Mathematic Slovaca

Božena Mihalíková; Pavol Šoltés
 Oscillations of differential equation with retarded argument

Mathematica Slovaca, Vol. 35 (1985), No. 3, 295--303

Persistent URL: http://dml.cz/dmlcz/129492

Terms of use:

(C) Mathematical Institute of the Slovak Academy of Sciences, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

OSCILLATIONS OF DIFFERENTIAL EQUATION WITH RETARDED ARGUMENT

BOŽENA MIHALÍKOVA, PAVEL SOLTÉS

In the present paper we shall investigate the second order nonlinear differential equation of the form

$$
\begin{equation*}
\left(r(t) y^{\prime}(t)\right)^{\prime}+p(t) f\left(y\left(\varrho_{1}(t)\right)\right) h\left(y^{\prime}\left(\varrho_{2}(t)\right)\right)=0 . \tag{1}
\end{equation*}
$$

Many authors studied the properties of solutions of the equation (1) with $r(t) \equiv 1, p(t) \geqslant 0, f(y)=y$ or $f(y)=y^{\alpha}, h(z)=1$ (see the papers [1], [4-7]).

This paper is concerned with the oscillatory behaviour of the solutions of equation (1). We shall assume the validity of the following conditions:

1) a) $r(t)>0, p(t) \leqslant 0$
b) $r(t)>0, p(t) \geqslant 0$
where $r(t), p(t)$ are continuous functions on $J=\left\langle t_{0}, \infty\right), t_{0} \in R=(-\infty, \infty)$;
2) $f(y) y>0$ for $y \in R, y \neq 0$, continuous function on R;
3) $h(z)>0$ and continuous on R;
4) $\varrho_{\mathrm{i}}(t) \leqslant t, \varrho_{\mathrm{i}}(t) \rightarrow \infty$ for $t \rightarrow \infty, \mathrm{i}=1,2$ are continuous functions on J.

We restrict our consideration to those solutions $y(t)$ of (1) which exist on some interval J and satisfy

$$
\sup \{|y(s)|: t \leqslant s<\infty\}>0
$$

for any $t \in J$. Such a solution is said to be oscillatory if the set of zeros of $y(t)$ is not bounded from the right. Otherwise, the solution $y(t)$ is said to be nonoscillatory. Let us denote $\gamma(t)=\sup \left\{s \geqslant t_{0} ; \varrho_{1}(s) \leqslant t\right\}$ for $t \geqslant t_{0}$. We see that $t \leqslant \gamma(t)$ and $\varrho_{1}(\gamma(t))=t$. Another property of the function $\gamma(t)$ is given in the following lemma:

Lemma 1. For every t such that $t_{0} \leqslant t<\infty$, the value $\gamma(t)$ is finite.
Proof of Lemma may be found in [9].

I.

The first part of the present paper deals with the oscillatoriness of the solutions of equation (1) under the assumptions 1a), 2)-4).

The following theorem is a generalization of Theorem 1 in [8] and Lemma 2.1 of [3].

Theorem 1. Suppose that for all $t \in J$

$$
r(t) \geqq r_{0}>0, \quad r_{0} \in R
$$

and

$$
\begin{equation*}
\int^{\infty} \frac{\mathrm{d} t}{r(t)}=+\infty . \tag{2}
\end{equation*}
$$

Let there exist a differentiable function $a(t)$, non-negative on J such $a^{\prime}(t) r(t) \leqslant K$, $K \in R$ and

$$
\begin{equation*}
\int^{\infty} a(t) p(t) \mathrm{d} t=-\infty . \tag{3}
\end{equation*}
$$

Then every non-oscillatory solution $y(t)$ of (1) is either $|y(t)| \rightarrow \infty$ for $t \rightarrow \infty$ or

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty} r(t) y^{\prime}(t)=0 .
$$

Proof. Let $y(t)$ be a non-oscillatory solution of (1). Then there exists $t_{1} \geqslant t_{0}$ such that $y(t) \neq 0$ and $y\left(\varrho_{1}(t)\right) \neq 0$ for every $t \geqslant t_{1}$. Let $y(t)>0, y\left(\varrho_{1}(t)\right)>0$. Then

$$
\left[r(t) y^{\prime}(t)\right]^{\prime}=-p(t) f\left(y\left(\varrho_{1}(t)\right)\right) h\left(y^{\prime}\left(\varrho_{2}(t)\right)\right) \geqq 0
$$

We have to investigate the following cases:
i) $y(t)>0, y^{\prime}(t) \leqslant 0$ for every $t \geqslant t_{1}$;
ii) there exists $t_{2} \geqslant t_{1}$ such that for $t \geqslant t_{2}, y^{\prime}(t)>0$.

If case ii) takes place, then for $t \geqslant t_{2}$ we have

$$
y^{\prime}(t) \geqslant \frac{r\left(t_{2}\right) y^{\prime}\left(t_{2}\right)}{r(t)}
$$

Using (2) we see that $y(t) \rightarrow \infty$ for $t \rightarrow \infty$.
If i) holds, then from (1) we get

$$
\begin{align*}
& \int_{t_{1}}^{t} a(s)\left[r(s) y^{\prime}(s)\right]^{\prime} \mathrm{d} s=a(t) r(t) y^{\prime}(t)-\int_{t_{1}}^{t} a^{\prime}(s) r(s) y^{\prime}(s) \mathrm{d} s= \\
& \quad=a\left(t_{1}\right) r\left(t_{1}\right) y^{\prime}\left(t_{1}\right)-\int_{t_{1}}^{t} a(s) p(s) f\left(y\left(\varrho_{1}(s)\right)\right) h\left(y^{\prime}\left(\varrho_{2}(s)\right)\right) \mathrm{d} s \tag{4}
\end{align*}
$$

for $t \geqslant t_{1}$. Since $h(z)$ is continuous and for $t \geqslant t_{1}$

$$
\frac{r\left(\varrho_{2}\left(t_{1}\right)\right) y^{\prime}\left(\varrho_{2}\left(t_{1}\right)\right)}{r_{0}} \leqslant y^{\prime}(t) \leqslant 0
$$

holds, there exists $\beta \in\left\langle\frac{r\left(\varrho_{2}\left(t_{1}\right)\right), y^{\prime}\left(\varrho_{2}\left(t_{1}\right)\right)}{r_{0}} ; 0\right\rangle$ such that for $t \geqslant t_{1}$

$$
h(\beta) \leqq h\left(y^{\prime}\left(\varrho_{2}(t)\right)\right)
$$

Let now $\lim _{t \rightarrow \infty} y(t)=c>0$. Then there exists a number $\alpha \in\left\langle c, y\left(t_{1}\right)\right\rangle$ such that

$$
f(\alpha) \leqslant f\left(y\left(\varrho_{1}(t)\right)\right), \quad \text { for every } \quad t \geqslant t_{2}=\gamma\left(t_{1}\right) .
$$

From (4) we have

$$
\begin{equation*}
a(t) r(t) y^{\prime}(t) \geqq k_{0}+K\left[y(t)-y\left(t_{2}\right)\right]-f(\alpha) h(\beta) \int_{t_{2}}^{t} a(s) p(s) \mathrm{d} s \tag{5}
\end{equation*}
$$

where $k_{0}=a\left(t_{2}\right) r\left(t_{2}\right) y^{\prime}\left(t_{2}\right)$. Using (5) we see that $a(t) r(t) y^{\prime}(t) \rightarrow+\infty$ for $t \rightarrow \infty$, which contradicts the fact that $y^{\prime}(t) \leqslant 0$. Therefore, $c=0$.

From the equation (1) it follows that

$$
\left[r(t) y^{\prime}(t)\right]^{\prime} \geqq 0
$$

and therefore the limit $\lim _{t \rightarrow \infty} r(t) y^{\prime}(t)=c_{1} \leqslant 0$ exists. Let $c_{1}<0$, then for every $t \geqslant t_{2}$ there is $r(t) y^{\prime}(t) \leqslant c_{1}$ and

$$
y(t) \leqslant y\left(t_{2}\right)+c_{1} \int_{t_{2}}^{t} \frac{\mathrm{~d} s}{r(s)} \rightarrow-\infty \quad \text { for } \quad t \rightarrow \infty .
$$

This is a contradiction.
Theorem 2. Suppose that $\varrho_{1}(t)$ is non-decreasing in J and there exists a number $k_{0}>0$ such that

$$
\begin{equation*}
\lim _{y \rightarrow 0} \inf \frac{f(y)}{y}>k_{0} . \tag{6}
\end{equation*}
$$

Let there further exist a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}, t_{n} \rightarrow \infty$ so that for sufficiently large n

$$
\begin{equation*}
\int_{e_{1}\left(t_{n}\right)}^{t_{n}}\left[R(s)-R\left(\varrho_{1}\left(t_{n}\right)\right)\right] p(s) \mathrm{d} s \leqslant-\frac{1}{k_{0} h_{0}} \tag{7}
\end{equation*}
$$

is true, where $r(t)=\int_{t_{0}}^{t} \frac{\mathrm{~d} s}{r(s)}$ and $0<h_{0}=\inf _{z \in R} h(z)$.
If (2) holds, then any bounded solution $y(t)$ of (1) is oscillatory on J.
Proof. Suppose that $y(t)$ is a bounded solution of (1), e.g. such that $y(t)>0$, $y\left(\varrho_{1}(t)\right)>0$ for $t \geqslant t_{1} \geqslant t_{0}$. The equation (1) yields

$$
\left[r(t) y^{\prime}(t)\right]^{\prime} \geqslant 0 .
$$

Analogously with Theorem 1 we have two cases:
i) $y^{\prime}(t) \leqslant 0$ for $t \geqslant t_{1}$
ii) there exists $t_{2} \geqslant t_{1}$ such that $y^{\prime}(t)>0$ for $t \geqslant t_{2}$. Suppose that $\left.i\right)$ holds true.

Integrating the equation (1) from s to $t \geqslant s, s \geqslant t_{1}$, and then from $\varrho_{1}(t)$ to $t \geqslant \varrho_{1}(t)$, we get

$$
\begin{equation*}
y\left(\varrho_{1}(t)\right) \geqslant y(t)-h_{0} \int_{e_{1}(t)}^{t} \frac{1}{r(s)} \int_{V}^{t} p(u) f\left(y\left(\varrho_{1}(u)\right)\right) \mathrm{d} u \mathrm{~d} s . \tag{8}
\end{equation*}
$$

Let $\lim _{1 \rightarrow \infty} y(t)=L>0$. Then there exists a number $\alpha \in\left\langle L, y\left(\varrho_{1}\left(t_{1}\right)\right)\right\rangle$ such that for every $t \geqslant t_{1}$

$$
0<f(\alpha) \leqslant f\left(y\left(\varrho_{1}(t)\right)\right)
$$

is true. The inequality (8) implies

$$
\begin{equation*}
\frac{y\left(\varrho_{1}(t)\right)-y(t)}{h_{0} f(\alpha)} \geqq-\int_{e_{1}(t)}^{t}\left[R(s)-R\left(\varrho_{1}(t)\right)\right] p(s) \mathrm{d} s \tag{9}
\end{equation*}
$$

Since

$$
\lim _{t \rightarrow \infty} \frac{y\left(\varrho_{1}(t)\right)-y(t)}{h_{0} f(\alpha)}=0
$$

there exists a $T \geqslant t_{1}$ such that

$$
\frac{y\left(\varrho_{1}(t)\right)-y(t)}{h_{0} f(\alpha)}<\frac{1}{h_{0} k_{0}} \quad \text { for every } t \geqslant T .
$$

From (9) for sufficiently large n, we may put $t=t_{n} \geqslant T$, we obtain a contradiction with (7).

Suppose now that $\lim _{t \rightarrow \infty} y(t)=0$. Then (8) yields

$$
1 \geqslant-h_{0} \int_{\varrho_{1}(t)}^{t}\left[R(s)-R\left(\varrho_{1}(t)\right)\right] p(s) \frac{f\left(y\left(\varrho_{1}(s)\right)\right)}{y\left(\varrho_{1}(s)\right)} \mathrm{d} s
$$

Using (6) we see that there exists $T_{1}>T$ such that for every $t \geqslant T_{1}$

$$
\frac{f\left(y\left(\varrho_{1}(t)\right)\right)}{y\left(\varrho_{1}(t)\right)}>k_{0}
$$

is true, which means that from the last two inequalities we have

$$
1>-k_{0} h_{0} \int_{e_{1}(t)}^{t}\left[R(s)-R\left(\varrho_{1}(t)\right)\right] p(s) \mathrm{d} s
$$

If we put $t=t_{n}$, this again leads to a contradiction with (7) for sufficiently large n.
If case ii) takes place, then

$$
r(t) y^{\prime}(t) \geqslant r\left(t_{2}\right) y^{\prime}\left(t_{2}\right)>0 \text { for } t \geqslant t_{2} .
$$

Considering the assumption (2) we have a contradiction with the boundedness of the solution.

Remark 1. Theorem 2 is.a generalization of Theorem 3.1 in [2].

Theorem 3. The hypotheses of this theorem are the same as those for Theorem 2 except that instead of (2) and (7) we suppose

$$
0<\lim _{t \rightarrow \infty} \sup r(t) \int_{e_{1}(t)}^{t} \frac{\mathrm{~d} s}{r(s)}=K_{0}<\infty
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{e_{1}(t)}^{t}\left[R(s)-R\left(\varrho_{1}(t)\right)\right] p(s) \mathrm{d} s \leqslant-\frac{1}{h_{0} k_{0}} . \tag{7'}
\end{equation*}
$$

Then all bounded solutions of (1) are oscillatory.
Proof. Analogously to Theorem 2 in case i) we have from (8)

$$
\frac{1}{k_{0} h_{0}}>-\int_{\varrho_{1}(t)}^{t}\left[R(s)-R\left(\varrho_{1}(r)\right)\right] p(s) \mathrm{d} s \text { for } t \geqslant t_{1}
$$

which contradicts (7^{\prime}).
Suppose that ii) obtains. From equation (1) we get for $t \geqslant s \geqslant t_{2}$

$$
y^{\prime}(t) r(t) \int_{e_{1}(t)}^{t} \frac{\mathrm{~d} s}{r(s)} \geqq y(t)-y\left(\varrho_{1}(t)\right)-h_{0} \int_{e_{1}(t)}^{t} \frac{1}{r(s)} \int_{s}^{t} p(u) f\left(y\left(\varrho_{1}(u)\right)\right) \mathrm{d} u \mathrm{~d} s .
$$

Since $y(t)$ is bounded, there exists a number

$$
\alpha \in\left\langle y\left(\varrho_{1}\left(t_{2}\right)\right), K\right\rangle
$$

such that for $t \geqslant t_{3}=\gamma\left(t_{2}\right)$

$$
0<f(\alpha) \leqslant f\left(y\left(\varrho_{1}(t)\right)\right)
$$

is true. From the last two inequalities we get

$$
\begin{equation*}
y^{\prime}(t) r(t) \int_{\varrho_{1}(t)}^{t} \frac{\mathrm{~d} s}{r(s)} \geqq y(t)-y\left(\varrho_{1}(t)\right)-h_{0} f(\alpha) \int_{\varrho_{1}(t)}^{t}\left[R(s)-R\left(\varrho_{1}(t)\right)\right] p(s) \mathrm{d} s . \tag{10}
\end{equation*}
$$

According to the hypotheses (2') and (7') there exists $t_{4} \geqslant t_{3}$ such that for $t \geqslant t_{4}$

$$
r(t) \int_{e_{1}(t)}^{t} \frac{\mathrm{~d} s}{r(s)} \leqslant 2 K_{0}
$$

and

$$
\int_{\mathrm{e}_{1}(t)}^{t}\left[R(s)-R\left(\varrho_{1}(t)\right)\right] p(s) \mathrm{d} s \leqslant-\frac{1}{2 k_{0} h_{0}} .
$$

Hence, in view of (10) we have

$$
y^{\prime}(t) \geqslant \frac{f(\alpha)}{4 k_{0} K_{0}}>0 \text { for } t \geqslant t_{4}
$$

which again contradicts the fact that $y(t)$ is a bounded solution of (1).

II.

The next part of the present paper contains some sufficient conditions for the oscillatory properties of the solutions of equation (1) under the conditions 1 b), 2)-4).

Theorem 4. Let for every $t \in J r(t) \geqslant r_{0}>0, r_{0} \in R$ hold and let $a(t)$ be a differentiable non-negative function such that for every $t \in J$

$$
a^{\prime}(t) r(t) \leqq K<\infty
$$

If

$$
\begin{equation*}
\int^{\infty} a(s) p(s) \mathrm{d} s=+\infty \tag{11}
\end{equation*}
$$

and (2) hold, then any non-oscillatory solution $y(t)$ of (1) is unbounded.
Proof. Let $y(t)$ be a solution of (1), e.g. such that $y(t)>0, y\left(\varrho_{1}(t)\right)>0$ for $t \geqslant t_{1} \geqslant t_{0}$. We have to investigate the following cases:
i) $y(t)>0, y^{\prime}(t) \geqslant 0$ for $t \geqslant t_{1}$;
ii) then there exists $t_{2} \geqslant t_{1}$ such that $y(t)>0, y^{\prime}(t)<0$ for $t \geqslant t_{2}$.

If ii) holds, then (1) yields

$$
r(t) y^{\prime}(t) \leqslant r\left(t_{2}\right) y^{\prime}\left(t_{2}\right) \text { for } t \geqslant t_{2}
$$

Using (2) we see that $y(t) \rightarrow-\infty$ for $t \rightarrow \infty$, which contradicts the positivity of $y(t)$ for $t \geqslant t_{2}$.

Let i) hold and $y(t)$ is a bounded solution. Then there exist numbers $k_{1}>0$, $K_{1}>0$ and $\alpha \in\left\langle k_{1}, K_{1}\right\rangle$, such that

$$
0<f(\alpha) \leqslant f\left(y\left(\varrho_{1}(t)\right)\right) \quad \text { for } \quad t \geqq t_{2}=\gamma\left(t_{1}\right)
$$

Evidently for $t \geqslant t_{1}$ we have also

$$
0 \leqslant y^{\prime}(t) \leqslant \frac{r\left(t_{1}\right) y^{\prime}\left(t_{1}\right)}{r_{0}}
$$

and there exists β such that

$$
h(\beta) \leqslant h\left(y^{\prime}\left(\varrho_{2}(t)\right)\right) \text { for } t \geqslant t_{2} .
$$

Therefore we have from (1)

$$
a(t)\left[r(t) y^{\prime}(t)\right]^{\prime}+f(\alpha) h(\beta) a(t) p(t) \leqslant 0
$$

and integrating this inequality from t_{2} to $t \geqslant t_{2}$ we get

$$
a(t) r(t) y^{\prime}(t)+f(\alpha) h(\beta) \int_{t_{2}}^{t} a(s) p(s) \mathrm{d} s \leqslant a\left(t_{2}\right) r\left(t_{2}\right) y^{\prime}\left(t_{2}\right)+2 K K_{1}
$$

which contradicts the positivity of $y^{\prime}(t)$ for $t \rightarrow \infty$.

Theorem 5. Let the hypotheses of Theorem 4 be satisficd and instead of the assumption $r(t) \geqslant r_{0}>0$ we suppose that

$$
\inf _{z \in R} h(z)=h_{0}>0, \quad h_{0} \in R .
$$

Then all bounded solutions $y(t)$ of (1) are oscillatory.
Proof. The proof is analogous to proof of Theorem 4.
Theorem 6. Let $a(t)$ be a differentiable, positive function on J such that (11) and

$$
\int_{t_{0}}^{\infty} \frac{\left\{a^{\prime}(s)\right\}_{+}}{a(s)} \mathrm{d} s=A<\infty
$$

hold. Suppose further that $f(y)$ is non-decreasing on $R, \inf _{z \in R} h(z)=h_{0}>0$ and (2) holds. Then every solution $y(t)$ of (1) is oscillatory.

Proof. Suppose that (1) has a non-oscillatory solution $y(t)$, e.g. that $y(t)>0$, $y\left(\varrho_{1}(t)\right)>0$ for all $t \geqslant t_{1} \geqslant t_{0}$. In view of (2) it is sufficient to consider the case i$)$, it means $y(t)>0, y^{\prime}(t) \geqslant 0$ for $t \geqslant t_{1}$. From (1) we get

$$
\begin{gather*}
a(t) r(t) y^{\prime}(t)-\int_{t_{2}}^{t} a^{\prime}(s) r(s) y^{\prime}(s) \mathrm{d} s+ \\
+f\left(y\left(\varrho_{1}\left(t_{2}\right)\right)\right) h_{0} \int_{t_{2}}^{t} a(s) p(s) \mathrm{d} s \leqslant a\left(t_{2}\right) r\left(t_{2}\right) y^{\prime}\left(t_{2}\right)=c_{1} \tag{12}
\end{gather*}
$$

for $t \geqslant t_{2}=\gamma\left(t_{1}\right)$ and then (12) yields

$$
a(t) r(t) y^{\prime}(t) \leqslant c_{1}+\int_{t 2}^{t} \frac{\left\{a^{\prime}(s)\right\}_{+}}{a(s)} a(s) r(s) y^{\prime}(s) \mathrm{d} s
$$

Using the Gronwall inequality we get

$$
a(t) r(t) y^{\prime}(t) \leqslant c_{1} \exp \int_{t_{2}}^{t} \frac{\left\{a^{\prime}(s)\right\}_{+}}{a(s)} \mathrm{d} s \leqslant c_{1} \exp A
$$

We further have from (12) for $t \geqslant t_{2}$

$$
a(t) r(t) y^{\prime}(t)+f\left(y\left(\varrho_{1}\left(t_{2}\right)\right)\right) h_{0} \int_{t_{2}}^{t} a(s) p(s) \mathrm{d} s \leqslant c_{1}+A c_{1} \exp A
$$

and so using (11) we get that

$$
a(t) r(t) y^{\prime}(t) \rightarrow-\infty \quad \text { for } \quad t \rightarrow \infty
$$

This is a contradiction with $y^{\prime}(t)>0$.
Remark 2. If we put $a(t) \equiv 1$, we have Theorem 3 in [8].

Theorem 7. Let the assumptions of Theorem 6 be satisfied with the exception that instead of $f(y)$ to be non-decreasing we suppose that

$$
\begin{equation*}
\int^{\infty} \frac{\mathrm{d} s}{a(s) r(s)}<\infty . \tag{13}
\end{equation*}
$$

Then any solution $y(t)$ of (1) is oscillatory.
Proof. Analogously to Theorem 6 it is easy to verify that for $t \geqslant t_{2}=\gamma\left(t_{1}\right)$

$$
\begin{equation*}
a(t) r(t) y^{\prime}(t)+h_{0} \int_{t_{2}}^{t} a(s) p(s) f\left(y\left(\varrho_{1}(s)\right)\right) \mathrm{d} s \leqslant c_{1}+A c_{1} \exp A=B \tag{14}
\end{equation*}
$$

holds. From (13) and (14) it follows

$$
0<y(t) \leqslant y\left(t_{2}\right)+B \int_{t_{2}}^{t} \frac{\mathrm{~d} s}{a(s) r(s)}
$$

which means that $y(t)$ is a bounded solution. Thus from (14) we get

$$
\begin{equation*}
a(t) r(t) y^{\prime}(t)+f(\alpha) h_{0} \int_{t_{2}}^{t} a(s) p(s) \mathrm{d} s \leqslant B \tag{15}
\end{equation*}
$$

where α is such a number that for $t \geqslant t_{2}=\gamma\left(t_{1}\right)$

$$
f(\alpha) \leqslant f\left(y\left(\varrho_{1}(t)\right)\right) .
$$

From (15) we have for $t \rightarrow \infty$ a contradiction with $y^{\prime}(t)>0$.

REFERENCES

[1] BRADLEY, J. S.: Oscillation theorems for a second order delay equation, J. Diff. Equations 8, 1970, 397-403.
[2] GUSTAFSON, G. B. : Bounded oscillations of linear and nonlinear delay-differential equations of even order, J. Math. Anal. and Appl. 46, 1974, 175-189.
[3] LADA, G.-LAKSHMIKANTHAM, V.: Oscillations caused by retarded actions, Applicable Analysis 4, 1974, 9-15.
[4] ODARIČ, O. N.-ŠEVELO, V. N.: Some problems in the theory of oscillation of second order differential equations with deviating arguments, Ukrainian Math. J. 23, 1971, 508-516.
[5] ODARIČ, O. N.-ŠEVELO, V. N.: The non-oscillations of solutions of non-linear second differential equations with retarded argument, Trudy Sem. Mat. Fiz. Nelin. Kolebanij 1, 1968, 268-279.
[6] STAIKOS, V. A.-PETSOULAS, A. G.: Some oscillation criteria for second order non-linear delay differential equations, J. Math. Anal. Appl. 30, 1970, 695-701.
[7] STAIKOS, V. A.: Oscillatory property of a certain delay differential equation, Bull. Soc. Math. Grese 11, 1970, 1-5.
[8] SOLTES, P.: Oscillatory properties of solutions of second order non-linear delay differential equations, Math. Slovaca 31, 1981, 207-215.
[9] OHRISKA, J.: The argument delay and oscillatory properties of differential equation of 11 -th order, Czech. Math. J. 29 (104), 1979, 268-283.

Received April 18, 1983
Katedra matematickej analýzy
Prírodovedeckej fakulty UPJS̉
Jesenná 5
04154 Košice

КОЛЕБЛЕМОСТЬ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ

Božena Mihalíková, Pavel Šoltés

Резюме
В статье приведены достаточные условия для того, чтобы решения дифференциального уравнения

$$
\left(r(t) y^{\prime}(t)\right)^{\prime}+p(t) f\left(y\left(\varrho_{1}(t)\right)\right) h\left(y^{\prime}\left(\varrho_{2}(t)\right)\right)=0
$$

были колеблющиеся.

