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AN ELEMENTARY PROOF 
OF THE FUBINI-STONE THEOREM 

IVAN DOBRAKOV 

0. The Fubini-Stone theorem is the analog of the Fubini theorem from the theory 
of integration for the Daniell integral, see 7-2 in [1], or § 23 Th. 2 in [2]. Its proofs 
(as far as it is known to the author) essentially exploit, besides elementary facts, the 
completeness of the class of summable functions. The proofs of the mentioned 
completeness are rather long and exploit the monotone and the dominated 
convergence theorem, see the proofs of Th. 6-4IV in [1] and of Th. 1 in § 16 in [2]. 
The purpose of this note is to* give a short proof based only on few quite standard 
elementary facts. These facts, together with notations, are summarized in points 
1 and 2 below. 

1. /? = (-oo, +oo) and JR* = (-oo, + oo) with operations as in 4-1 in [1]. 
(7\ ^ , /) denotes an elementary Daniell integral, see 6-1 in [1]. 9*° is the class of 
over-functions of ^ and 1°: ZF° -» R* is the corresponding extension of / , see 6-2 in 
[1]. We point out the next simple fact, see Th. 6-2III(d) in [1]: 
(1) I f / . e ^ \ / ! = l , 2 , ..., a n d / , / / , then fe9>° and I°(fn)/r(f). 

For each /: T-*R* we define its upper integral 1(f) and its lower integral 1(f) by 
equalities: 

/(/) = inf{r(A): / /€^° , /7g/} , ( inf{0}=+a)) , 
and 

The class !£ of summable functions is determined by the equality: 

' J?={/:/:F->/?*, -°°</( / ) = /(/)< + °°}. 

For feJ£ the common value 1(f) = 1(f) is denoted by 1(f). 
The classes Jf and IV of /-null functions and /-null sets respectively are defined 

by equalities: 

Jf={f:f:T^R*,I(\f\) = 0}, 
and 

J V = { £ : £ c r j E e / } . 
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If he9", H= {t:te T, h(t)= + co} and I°(h)< + oo, then HeN(xH^l(hvO) 
for each n = \, 2, ..., and I°(h vO) = F(h)-I"(h A 0 ) < + oo, since 
/ ° ( A A O ) > - oo). Hence, 
(2) iif.T-^R*, B+ = {t:t$T,f(t) = + *>}, and / ( / )< +oo, then £+e/V. 

The properties of I" and the definition of / imply: 
(3) If /, g-.T^R*, and I(f) + I(g) is not of the form ( + oo) + (-oc), or 
( - oo) + (+ oo), then / ( / + # ) = 1(f) + 1(g). 

Thus A KJB e N, when A, B e N. If A c T, B e N, and A c B, then A e N by the 
monotonicity of /. 

Using (1) we easily obtain: 
(4) If/: T^>R*andA = {t:teT,f(t)±0},thenfetfo( + °o)\f\eJfoAeN. 

(3) and the definition of / implies: 
(5) If f, g-.T^R*, and I(f) + I(g) is not of the form ( + oo) + (-oo), or 
(-oo) + (+oo), then / ( / + g)^ 1(f) + 1(g). 

If / ( / )< +oo, then / ( - / ) + /(/) is not of the form (-oo) + ( + oo), hence 
0 = / ( - / + / ) ^ / ( - /) + /(/) by (3). Thus 

(6) I(f)^I(f) for each f.T^R*. 

(3), (5), (6) and the definition of if imply: 
(7) If f, geif, then -f,f+ge£, and / ( / + </) = 1(f) + 1(g). 

Let /e^V. Then by the monotonicity of / and / and (6) 
0= - / ( | / | ) = / ( - | / | ) ^ / ( / ) ^ / ( / ) ^ / ( | / | ) = 0. Thus 

(8) -/VcS?. 

2. Let (7i, 3FX, /,) and (F2, 2F2, 12) be two elementary Daniell integrals and 
denote by 5£x and J% the corresponding classes of summable functions. Put 
T3=Txx T2. By &x*&2 we denote the class of all /: T3-±R such that /(/„•) e 3?2 for 
each t, e F, and such that I2f( •, •) e ^ (from now on we use / / instead of 1(f)). 

Suppose 3r3 to be a vector lattice of functions /: F3—>i? such that ^3cz^^2, 
and for fe&3 put l3f=lj2f(-, •). Then clearly (T3,?F3,13) is an elementary 
Daniell integral. By «S?3 we denote the corresponding class of summable functions. 

If/: T3-+R*, hn e&3,n = 1, 2, ..., and hn/h ^ / , then using (1) we easily obtain 
that/,/2/(-, -)^l\l2h(', •) = FJ°M', ) = Hm lj2hn(-, ) = lim l3hn =l°3h. Thus 

(9) lj2f(,)1kl3f foreach f:T3-*R*. 

From (9), (6) and the definition of the lower integral we immediately have our 
basic inequality: 

(io) /3/-S/,/2/(-, ) ^ W ( - , ) - W 

foreach f:T3->R*. 
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We define &*& to be the class of all /: :/,-»/?* such that there exist an /,-null 
set E cz Tx and a cp e if, such that /(t„ •) e 5£2 and /2/(t„ •) = (p(tx) if t, e T, - E. For 
such an / with corresponding q? we write I2f( •, •) = q). By this definition /2/( •, •) 
does not have a unique meaning as an element of cS?,. Since the ambiguity involves 
only an 7,-null set EczTx, however, by (4), (7) and (8) the numerical value 
Iihf( •, " ) = /. <P is unique. 

3. The Fubini-Stone theorem. Suppose that & cz &x*&2 and that /3 /= /,/2/( •, •) 
for each / e ^ s . Then ^ c i ? . * ^ and /3 /=/1 /2 /(- , •) for each /ei?v 

Proof. Let / e . % . Then by (6) and (10) 
-™<hf=LU(', ) = /,/2/(-, ) = /,/2/(-, -) = W ( - , •) = V < + °°, hence 
L/(-, •), /2/(-, OeJ?,, and /,[/,/(-, ) - / 2 / ( - , )] = 0 by (7). Thus owing to (6) 
and (4) there is an. 7,-null set AczTx such that 72/(ti, )=/2/(ti, •) for each 
txeTx- A. Since 72/( •, •) e Z£x, according to {2) there is an /,-null set BczTx such 
that | / 2 / ( ^ , ) |< + °° for each txeTx-B. Thus f(tx,-)e<£2 for each 
/, e Tx - (A \JB). Taking <p = /2/( •, •) and E = A u B we see that fe eS?,*^ and that 
73/=/,/2/(-, •). The theorem is proved. 
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ЭЛЕМЕНТАРНОЕ ДОКАЗАТЕЛЬСТВО 
ТЕОРЕМЫ ФУБИН-СТОУНА 

ИванДобраков 

Резюме 

Теорема Фубини-Стоуна является аналогом теоремы Фубини для интеграла Даниэлля, см. (1, 
отдел 7-2) или (2, § 23 Теор. 2). В заметке дается короткое доказательство этой теоремы 
основано на простом неравенстве (10) и на самых элементарных свойствах интеграла Даниэлля. 
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