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OSCILLATIONS OF DIFFERENTIAL EQUATION 
WITH R E T A R D E D A R G U M E N T 

BO2ENA MIHALlKOVA, PAVEL SOLTYS 

In the present paper we shall investigate the second order nonlinear differential 
equation of the form 

(r(t)y'(t))' + p(t)f(y(Ql(t)))h(y'(Q2(t))) = 0. (1) 

Many authors studied the properties of solutions of the equation (1) with 
r(t) = l, p ( 0 ^ 0 , f(y) = y or f(y) = y\ h(z)=l (see the papers [1], [4—7]). 

This paper is concerned with the oscillatory behaviour of the solutions of 
equation (1). We shall assume the validity of the following conditions: 
1) a) r(t)>0, p ( 0 ^ 0 
b) r (0>0 , p ( 0 ^ 0 
where r(0, p(0 a r e continuous functions on J = (t0, <»), t0eR = (-°°, °°); 
2) / (y)y>0 for yeR, y=£0, continuous function on R; 
3) h(z)>0 and continuous on R; 
4) Qi(t)^t, pi(0-^°° for t—>oo, i = l , 2 are continuous functions on J. 

We restrict our consideration to those solutions y(0 of (1) which exist on some 
interval J and satisfy 

sup {|y(s)|: / ^ s < ° ° } > 0 

for any t e J. Such a solution is said to be oscillatory if the set of zeros of y(t) is not 
bounded from the right. Otherwise, the solution y(t) is said to be nonoscillatory. 
Let us denote y(0 = sup{s^fo; Qi(s)^t} for t^t0. We see that >^y(0 and 
(?I(Y(0) = t. Another property of the function y(r) is given in the following lemma: 

Lemma 1. For every t such that t0^t<ooi the value y(0 is finite. 
Proof of Lemma may be found in [9]. 

I. 

The first part of the present paper deals with the oscillatoriness of the solutions 
of equation (1) under the assumptions la), 2)—4). 
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The following theorem is a generalization of Theorem 1 in [8] and Lemma 2.1 of 
[3]. 

Theorem 1. Suppose that for all teJ 

r(t)^ro>0, r0eR 
and 

/ • * > — • 

Let there exist a differentiate function a(t), non-negative on J such a'(t)r(t) ^ K, 
KeR and 

j a(t)p(t)dt = -co. (3) 

Then every non-oscillatory solution y(t) of (1) is either |y(0|-^°° fort-* oo or 

\imy(t) = \imr(t)yf(t) = 0. 
f—»oo t—*oo 

Proof. Let y(t) be a non-oscillatory solution of (1). Then there exists u ̂  t0 such 
that y ( 0 ^ 0 and y(Qi(t))±0 for every t^u. Let y(t)>0, y(Qi(t))>0. Then 

[r(0y'(0]' = -p(0/(y(ei(0))*(y'(e2(0))-sa 

We have to investigate the following cases: 

i) y (0>0, y'(0^0 for every f^ti; 
ii) there exists t2^h such that for t^t2, y'(t)>0. 

If case ii) takes place, then for t^t2 we have 

yV)^r(u)y'(u) 
y K) r(t) 

Using (2) we see that y(t)—»°° for f—*°°. 
If i) holds, then from (1) we get 

P a(s)[r(s)y'(s)]' ds = a(t)r(t)y'(t)- f a'(s)r(s)y'(s) ds = 
Jí. Jti 

= a(u)r(u)y'(U)- f a(s)p(s)f(y(Ql(s)))h(y'(Q2(s))) ds 
Jt\ 

(4) 

for t^tu Since h(z) is continuous and for t^u 

r(Q2(u))y'(Q2(u)) 
У'(Ú^O 

Гo 
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holds, there exists p 6 l r (g-( ' ' ) ) ' y ' (g-( '» ) ) ; fA such that for f&h 

h(P)^h(y'(Q2(t))). 

Let now lim y(f) = c > 0 . Then there exists a number a e (c, y(ti)) such that 
t—•<» 

f(a)^f(y(Qi(t))), for every t^h = y(h). 
From (4) we have 

«(fMf)_v'(0^ fc,+ K[y(t) - y(fe)] -f(a)h(fi) f' «(*)/>(*) ds, (5) 
.1r2 

where k0 = a(t2)r(t2)y'(t2). Using (5) we see that a(t)r(t)y'(t)-* + <*> for f-»oo, 
which contradicts the fact that y'(t)^0. Therefore, c = 0. 

From the equation (1) it follows that 

[r(t)y'(t)]'^0 

and therefore the limit lim r ( 0 y ' ( 0 = Ci^0 exists. Let Ci < 0 , then for every t^ t2 
t—*oo 

there is r(t)y'(t)^ci and 

ds 
yu«yы+<it (s) 

This is a contradiction. 

-> — oo for f—>oo. 

Theorem 2. Suppose that Qi(t) is non-decreasing in J and there exists a number 
k0>0 such that 

l i m i n f ^ > k 0 . (6) 
y-° y 

Let there further exist a sequence {tn }r=i, tn —> oo so that for sufficiently large n 

P" [R(s)-R(Ql(tn))]p(s)ds^-~ (7) 
jQl(tn) Kono 

is true, where r(t)= I —T-T and 0<h0= inf h(z). 
Jto r(S) zeR 

If (2) holds, then any bounded solution y(t) of (1) is oscillatory on J. 
Proof. Suppose that y(t) is a bounded solution of (1), e.g. such that y(f )>0, 

y(pi(0)>0 for t^h^t0. The equation (1) yields 

[r(t)y'(t)]'^0. 

Analogously with Theorem 1 we have two cases: 
i) y ' ( 0 ^ 0 for t^h 

ii) there exists t2^U such that y ' ( 0 > 0 for t^t2. Suppose that i) holds true. 
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Integrating the equation (1) from s to t^:v, s^tu and then from L),(t) to t^^,(t), 
we get 

y(Qi(t))^y(t)-haf - ^ [p(u)f(y(Qi(u))) du ds. (8) 

Let lim y(t) = L > 0 . Then there exists a number ae(L, y(o,(t,))) s u c h that for 

every t^t, 

o</(«)=s/(y(e.(0)) 

is true. The inequality (8) implies 

Since 

, i m y ( g . ( 0 ) - y ( 0 = 0 
r— «o / (« ) 

there exists a T ^ t , such that 
y ( g . ( 0 ) - y ( 0 < i f o r e v e r y / 3 e T < 

«o/ (« ) "o*o 

From (9) for sufficiently large n9 we may put t = tn ̂  T, we obtain a contradiction 
with (7). 

Suppose now that lim y(t) = 0. Then (8) yields 

I = Ï -Лoľ [R(s)-R(Qt(t))]p(s)f-Җ^ds. 
JQIO) УкQЛs)) 

Using (6) we see that there exists T\>T such that for every t^ T, 

/(y(g.(O)K • 
y(g.(0) ° 

is true, which means that from the last two inequalities we have 

1 > - koho f [R(s) - R(Qi(t))]p(s) ds. 
JQXO) 

If we put r = tn, this again leads to a contradiction with (7) for sufficiently large n. 
If case ii) takes place, then 

r(t)y'(t)^r(t2)y'(h)>0 for t^t2. 

Considering the assumption (2) we have a contradiction with the boundedness of 
the solution. 

R e m a r k 1. Theorem 2 is a generalization of Theorem 3.1 in [2]. 
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Theorem 3. The hypotheses of this theorem are the same as those for Theorem 2 
except that instead of (2) and (7) we suppose 

and 

0<lim sup r ( f ) f - ^ r = K 0 < ~ (2') 
'— -Wo r(s) 

l i m s u p f [R(s)-R(Ql(t))]p(s)ds^—r^-. (T) 
r_,>00 JQ\0) rloKo 

Then all bounded solutions of (1) are oscillatory. 
Proof. Analogously to Theorem 2 in case i) we have from (8) 

- A - > - f [R(s)-R(Ql(r))]p(s)ds for t^h 
Kotlo J e i ( r ) 

which contradicts (7'). 
Suppose that ii) obtains. From equation (1) we get for t^s^t2 

y'(t)r(t)\' 4z-^y(t)-y(Ql(t))-h0\' -^.\'p(u)f(y(Ql(u)))duds. 
JQ\0) r{s) j 0 l ( t ) r{s) js 

Since y(t) is bounded, there exists a number 

ae(y(Ql(h)),K) 

such that for 13* h = y(h) 

0<f(a)^f(y(Ql(t))) 

is true. From the last two inequalities we get 

y'(t)r(t)[ -^y(t)-y(Ql(t))-hQf(a)[ [R(s)-R(Ql(t))]p(s)ds. 
JQIO) r \ s ) JQIO) 

(10) 

According to the hypotheses (2') and (7') there exists W>h such that for t^ t 

ds_ 
r(s)~ 

r(t)\' ^ 2 K 0 
JQIO) r( 

and 

P [R(s)-R(Ql(t))]p(s)dstS-j±-. 
JQIO) ^ Kotlo 

Hence, in view of (10) we have 

v'(t)^ "a* > 0 for t^U y V) 4fc0Ko ' 

which again contradicts the fact that y(t) is a bounded solution of (1). 
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II. 

The next part of the present paper contains some sufficient conditions for the 
oscillatory properties of the solutions of equation (1) under the conditions lb), 
2 ) - 4 ) . 

Theorem 4. Let for every teJ r(t)^r,>>Qt r„eR hold and let a(t) be 
a differentiable non-negative function such that for every teJ 

a'(t)r(t)^K<«> 
If 

Ï a(s)p(s)âs = +co (11) 

and (2) hold, then any non-oscillatory solution y(t) of (1) is unbounded. 
Proof. Let y(t) be a solution of (1), e.g. such that y ( t ) > 0 , y(Qi(t))>0 for 

t^ti^to. We have to investigate the following cases: 
i) y ( l ) > 0 , y ' ( l ) ^ 0 f o r t^ti; 

ii) then there exists l2^t, such that y ( t )>0 , y ' ( l ) < 0 for t^t2. 
If ii) holds, then (1) yields 

r(t)y'(t)^r(t2)y'(t2) for t^t2. 

Using (2) we see that y( t)->-oo for t—>oo, which contradicts the positivity of y(t) 
for t^t2. 

Let i) hold and y(t) is a bounded solution. Then there exist numbers ki>0, 
Ki>0 and a e ( k i , Ki), such that 

0 < / ( a ) ^ / ( y ( ^ i ( t ) ) ) for f i ^ 2 = y(li) 

Evidently for t^tx we have also 

ro 

and there exists (3 such that 

h((3)^h(y'(Q2(t))) for t^t2. 

Therefore we have from (1) 

a(t)[r(t)y'(t)]' + f(a)h((3)a(t)p(t)^0 

and integrating this inequality from t2 to t^t2 we get 

a(t)r(t)y'(t) + f(a)h(P){ a(s)p(s) ds^a(t2)r(t2)y'(t2) + 2KKu 
Jt2 

which contradicts the positivity of y'(t) for t—>oo. 
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Theorem 5. Let the hypotheses of Theorem 4 he satisfied and instead of the 
assumption r(t)^ro>0 we suppose that 

inf h(z) = ho>0, h0eR. 
zeR 

Then all bounded solutions y (0 of (1) are oscillatory. 
Proof. The proof is analogous to proof of Theorem 4. 

Theorem 6. Let a(t) be a differentiable, positive function on J such that (11) and 

J.o «( 
» d , - Ä < -

hold. Suppose further that f(y) is non-decreasing on R, inf h(z) = ho>0 and (2) 
z e R 

holds. Then every solution y(t) of (1) is oscillatory. 
Proof. Suppose that (1) has a non-oscillatory solution y(t), e.g. that y ( 0 > 0 , 

y(pi(0)>0 for all t^tx^t0. In view of (2) it is sufficient to consider the case i), it 
means y ( t )>0 , y'(t)^Q for t^U. From (1) we get 

a(t)r(t)y'(t)-[ a'(s)r(s)y'(s)ds + 
Jt2 

+ f(y(Qx(h)))h0\ a(s)p(s) ds^a(t2)r(t2)y'(t2) = c, 
Jt2 

for t^t2 = y(h) and then (12) yields 

a(t)r(t)y'(t)^cx + ̂  ^ ^ a(s)r(s)y'(s) ds. 

Using the Gronwall inequality we get 

a(t)r(t)y'(t)^Clexp [ {a'[s^+ ds^Ci expA. 
Jt2 Q\s) 

We further have from (12) for t^t2 

a(OKOy'(0 + /(y(P-(fc)))/iof a(s)p(s)ds^Ci+Acl expA 
J12 

and so using (11) we get that 

a(t)r(t)y'(t)-*-*> for t-*°o. 

This is a contradiction with y ' ( 0 > 0 . 
Remark 2. If we put a(t)=l, we have Theorem 3 in [8]. 

(12) 
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Theorem 7. Let the assumptions of Theorem 6 be satisfied with the exception 
that instead of f(y) to be non-decreasing we suppose that 

<oo. (13) Г ds 
J а(s)r 

Then any solution y(t) of (1) is oscillatory. 

Proof. Analogously to Theorem 6 it is easy to verify that for t^t2 = y(li) 

a(t)r(t)y'(t) + hof' a(s)p(s)f(y(Ql(s))) ds^ct + Ac, e x p A = B (14) 

holds. From (13) and (14) it follows 

0<y(t)^y(t2) + Bf - r ~ r , 
J,2 a(s)r(s) 

which means that y(t) is a bounded solution. Thus from (14) we get 

a(t)r(t)y'(t) + f(a)h0(' a(s)p(s) ds^B, (15) 
Jt2 

where a is such a number that for l^l2 = y(li) 

f(a)^f(y(Ql(t))). 

From (15) we have for t—>oo a contradiction with y ' ( t ) > 0 . 
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КОЛЕБЛЕМОСТЬ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИИ 

С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ 

Вогепа М1Па11коуа, Ра\с\ §о1гё<» 

Резюме 

В статье приведены достаточные условия для того, чтобы решения дифференциального 

уравнения 

(Г(.)У'(0)' + Р(0/(У(Р.(0))Л(У'ЫО)) = О 

были колеблющиеся. 
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