Mathematic Slovaca

Ivan Chajda

Congruence factorizations on distributive lattices

Mathematica Slovaca, Vol. 28 (1978), No. 4, 343--347

Persistent URL: http://dml.cz/dmlcz/129413

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CONGRUENCE FACTORIZATIONS ON DISTRIBUTIVE LATTICES

IVAN CHAJDA

G. A. Fraser and A. Horn [1] gave conditions for direct decompositions of congruences on a direct product of two algebras. The aim of this paper is to give some sufficient conditions for the direct factorization of congruences on distributive lattices, which are directly decomposable to an arbitrary number of chains.

Let A_{i} for $i \in I$ be lattices, θ_{i} be a congruence on $A_{i}, i_{0} \in I$ and $J=I-\left\{i_{0}\right\}$. Denote by $A=\prod_{i \in I} A_{i}$ the direct product of A_{i} and let $\theta=\prod_{i \in I} \theta_{i}$ be a binary relation on A defined by:
$a \theta b$ if and only if $p r_{i} a \theta_{i} p r_{i} b$ for each $i \in I$, where $p r_{i}$ denotes the projection of A onto A_{i}. Evidently, θ is a congruence on A. Further, denote by $a(i)=p r_{i} a$ and by $a(J)$ the projection of $a \in A$ onto $\prod_{i \in J} A_{i}$. If θ is a congruence on A and $\theta=\prod_{i \in I} \theta_{i}$ for some congruences θ_{i} on $A_{i}(i \in I), \theta$ is called directly factorizable.

Let L be a conditionally complete lattice (see [2], p.64). Then there exist the supremum and infimum of every bounded family $\left\{a_{\mu} ; \mu \in M\right\}$ of elements $a_{\mu} \in L$; denote it by $\bigvee_{\mu \in M} a_{\mu}$ or $\bigwedge_{\mu \in M} a_{\mu}$, respectively. A congruence θ on L is said to be conditionally complete, whenever

$$
a_{\mu} \theta b_{\mu} \text { for } \mu \in M \text { imply }\left(\underset{\mu \in M}{ } a_{\mu}\right) \theta\left(\bigvee_{\mu \in M} b_{\mu}\right)
$$

and

$$
\left(\bigwedge_{\mu \in M} a_{\mu}\right) \theta\left(\bigwedge_{\mu \in M} b_{\mu}\right)
$$

for every two bounded families $\left\{a_{\mu} ; \mu \in M\right\}$ and $\left\{b_{\mu} ; \mu \in M\right\}$ of elements from L.
Theorem 1. Let A_{i} be conditionally complete chains for $i \in I$ and θ be a conditionally complete congruence on $A=\prod_{i \in I} A_{i}$. Then there exist congruences θ_{i} on A_{i} such that $\theta=\prod_{i \in I} \theta_{i}$.

Proof. Denote by $\left\{M_{\gamma} ; \gamma \in \Gamma\right\}$ the set of all congruence classes of θ. The case $\operatorname{card} \Gamma=1$ is trivial. Suppose card $\Gamma \geqslant 2$ and denote $M_{\gamma}(i)=p r_{i} M_{\gamma}$ for $i \in I$.
a) First we prove that for each $i \in I$ the family $\left\{M_{\gamma}(i) ; \gamma \in \Gamma\right\}$ forms a partition of \boldsymbol{A}_{i}. As $\bigcup_{\gamma \in \Gamma} \boldsymbol{M}_{\gamma}=A$, clearly $\bigcup_{\gamma \in \Gamma} M_{\gamma}(i)=A_{i}$. It remains to prove that for all $\gamma^{\prime}, \gamma^{\prime \prime} \in \Gamma$ and $i \in I, M_{\gamma^{\prime}}(i) \cap M_{\gamma^{\prime}}(i)=\emptyset$ implies $M_{\gamma^{\prime}}(i)=M_{\gamma^{\prime}}(i)$.

Let $i \in I, \gamma^{\prime}, \gamma^{\prime \prime} \in \Gamma, \gamma^{\prime} \neq \gamma^{\prime \prime}$ and $M_{\gamma^{\prime}}(i) \cap M_{\gamma^{\prime}}(i) \neq \emptyset$. If both $M_{\gamma^{\prime}}(i)$ and $M_{\gamma^{\prime \prime}}(i)$ have no least and no greatest bound, then $M_{\gamma^{\prime}}(i)=A_{i}=M_{\gamma^{\prime}}(i)$ because A_{i} is a chain and the convexity of the congruence class M_{r} on A implies the convexity of the set $M_{r}(i)$ on A_{i}.

Suppose $a_{0} \in M_{\gamma^{\prime}}(i) \cap M_{\gamma^{\prime}}(i)$ and $M_{\gamma^{\prime}}(i)$ has an upper bound. As θ and A_{i} are conditionally complete, we have $j^{\prime}=\sup M_{\gamma^{\prime}}(i) \in M_{r^{\prime}}(i)$. Suppose the existence of $b \in M_{r^{\prime \prime}}$ with $b(i)=b_{0}>j^{\prime}$ and put $J=I-\{i\}$. Since $a_{0} \leqslant j^{\prime}<b_{0}$, there exists $h \in M_{\gamma^{\prime}}$ with $h(i)=j^{\prime}$ (with respect to the convexity of $M_{\gamma^{\prime}}(i)$). Let $x \in M_{\gamma^{\prime}}$ with $x(i)=j^{\prime}$ and choose $y \in A$ with $y(i)=b_{0}, y(J)=x(J)$. Then $y \in M_{\gamma}$ for some $\gamma \in \Gamma$ and $\gamma \neq \gamma^{\prime}$ because of $y(i)>j^{\prime}$.

Since $b, h \in M_{r^{\prime \prime}}$, there exists $\gamma_{1} \in \Gamma$ with $p=x \vee h \in M_{\gamma_{1}}, q=x \vee b \in M_{\gamma_{1}}$. Then there exists $\gamma_{2} \in \Gamma$ with $y \wedge p \in M_{r_{2}}, y \wedge q \in M_{\gamma_{2}}$. However,

$$
\begin{gathered}
y(i) \wedge p(i)=b_{0} \wedge(x(i) \vee h(i))=b_{0} \wedge j^{\prime}=j^{\prime} \\
y(J) \wedge p(J)=y(J) \wedge(x(J) \vee h(J))=x(J) \wedge(x(J) \vee h(J))=x(J),
\end{gathered}
$$

i.e. $y \wedge p=x \in M_{r^{\prime}}$, and

$$
\begin{gathered}
y(i) \wedge q(i)=b_{0} \wedge\left(j^{\prime} \vee b_{0}\right)=b_{0} \\
y(J) \wedge q(J)=x(J), \\
\text { i.e. } \quad y \wedge q=y \in M_{r} .
\end{gathered}
$$

Further, $\gamma \neq \gamma^{\prime}$ implies $M_{\gamma} \cap M_{\gamma^{\prime}}=\emptyset$, which contradicts the existence of γ_{2}.
Hence $b(i)>j^{\prime}$ for no element b of $M_{\gamma^{\prime}}(i)$, thus j^{\prime} is also an upper bound of $M_{r^{\prime}}(i)$. Denote $j^{\prime \prime}=\sup M_{r^{\prime}}(i) \in M_{r^{\prime}}(i)$. By the foregoing part of the proof, we have $j^{\prime \prime} \leqslant j^{\prime}$. The converse inequality can be proved analogously, thus $j^{\prime \prime}=j^{\prime}$.

Provided $M_{\gamma^{\prime}}(i)$ has a lower bound, then also $M_{\gamma^{\prime}}(i)$ has a lower bound and $\inf M_{\gamma^{\prime}}(i)=\inf M_{\gamma^{\prime}}(i)$; it can be proved by dualization. Hence $M_{\gamma^{\prime}}(i)=M_{\gamma^{\prime}}(i)$ with respect to the convexity of the sets $M_{r}(i)$.
b) Prove $M_{\gamma}=\prod_{i \in I} M_{\gamma}(i)$ for each $\gamma \in \Gamma$. If $\gamma_{0} \in \Gamma$ and $M_{\gamma_{0}}$ has not this property, then there exists $a \in A$ with $a(i) \in M_{\gamma_{0}}(i)$ for each $i \in I$ and $a \notin M_{\gamma_{0}}$. Then $a \in M_{r}$, for some $\gamma^{\prime} \in \Gamma, \gamma^{\prime} \neq \gamma_{0}$. Hence $a(i) \in M_{\gamma^{\prime}}(i)$ for each $i \in I$, i.e. $a(i) \in M_{r_{0}}(i) \cap M_{\gamma^{\prime}}(i)$, thus, by the foregoing part of the proof, $M_{r_{0}}(i)=M_{\gamma^{\prime}}(i)$ for all $i \in I$. As $M_{r_{0}}, M_{\gamma}$, are congruence classes, we obtain easily $\boldsymbol{M}_{r_{0}} \cap \boldsymbol{M}_{r^{\prime}} \neq \emptyset$, which is a contradiction.

Accordingly, $M_{\gamma}=\prod_{i \in I} M_{\gamma}(i)$ for each $\gamma \in \Gamma$, thus $\theta=\prod_{i \in I} \theta_{i}$, where θ_{i} is an equivalen-
ce on A_{i} induced by the partition $\left\{M_{r}(i) ; \gamma \in \Gamma\right\}$; evidently, every θ_{i} is a congruence on \boldsymbol{A}_{i}.
Q.E.D.

Let L be a lattice and \mathfrak{M} a cardinal number. L is said to be join- \mathfrak{M}-complete provided the supremum $\bigvee_{\mu \in M} a_{\mu}$ exists for every family $\left\{a_{\mu} ; \mu \in M\right\}$ of elements $a_{\mu} \in L$ with card $M \leqslant \mathcal{M}$. A congruence θ on a join- \mathcal{M}-complete lattice L is called join-M -complete provided $a_{\mu} \theta b_{\mu}$ for $\mu \in M, \operatorname{card} M \leqslant \mathfrak{M} \operatorname{imply}\left(\bigvee_{\mu \in M} a_{\mu}\right) \theta\left(\bigvee_{\mu \in M} b_{\mu}\right)$ for every $a_{\mu}, b_{\mu} \in L$. A homomorphism h of a join- \mathcal{M}-complete lattice L into a lattice L_{1} is called join-M-complete, provided $\bigvee_{\mu \in M} h\left(a_{\mu}\right)$ exists for every family $\left\{a_{\mu} ; \mu \in M, a_{\mu} \in L, \operatorname{card} M \leqslant \mathfrak{M}\right\}$ and $h\left(\bigvee_{\mu \in M} a_{\mu}\right)=\bigvee_{\mu \in M} h\left(a_{\mu}\right)$.

Theorem 2. Let $A_{i}, B_{i}(i \in I, j \in J)$ be at least two-element chains with least elements, card $I=\mathfrak{M}$ and $\prod_{i \in I} A_{i}, \prod_{i \in J} B_{i}$ be join- \mathfrak{M}-complete lattices. If θ is a join-M-complete congruence on $\prod_{i \in I} A_{i}$ and $\left(\prod_{i \in I} A_{i}\right) / \theta \cong \prod_{j \in J} B_{i}$, then
a) $\operatorname{card} J \leqslant \operatorname{card} I$
b) $\theta=\prod_{i \in I} \theta_{i}$ for some congruences θ_{i} on $A_{i}(i \in I)$
c) there exists an injective mapping $\pi: J \rightarrow I$ with $A_{\pi(j)} / \theta_{\pi(j)} \cong B_{j}$ for each $j \in J$.

Proof. Since $\left(\prod_{i \in I} A_{i}\right) / \theta \cong \prod_{i \in J} B_{i}$, there exists a homomorphism h of $A=\prod_{i \in I} A_{i}$ onto $B=\prod_{i \in J} B_{i}$. As θ is join- \mathcal{M}-complete, also h has this property. Let $i_{0} \in I$, $a \in A_{i_{0}}$. Denote by \bar{a} the element of A with $\bar{a}\left(i_{0}\right)=a, \bar{a}(i)=0_{i}$ for $i \neq i_{0}$, where 0_{i} is the least element of A_{i}. Introduce $\bar{A}_{i}=\left\{\bar{a}_{i} ; a_{i} \in A_{i}\right\}$. Clearly \bar{A}_{i} is a chain which is a sublattice of A isomorphic with A_{i}. Denote by 0_{A} the element of A with $0_{A}(i)=0_{i}$ for all $i \in I$. Clearly, 0_{A} is the least element of A. The concepts of \bar{B}, and 0_{B} are introduced analogously.
1°. Let $j \in J$ and $b \in \bar{B}_{i}, b \neq 0_{B}$. Prove the existence of $i_{0} \in I$ and $\overline{a\left(i_{0}\right)} \in \bar{A}_{i_{0}}$ such that $h\left(\overline{a\left(i_{0}\right)}\right)=b$. Let $a \in A$ and $h(a)=b$.

Since $\overline{a(i)} \leqslant a$ for each $i \in I$, we have $h(\overline{a(i)}) \leqslant h(a)=b$. As \bar{B}_{i} is an ideal of B, $h(\overline{a(i)}) \in \bar{B}_{i}$. Suppose the existence of $i, i^{\prime} \in I, i \neq i^{\prime}$ with $\operatorname{pr}_{i} h(\overline{a(i)}) \neq 0_{i} \neq$ $\operatorname{pr}_{i} h\left(\overline{a\left(i^{\prime}\right)}\right)$. Then $0_{A}=\overline{a(i)} \wedge \overline{a\left(i^{\prime}\right)}, 0_{B}=h\left(0_{A}\right)=h(\overline{a(i)}) \wedge h\left(\overline{a\left(i^{\prime}\right)}\right)$, hence
$0_{i}=p r_{j} h(\overline{a(i)}) \wedge \operatorname{pr}_{j} h\left(\overline{a\left(i^{\prime}\right)}\right)$, which is a contradiction. Let $i_{0} \in I$ and $p r_{i} h\left(\overline{a\left(i_{0}\right)}\right) \neq 0_{j}$. As $h(a)=b \neq 0_{B}$, such i_{0} exists. Since $b=h(a)=\bigvee_{i \in I} h(\overline{a(i)})$ and $p r_{j} h(\overline{a(i)})=0_{j}$ for $i \neq i_{0}$, we obtain $b=\overline{p r_{i} b}=\overline{\bigvee_{i \in I} p r_{i} h(a(i))}=h\left(\overline{a\left(i_{0}\right)}\right)$.
2°. Prove that this index $i_{0} \in I$ is the same for all non-zero elements from \bar{B}_{i}. Let $b_{1}, b_{2} \in \bar{B}_{j}, \quad b_{1} \neq 0_{B} \neq b_{2}$. By 1°, there exist $i_{1}, i_{2} \in I$ and $a_{i_{1}} \in A_{i_{1}}, a_{i_{2}} \in A_{i_{2}}$ with $h\left(\bar{a}_{i_{1}}\right)=b_{1}, h\left(\bar{a}_{i_{2}}\right)=b_{2}$. Clearly $\bar{a}_{i_{1}} \neq 0_{A} \neq \bar{a}_{i_{2}}$. Suppose $i_{1} \neq i_{2}$. As \bar{B}_{j} is a chain, we have

$$
0_{B}=h\left(0_{A}\right)=h\left(\bar{a}_{i_{1}} \wedge \bar{a}_{i_{2}}\right)=h\left(\bar{a}_{i_{1}}\right) \wedge h\left(\bar{a}_{i_{2}}\right)=b_{1} \wedge b_{2} \neq 0_{B},
$$

a contradiction. Thus $i_{1}=i_{2}$. If $b=0_{B}$, then $h\left(0_{A}\right)=0_{B}$ and $0_{A} \in \bar{A}_{i_{0}}$. Summarizing, $\bar{B}_{j} \subseteq h\left(\bar{A}_{i_{0}}\right)$. As j was chosen arbitrarily, we obtain: for each $j \in J$ there exists $i_{j} \in I$ with $h\left(\bar{A}_{i_{j}}\right) \supseteq \bar{B}_{j}$; putting $b_{1}=b_{2}$ we obtain the proof of unicity of such i_{j}.
3°. Suppose $\bar{B}_{i_{1}} \subseteq h\left(A_{i}\right), \bar{B}_{i_{2}} \subseteq h\left(A_{i}\right)$ for $i \in I$. As \bar{A}_{i} is a chain, also $h\left(\bar{A}_{i}\right)$ is a chain; however, $\bar{B}_{j_{1}} \cup \bar{B}_{i_{2}}$ is not a chain for $j_{1} \neq j_{2}$, thus $\bar{B}_{j_{1}} \cup \bar{B}_{i_{2}} \subseteq h\left(\bar{A}_{i}\right)$ is impossible. Hence $j \mapsto i_{j}$ is an injective mapping of J into I.
4°. Prove $h\left(\bar{A}_{i_{i}}\right)=\bar{B}_{i}$ for each $j \in J$. Suppose $c \in h\left(\bar{A}_{i_{i}}\right)-\bar{B}_{j}$. Then $c\left(j^{\prime}\right) \neq 0_{j^{\prime}}$ for some $j^{\prime} \neq j, j^{\prime} \in J$. Choose $d \in \bar{A}_{i_{i}}$ with $h(d)=c$. Since $\overline{c\left(j^{\prime}\right)} \in \bar{B}_{j^{\prime}}$, there exists $d_{1} \in \bar{A}_{i_{i}}$, with $h\left(d_{1}\right)=\overline{c\left(j^{\prime}\right)}$. As $j \mapsto i_{j}$ is injective, we have $i_{j} \neq i_{i^{\prime}}$. Hence $d \wedge d_{1}=0_{A}$ and

$$
p r_{j} h\left(d \wedge d_{1}\right)=p r_{j^{\prime}}\left(c \wedge \overline{c\left(j^{\prime}\right)}\right)=c\left(j^{\prime}\right) \wedge c\left(j^{\prime}\right)=c\left(j^{\prime}\right) \neq 0_{i^{\prime}}
$$

a contradiction.
5°. Denote by π the mapping $j \mapsto i_{j}$ of J into I with $h\left(\bar{A}_{\pi(j)}\right)=\bar{B}_{j}$. Put $\bar{\theta}_{i}=\theta \cap$ $\left(\bar{A}_{i} \times \bar{A}_{i}\right)$. Then $\bar{A}_{\pi(j)} / \bar{\theta}_{\pi(i)} \cong \bar{B}_{j}$. The congruence $\bar{\theta}_{i}$ on \bar{A}_{i} induces a congruence θ_{i} on A_{i} by the rule:

$$
a_{i} \theta_{i} b_{i} \text { if and only if } \bar{a}_{i} \bar{\theta}_{i} \bar{b}_{i} .
$$

Then, evidently, $A_{\pi(j)} / \theta_{\pi(j)} \cong B_{j}$.
If $i \in I-\pi(J)$, put $\theta_{i}=A_{i} \times A_{i}$. Let $p, q \in A$ and $p \theta q$. Then $p r_{j} h(p)=p r_{j} h(q)$ for each $j \in J$, hence $p(\pi(j)) \theta_{\pi(i)} q(\pi(j))$ for each $j \in J$, thus $p(i) \theta_{i} q(i)$ for all $i \in I$. The converse implication is clear, thus $\theta=\prod_{i \in I} \theta_{i}$.
Q.E.D.

REFERENCES

[1] FRASER, G. A.-HORN, A.: Congruence relations in direct products. Proc. Amer. Math. Soc., 26, 1970, 390-394.
[2] SZÁSZ, G.: Introduction to lattice theory. Akad. Kiadó, Budapest 1963.
Received February 9, 1976
Třída Lidových milicí 290
75000 Přerov

ПРЯМАЯ РАЗЛОЖИМОСТЬ КОНГРУЭНЦИЙ ДИСТРИБУТИВНЫХ РЕШЕТОК

Иван Хайда

Резюме

Дж. А. Фрейзер и А. Хорн определили условия для прямой разложимости конгруэнций на прямых произведениях двух алгебр. В этой работе даны достаточные условия для прямой разложимости конгруэнций дистрибутавной решетки, которая прямо разлагается в произвольное число цепей.

