Mathematica Slovaca

Ivan Dobrakov

An elementary proof of the Fubini-Stone theorem

Mathematica Slovaca, Vol. 27 (1977), No. 3, 239--241
Persistent URL: http://dml.cz/dmlcz/129514

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

AN ELEMENTARY PROOF OF THE FUBINI-STONE THEOREM

IVAN DOBRAKOV

0. The Fubini-Stone theorem is the analog of the Fubini theorem from the theory of integration for the Daniell integral, see 7-2 in [1], or § 23 Th .2 in [2]. Its proofs (as far as it is known to the author) essentially exploit, besides elementary facts, the completeness of the class of summable functions. The proofs of the mentioned completeness are rather long and exploit the monotone and the dominated convergence theorem, see the proofs of Th. 6-4IV in [1] and of Th. 1 in § 16 in [2]. The purpose of this note is to give a short proof based only on few quite standard elementary facts. These facts, together with notations, are summarized in points 1 and 2 below.
1. $R=(-\infty,+\infty)$ and $R^{*}=\langle-\infty,+\infty\rangle$ with operations as in $4-1$ in [1]. (T, \mathscr{F}, I) denotes an elementary Daniell integral, see 6-1 in [1]. \mathscr{F}° is the class of over-functions of \mathscr{F} and $I^{o}: \mathscr{F}^{o} \rightarrow R^{*}$ is the corresponding extension of I, see 6-2 in [1]. We point out the next simple fact, see Th. 6-2III(d) in [1]:
(1) If $f_{n} \in \mathscr{F}^{\circ}, n=1,2, \ldots$, and $f_{n} \nearrow f$, then $f \in \mathscr{F}^{o}$ and $I^{o}\left(f_{n}\right) \nearrow I^{o}(f)$.

For each $f: T \rightarrow R^{*}$ we define its upper integral $\bar{I}(f)$ and its lower integral $I(f)$ by equalities:

$$
\bar{I}(f)=\inf \left\{I^{o}(h): h \in \mathscr{F}^{\circ}, h \geqq f\right\},(\inf \{\emptyset\}=+\infty),
$$

and

$$
\underline{I}(f)=-\bar{I}(-f)
$$

The class \mathscr{L} of summable functions is determined by the equality:

$$
\mathscr{L}=\left\{f: f: T \rightarrow R^{*},-\infty<\underline{I}(f)=\bar{I}(f)<+\infty\right\} .
$$

For $f \in \mathscr{L}$ the common value $I(f)=\bar{I}(f)$ is denoted by $I(f)$.
The classes \mathcal{N} and N of I-null functions and I-null sets respectively are defined by equalities:

$$
\mathcal{N}=\left\{f: f: T \rightarrow R^{*}, \bar{I}(|f|)=0\right\}
$$

and

$$
\boldsymbol{N}=\left\{E: E \subset T, \chi_{E} \in \mathcal{N}\right\}
$$

If $h \in \mathscr{F}^{o}, H=\{t: t \in T, h(t)=+\infty\}$ and $I^{o}(h)<+\infty$, then $H \in N\left(\chi_{H} \leqq{ }_{n}^{1}(h \vee 0)\right.$ for each $n=1, \quad 2, \quad \ldots, \quad$ and $\quad I^{o}(h \vee 0)=I^{o}(h)-I^{o}(h \wedge 0)<+\infty$, since $\left.I^{o}(h \wedge 0)>-\infty \cdot\right)$. Hence,
(2) if $f: T \rightarrow R^{*}, B^{+}=\{t: t \in T, f(t)=+\infty\}$, and $\bar{I}(f)<+\infty$, then $B^{+} \in N$.

The properties of I^{o} and the definition of \bar{I} imply:
(3) If $f, g: T \rightarrow R^{*}$, and $\bar{I}(f)+\bar{I}(g)$ is not of the form $(+\infty)+(-\infty)$, or $(-\infty)+(+\infty)$, then $\bar{I}(f+g) \leqq \bar{I}(f)+\bar{I}(g)$.

Thus $A \cup B \in \boldsymbol{N}$, when $A, B \in \boldsymbol{N}$. If $A \subset T, B \in \boldsymbol{N}$, and $A \subset B$, then $A \in \boldsymbol{N}$ by the monotonicity of \bar{I}.

Using (1) we easily obtain:
(4) If $f: T \rightarrow R^{*}$ and $A=\{t: t \in T, f(t) \neq 0\}$, then $f \in \mathcal{N} \Leftrightarrow(+\infty)|f| \in \mathcal{N} \Leftrightarrow A \in N$.
(3) and the definition of I implies:
(5) If $f, g: T \rightarrow R^{*}$, and $\underline{I}(f)+\underline{I}(g)$ is not of the form $(+\infty)+(-\infty)$, or $(-\infty)+(+\infty)$, then $I(f+g) \geqq I(f)+I(g)$.

If $\bar{I}(f)<+\infty$, th: $\bar{I}(-f)+\bar{I}(f)$ is not of the form $(-\infty)+(+\infty)$, hence $0=\bar{I}(-f+f) \leqq \bar{I}(-f)+\bar{I}(f)$ by (3). Thus

$$
\begin{equation*}
I(f) \leqq \bar{I}(f) \text { for each } f: T \rightarrow R^{*} \tag{6}
\end{equation*}
$$

(3), (5), (6) and the definition of \mathscr{L} imply:
(7) If $f, g \in \mathscr{L}$, then $-f, f+g \in \mathscr{L}$, and $I(f+g)=I(f)+I(g)$.

Let $f \in \mathcal{N}$. Then by the monotonicity of I and \bar{I} and (6) $0=-\bar{I}(|f|)=\underline{I}(-|f|) \leqq \underline{I}(f) \leqq \bar{I}(f) \leqq \bar{I}(|f|)=0$. Thus

$$
\begin{equation*}
\mathcal{N} \subset \mathscr{L} \tag{8}
\end{equation*}
$$

2. Let $\left(T_{1}, \mathscr{F}_{1}, I_{1}\right)$ and $\left(T_{2}, \mathscr{F}_{2}, I_{2}\right)$ be two elementary Daniell integrals and denote by \mathscr{L}_{1} and \mathscr{L}_{2} the corresponding classes of summable functions. Put $T_{3}=T_{1} \times T_{2}$. By $\mathscr{F}_{1} * \mathscr{F}_{2}$ we denote the class of all $f: T_{3} \rightarrow R$ such that $f\left(t_{1}, \cdot\right) \in \mathscr{F}_{2}$ for each $t_{1} \in T_{1}$ and such that $I_{2} f(\cdot, \cdot) \in \mathscr{F}_{1}$ (from now on we use If instead of $I(f)$).

Suppose \mathscr{F}_{3} to be a vector lattice of functions $f: T_{3} \rightarrow R$ such that $\mathscr{F}_{3} \subset \mathscr{F}_{1} * \mathscr{F}_{2}$, and for $f \in \mathscr{F}_{3}$ put $I_{3} f=I_{1} I_{2} f(\cdot, \cdot)$. Then clearly $\left(T_{3}, \mathscr{F}_{3}, I_{3}\right)$ is an elementary Daniell integral. By \mathscr{L}_{3} we denote the corresponding class of summable functions.

If $f: T_{3} \rightarrow R^{*}, h_{n} \in \mathscr{F}_{3}, n=1,2, \ldots$, and $h_{n} \nearrow h \geqq f$, then using (1) we easily obtain that $\bar{I}_{1} \bar{I}_{2} f(\cdot, \cdot) \leqq \overline{I_{1}} \overline{I_{2}} h(\cdot, \cdot)=I_{1}^{o} I^{o} h(\cdot, \cdot)=\lim I_{1} I_{2} h_{n}(\cdot, \cdot)=\lim I_{3} h_{n}=I_{3}^{o} h$. Thus

$$
\begin{equation*}
\bar{I}_{1} \bar{I}_{2} f(\cdot, \cdot) \leqq \bar{I}_{3} f \quad \text { for each } \quad f: \dot{T}_{3} \rightarrow R^{*} \tag{9}
\end{equation*}
$$

From (9), (6) and the definition of the lower integral we immediately have our basic inequality:

$$
\begin{gather*}
\underline{I}_{3} f \leqq \underline{I}_{1} I_{2} f(\cdot, \cdot) \leqq \tilde{I}_{1} \bar{I}_{2} f(\cdot, \cdot) \leqq \bar{I}_{3} f \tag{10}\\
\quad \text { for each } f: T_{3} \rightarrow R^{*}
\end{gather*}
$$

We define $\mathscr{L}_{1} * \mathscr{L}_{2}$ to be the class of all $f: T_{3} \rightarrow R^{*}$ such that there exist an I_{1}-null set $E \subset T_{1}$ and a $\varphi \in \mathscr{L}_{1}$ such that $f\left(t_{1}, \cdot\right) \in \mathscr{L}_{2}$ and $I_{2} f\left(t_{1}, \cdot\right)=\varphi\left(t_{1}\right)$ if $t_{1} \in T_{1}-E$. For such an f with corresponding φ we write $I_{2} f(\cdot, \cdot)=\varphi$. By this definition $I_{2} f(\cdot, \cdot)$ does not have a unique meaning as an element of \mathscr{L}_{1}. Since the ambiguity involves only an I_{1}-null set $E \subset T_{1}$, however, by (4), (7) and (8) the numerical value $I_{1} I_{2} f(\cdot, \cdot)=I_{1} \varphi$ is unique.
3. The Fubini-Stone theorem. Suppose that $\mathscr{F}_{3} \subset \mathscr{F}_{1} * \mathscr{F}_{2}$ and that $I_{3} f=I_{1} I_{2} f(\cdot, \cdot)$ for each $f \in \mathscr{F}_{3}$. Then $\mathscr{L}_{3} \subset \mathscr{L}_{1} * \mathscr{L}_{2}$ and $I_{3} f=I_{1} I_{2} f(\cdot, \cdot)$ for each $f \in \mathscr{L}_{3}$.

Proof. Let $f \in \mathscr{L}_{3}$. Then by (6) and (10)
$-\infty<I_{3} f=\underline{I}_{1} \underline{I}_{2} f(\cdot, \cdot)=\bar{I}_{1} \underline{I}_{2} f(\cdot, \cdot)=\underline{I}_{1} \bar{I}_{2} f(\cdot, \cdot)=\bar{I}_{1} \bar{I}_{2} f(\cdot, \cdot)=I_{3} f<+\infty$, hence $\underline{I}_{2} f(\cdot, \cdot), \bar{I}_{2} f(\cdot, \cdot) \in \mathscr{L}_{1}$, and $I_{1}\left[\bar{I}_{2} f(\cdot, \cdot)-\underline{I}_{2} f(\cdot, \cdot)\right]=0$ by (7). Thus owing to (6) and (4) there is an. I_{1}-null set $A \subset T_{1}$ such that $\bar{I}_{2} f\left(t_{1}, \cdot\right)=\underline{I}_{2} f\left(t_{1}, \cdot\right)$ for each $t_{1} \in T_{1}-A$. Since $I_{2} f(\cdot, \cdot) \in \mathscr{L}_{1}$, according to (2) there is an I_{1}-null set $B \subset T_{1}$ such that $\left|\bar{I}_{2} f\left(t_{1}, \cdot\right)\right|<+\infty$ for each $t_{1} \in T_{1}-B$. Thus $f\left(t_{1}, \cdot\right) \in \mathscr{L}_{2}$ for each $t_{1} \in T_{1}-(A \cup B)$. Taking $\varphi=\tilde{I}_{2} f(\cdot, \cdot)$ and $E=A \cup B$ we see that $f \in \mathscr{L}_{1} * \mathscr{L}_{2}$ and that $I_{3} f=I_{1} I_{2} f(\cdot, \cdot)$. The theorem is proved.

REFERENCES

[1] TAYLOR, A. E.: General Theory of Functions and Integration. Blaisdell Publishing Company, New York-Toronto-London, 1965.
[2] ZAANEN, A. C.: Integration North-Holland Publishing Company - Amsterdam, 1967.

Received August 26, 1975
Matematický ústav SAV Obrancov mieru 49
88625 Bratislava

ЭЛЕМЕНТАРНОЕ ДОКАЗАТЕЛЬСТВО
 ТЕОРЕМЫ ФУБИН-СТОУНА

Иван Добраков

Резюме

Теорема Фубини-Стоуна является аналогом теоремы Фубини для интеграла Даниэлля, см. (1, отдел 7-2) или ($2, \S 23$ Теор. 2). В заметке дается короткое доказательство этой теоремы основано на простом неравенстве (10) и на самых элементарных свойствах интеграла Даниэлля.

