu \in M} a_{\mu}\right) \theta\left(\bigvee_{\mu \in M} b_{\mu}\right)$ for every a_{μ} , $b_{\mu} \in L$. A homomorphism *h* of a join- \mathfrak{M} -complete lattice *L* into a lattice L_{1} is called *join-\mathfrak{M}-complete*, provided $\bigvee_{\mu \in M} h(a_{\mu})$ exists for every family

 $\{a_{\mu}; \mu \in M, a_{\mu} \in L, \operatorname{card} M \leq \mathfrak{M}\} \text{ and } h\left(\bigvee_{\mu \in M} a_{\mu}\right) = \bigvee_{\mu \in M} h(a_{\mu}).$

Theorem 2. Let A_i , B_j $(i \in I, j \in J)$ be at least two-element chains with least elements, $\operatorname{card} I = \mathfrak{M}$ and $\prod_{i \in I} A_i$, $\prod_{j \in J} B_j$ be join- \mathfrak{M} -complete lattices. If θ is a join- \mathfrak{M} -complete congruence on $\prod_{i \in I} A_i$ and $\left(\prod_{i \in I} A_i\right) / \theta \cong \prod_{j \in J} B_j$, then a) $\operatorname{card} J \leq \operatorname{card} I$

- b) $\theta = \prod_{i \in I} \theta_i$ for some congruences θ_i on A_i $(i \in I)$
- c) there exists an injective mapping $\pi: J \to I$ with $A_{\pi(j)} / \theta_{\pi(j)} \cong B_j$ for each $j \in J$.

Proof. Since $\left(\prod_{i \in I} A_i\right) / \theta \cong \prod_{i \in J} B_i$, there exists a homomorphism h of $A = \prod_{i \in I} A_i$

onto $B = \prod_{i \in J} B_i$. As θ is join- \mathfrak{M} -complete, also h has this property. Let $i_0 \in I$, $a \in A_{i_0}$. Denote by \bar{a} the element of A with $\bar{a}(i_0) = a$, $\bar{a}(i) = 0_i$ for $i \neq i_0$, where 0_i is the least element of A_i . Introduce $\bar{A}_i = \{\bar{a}_i; a_i \in A_i\}$. Clearly \bar{A}_i is a chain which is a sublattice of A isomorphic with A_i . Denote by 0_A the element of A with $0_A(i) = 0_i$ for all $i \in I$. Clearly, 0_A is the least element of A. The concepts of \bar{B}_i and 0_B are introduced analogously.

1°. Let $j \in J$ and $b \in \overline{B}_i$, $b \neq 0_B$. Prove the existence of $i_0 \in I$ and $\overline{a(i_0)} \in \overline{A}_{i_0}$ such that $h(\overline{a(i_0)}) = b$. Let $a \in A$ and h(a) = b.

Since $\overline{a(i)} \leq a$ for each $i \in I$, we have $h(\overline{a(i)}) \leq h(a) = b$. As \overline{B}_i is an ideal of B, $h(\overline{a(i)}) \in \overline{B}_i$. Suppose the existence of $i, i' \in I, i \neq i'$ with $pr_ih(\overline{a(i)}) \neq 0_i \neq pr_ih(\overline{a(i')})$. Then $0_A = \overline{a(i)} \wedge \overline{a(i')}, 0_B = h(0_A) = h(\overline{a(i)}) \wedge h(\overline{a(i')})$, hence $0_i = pr_i h(\overline{a(i)}) \land pr_i h(\overline{a(i')})$, which is a contradiction. Let $i_0 \in I$ and $pr_i h(\overline{a(i_0)}) \neq 0_i$. As $h(a) = b \neq 0_B$, such i_0 exists. Since $b = h(a) = \bigvee_{i \in I} h(\overline{a(i)})$ and $pr_i h(\overline{a(i)}) = 0_i$ for

 $i \neq i_0$, we obtain $b = \overline{pr_i b} = \overline{\bigvee_{i \in I} pr_i h(a(i))} = h(\overline{a(i_0)}).$

2°. Prove that this index $i_0 \in I$ is the same for all non-zero elements from \bar{B}_j . Let $b_1, b_2 \in \bar{B}_j, b_1 \neq 0_B \neq b_2$. By 1°, there exist $i_1, i_2 \in I$ and $a_{i_1} \in A_{i_1}, a_{i_2} \in A_{i_2}$ with $h(\bar{a}_{i_1}) = b_1, h(\bar{a}_{i_2}) = b_2$. Clearly $\bar{a}_{i_1} \neq 0_A \neq \bar{a}_{i_2}$. Suppose $i_1 \neq i_2$. As \bar{B}_j is a chain, we have

$$0_{B} = h(0_{A}) = h(\bar{a}_{i_{1}} \wedge \bar{a}_{i_{2}}) = h(\bar{a}_{i_{1}}) \wedge h(\bar{a}_{i_{2}}) = b_{1} \wedge b_{2} \neq 0_{B},$$

a contradiction. Thus $i_1 = i_2$. If $b = 0_B$, then $h(0_A) = 0_B$ and $0_A \in \overline{A}_{i_0}$. Summarizing, $\overline{B}_j \subseteq h(\overline{A}_{i_0})$. As j was chosen arbitrarily, we obtain: for each $j \in J$ there exists $i_j \in I$ with $h(\overline{A}_{i_j}) \supseteq \overline{B}_j$; putting $b_1 = b_2$ we obtain the proof of unicity of such i_j .

3°. Suppose $\bar{B}_{i_1} \subseteq h(A_i)$, $\bar{B}_{i_2} \subseteq h(A_i)$ for $i \in I$. As \bar{A}_i is a chain, also $h(\bar{A}_i)$ is a chain; however, $\bar{B}_{i_1} \cup \bar{B}_{i_2}$ is not a chain for $j_1 \neq j_2$, thus $\bar{B}_{j_1} \cup \bar{B}_{j_2} \subseteq h(\bar{A}_i)$ is impossible. Hence $j \mapsto i_j$ is an injective mapping of J into I.

4°. Prove $h(\bar{A}_{i_j}) = \bar{B}_j$ for each $j \in J$. Suppose $c \in h(\bar{A}_{i_j}) - \bar{B}_j$. Then $c(j') \neq 0_{j'}$ for some $j' \neq j$, $j' \in J$. Choose $d \in \bar{A}_{i_j}$ with h(d) = c. Since $\overline{c(j')} \in \bar{B}_{j'}$, there exists $d_1 \in \bar{A}_{i_{j'}}$ with $h(d_1) = \overline{c(j')}$. As $j \mapsto i_j$ is injective, we have $i_j \neq i_{j'}$. Hence $d \wedge d_1 = 0_A$ and

$$pr_{j'}h(d \wedge d_1) = pr_{j'}(c \wedge \overline{c(j')}) = c(j') \wedge c(j') = c(j') \neq 0_{j'},$$

a contradiction.

5°. Denote by π the mapping $j \mapsto i_i$ of J into I with $h(\bar{A}_{\pi(i)}) = \bar{B}_i$. Put $\bar{\theta}_i = \theta \cap (\bar{A}_i \times \bar{A}_i)$. Then $\bar{A}_{\pi(i)}/\bar{\theta}_{\pi(i)} \cong \bar{B}_i$. The congruence $\bar{\theta}_i$ on \bar{A}_i induces a congruence θ_i on A_i by the rule:

 $a_i \theta_i b_i$ if and only if $\bar{a}_i \bar{\theta}_i \bar{b}_i$.

Then, evidently, $A_{\pi(j)}/\theta_{\pi(j)} \cong B_j$.

If $i \in I - \pi(J)$, put $\theta_i = A_i \times A_i$. Let $p, q \in A$ and $p\theta q$. Then $pr_ih(p) = pr_ih(q)$ for each $j \in J$, hence $p(\pi(j))\theta_{\pi(j)}q(\pi(j))$ for each $j \in J$, thus $p(i)\theta_iq(i)$ for all $i \in I$.

The converse implication is clear, thus $\theta = \prod \theta_i$.

Q.E.D.

REFERENCES

- FRASER, G. A.—HORN, A.: Congruence relations in direct products. Proc. Amer. Math. Soc., 26, 1970, 390—394.
- [2] SZÁSZ, G.: Introduction to lattice theory. Akad. Kiadó, Budapest 1963.

Received February 9, 1976

Třída Lidových milicí 290 750 00 Přerov

ПРЯМАЯ РАЗЛОЖИМОСТЬ КОНГРУЭНЦИЙ ДИСТРИБУТИВНЫХ РЕШЕТОК

Иван Хайда

Резюме

Дж. А. Фрейзер и А. Хорн определили условия для прямой разложимости конгруэнций на прямых произведениях двух алгебр. В этой работе даны достаточные условия для прямой разложимости конгруэнций дистрибутавной решетки, которая прямо разлагается в произвольное число цепей.