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PERIODIC BOUNDARY VALUE PROBLEM 
IN HILBERT SPACE 

FOR DIFFERENTIAL EQUATION 
OF SECOND ORDER 

WITH REFLECTION OF THE ARGUMENT 

BORIS RUDOLF 

ABSTRACT. The differential equation -x"+a2x+f(t, x(t)} x(-t)) = h(t) with 
periodic boundary conditions is studied. The existence of a solution in case when 
/ is a completely continuous operator and in case when / is only continuous and 
bounded is proved. The connectedness of the set of solutions is studied. 

The aim of this paper is to extend the results o f C h a i t a n P . G u p t a 
[1] for the boundary value problems in a Hilbert space involving the reflection 
of the argument to the case of the periodic boundary conditions. 

1. Some preliminary results 

We deal with the differential equation 

-x" + a2x + / (* , x(t), x(-t)) = h(i) (1) 

with periodic boundary conditions 

X(-TT) = Z(TT), X'(-TT) = X'(TT), (2) 

where h(t): (—7r,7r) —> H, / ( t , x , y ) : (—7r,7r) X H X H —> H and H is a real 
Hilbert space with norm \\ • | |. 
We assume a G l , f t > 0 . 

We use the following function spaces: 

Lx ((-7T, TT), H) with norm \u\\x = / ||ti(t)|| d*, 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34G20. 
K e y w o r d s : Periodic BVP, Leray-Schauder theorem, Hilbert space. 
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L2((-n,n),H) with norm ||u||3 = ( / \\u(t)\\2 d t ) 5 , 
— 7T 

C((-7r ,7r ) ,#) with norm ||u||0 = sup \\u(t)\\, 
te(-n,n) 

and assume ft(r) E Li and / is a completely continuous function. 

In the case # = R we obtain the scalar problem (1), (2), for which the 
homogeneous problem 

-x" + a2x = 0 (2) 

has only trivial solution. 
That means we can find the Green function 

1 1 f e2a* ea(<-*) + e°<*-*> -TT _ * S 5 _ TT 
(*' 5) ~ 2~ ~~~~~ J ea(«-,) + e2a7r e*(*-<) _^ _ 5 _ ^ _ - ^ 

such that the scalar problem (1), (2) is equivalent to the equation 

TT 

x(t) = J G(t, s) [h(s) - f(s, x(s), x(-s))] ds. (4) 
— n 

For reference to our first lemma see [1, p . 377]. (Though this lemma is not 
explicitly formulated there.) 

LEMMA 1. If the scalar problem (1), (2) is equivalent to the equation (4), then 
also the problem (1), (2) in the Hilbert space H is equivalent to the equation 
(4), and the Green function G(t,s): (—7r,7r) x (—7r,7r) —> R is given by (3). 

Using the Lemma 1 we obtain that the existence of a solution to the problem 
(1), (2) is equivalent to the existence of a fixed point for a completely continuous 
operator T. 

LEMMA 2. Let f: (—7r,7r) x # x # — > # be a completely continuous operator 
and h(t) G Li((-7r,7r),#) . 

Then the problem (l), (2) is equivalent to the operator equation 

x = Tx (5) 

where T is a completely continuous operator, T: C((—7r, 7r), #)—• C((—7r,7r), # ) . 

P r o o f . We define 
7T 

Tx(t) = J G(t, s) [h(s) - f(s, x(s), x(-s))] ds. (6) 
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Continuity of G(£, s) on (—7r, 7r) x (—7r, 7r) implies the continuity of the function 
Tx , i .e . Tx G C((-7r,7r) ,H) . 

Continuity of the operator T . 
Let xn —• x in C((—7r,7r),H) . Then 

f(t,xn(t),xn(-t)) -> f(t,x(t),x(-t)) for every t G (-7r,7r). 

Moreover, for every n G N, and every t G (—7r,7r) there is 

\\f(t,xn(t),xn(-t))\\^M. 

Then the Lebesgue convergence theorem implies 

7T 

/ G(t,s)[h(s) - f(s,xn(s),xn(-s))] ds —• 

— 7T 

7T 

-> I G(t, 5) [h(s) - f(s, x(s), x(-s))] ds. 

— 7T 

From the inequality 

7T 

| | T x n ( t 1 ) - T x n ( < 2 ) | | ^ | | G ( i 1 , 5 ) - G ( < 2 , s ) | ( | | / l ( 5 ) | | + | | / ( 5 , x n ( 5 ) , x „ ( - 5 ) ) | | ) d 5 

— 7T 

= 27re(| |h(6)| |+M) 

we obtain that Txn converges uniformly to Tx. 

Compactness of T . 
Let {xn} be bounded in C((—7r,7r), H) . Then {Txn} is equicontinuous. The 
set {Txn(t),n G N} C H is a relatively compact set for every t G (—7r,7r). 
The Theorem of Ascoli [5, p. 18] implies now the complete continuity of the 
operator T . 

The relative compactness of the set {Txn(t),'n G N} is proved in the follow

ing way. Denote the integral sum associated with the partition [so = —7r,..., s,-, 
27T 

k 
. . . , sд. = 7г] , 5,4-1 — .s,- -= — as 

h =1^2G(t,Si)f(si1Xn(3i),Xn(-Si))(si+1 -Si). 
t = 0 
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The complete continuity of / and the continuity of G implies that for every 
t E (-7r,7r) 

G(t,Si)f(si,xn(si),xn(-Si)) G K, 

where K is a compact subset of H. Then 

Ik G conv(27rk) 

and 
Txn(t) G conv(27rk) 

where the set conv(27rk) is a compact subset. 
The assumption of the complete continuity of the function / is essential. For 

further references to the preceding lemma see [6, pp. 281-282]. 

2. The estimations 

In this section we derive the inequalities which we use to estimate the norm 
of a solution to the equation (5). 

LEMT- - / Let y(t) G -4C((-TT, TT), H), y'(t) G £2 ((-*", TT), H), J y(t)dt = 0 
— 7T 

and y(t) satisfies the periodic boundary conditions (2). Then 

\\y(t)\\0 S y|||y'(0ll2. (7) 

P r o o f . We consider the real function z(t) G AC((—7r, 7T),R) such that 

z'(t) e L2 ( ( -TT, TT), R) , / z(t) dt = 0, Z(-TT) = z(w), z'(-ir) = z'(ir). 
— 7T 

The mean value theorem implies the existence of to G (—7r,7r) such that 
z(to) = 0. 

We consider now the function z(t) on (r̂ o, ô + 27r), defined by z(t) = z(t — 2n) 
for t > 7T. The inequality 

k(OI =? yflk'COlU-

is for such z(t) derived in [4]. For y(t) satisfying the assumptions of the lemma, 
there is to G (—7r,7r) such that 

||y||o = sup | |y(0| = ||y(*o)||. 
t6(-7r ,7r) 
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The Hahn-Banach theorem implies the existence of w £ H with ||tD|| = 1 such 
that 

llv(*o)ll = (v(*o),«0-
We denote 

z(t) = (y(t),w) 

and we obtain 

\(y(t),w)\2 = lj(y'(t),w)2dt= I J \\y'(t)\\2 &, 
— 7T — IT 

\\y(t)\\o = (y(to),w)S^\\y'(t)\\2 

The following estimation is in a real case well known as the Wirtinger in
equality [2, p. 185]. 

In the rest of this part we assume that H is a separable Hilbert space and 
{et} is an orthogonal basis in H. 

LEMMA 4. Let y(t) G C((-7T,7r),H) . Then 

oo 

y(t) = ^ a , ( r ) e t , 
i = i 

where ai(t) are uniformly continuous functions and 

oo * 

llyWIÎ  = E / l a ' W I 2 d < -

P r o o f . For every to G (—7r,7r) is y(to) G H, y(to) = Yl ai(to)ei a n < l 
t=i 

di(t) = (a t( t)e t ,e t) = (y(£),e t). The uniform continuity of y(t) implies the 
uniform continuity of a t ( t ) . 

For y(t) G H we use the Parseval equality 

oo 

lh/MU2 = £l«.WI2-
»=i 
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n 
The sequence ]T |a,(t) |2 —> ||y(t)||2 for n —> oo, for every £ and 

. =1 

X>.(t)ľş||y(0lľ 
t = l 

The Lebesgue dominated convergence theorem implies that 

l|y(<)lll = E/M0l 2 dí-

LEMMA 5. Let y(t) e C1((-7T,7r),H) . Then 

0 0 

y'(*) = X) a -(*)c i , 
t = l 

where a'^t) are uniformly continuous functions and 

iiy#(oii2 = E/i a ^)rd*. 
«= 1 - 7 r 

P r o o f . From the Lemma 4 we obtain that 

0 0 

y(t) = y^ai(t)ei and 
t = i 

0 0 

y'(t) = \ bt(t)ei, where bt(t) are uniformly continuous functions. 
t = i 

Moreover y G C1 implies that 

a,(t) = (y(t), c,) € C1 ((-7T, TT), R) and 

OO 

MO = (J2bj(t)ey,ei) = (y ' (0,e,) = <(t). 
t = l 

The rest of the proof is similar to the proof of the Lemma 4. 
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7T 

LEMMA 6. Let y(t) G C1((-7T,7r),H) , y(t) satisfies (2) and / y(t)dt = 0. 
— 7T 

Then 

\\y(t)h ^ h'(t)h (8) 

P r o o f . Obviously 

7T 

/ ai(t)dt = 0 for every i G 

and ai(t) satisfies (2). 
From the Wirtinger inequality we obtain 

7T 7T 

J\ai(t)\
2dt^J\a'(t)fdt 

and the inequality (8) follows now from the Lemmas 4 and 5. 

LEMMA 7. Let H be a separable Hilbert space and {e^} the orthonormal 
basis in H. Then {ei,coskt • e,,sinkt • ei}?°k=1 is the orthogonal basis in 

L2((-*,*),H). 

P r o o f . The orthogonality is obvious. We prove the completeness. Let y(t) 
oo 

G C((—7r,7r),H) . Then y(t) = £} ai(0e*> °>i(t) are uniformly continuous func-
»=i 

tions and 
a1" 1 °° • 

ai(t) = -£• H 2_] ak c o s kt + bk sin kt. 
__• 7T 

k=l 

Supposing 
7T 7T 7T 

f(y(t),ei)dt = 0, / (y(1.),coskt • ei)d^ = 0, f (y(t), sin kt - e{) dt = 0 
— 7T — 7T — 7T 

7T 7T 7T 

we obtain / ai(t)dt = 0, / cos kt • ai(t)dt = 0, / sin kt • bi(t)dt = 0 and 
— 7T — 7 T — 7 T 

then aj, = 0, a\ = 0, b\ = 0. 
This implies that ai(t) = 0 for every i G N and then also y(t) = 0. 

Since the space C((—7r,7r),H) is dense in L2((—^,7c),H) , then the system 
{ei, cos kt • ej, sin kt • e,} is complete. 
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LEMMA 8. Let y(t) G C1((-7r,7r),H) . Then 

||y(t)||o = a| |y'(t) | |2+6||y(0| |2 a , i G R (9) 

P r o o f . The continuity of y(t) implies that there is to surn that 

||y(«o)||= sup ||y(t)|| = ||y(OHo. 
<€(-7r,ir> 

We choose again w G H, ||iD|| = 1 such that 

(y(to),u») = ||y(to)||. 

Then 

t 

(y(O.w) = (y(ti),w)+ J(y(s),w)'ds = (yltxlw) + >/2^||y'(t) |2-

ti 

Using the mean-value theorem we take t\ G (—7r,7r) such that 

7T 

j(y(t),w)2 dt = (y(tl),w)227r 

and 

(y(i),u>) = \J^\\y(t)h +\fa\\y'(t)h for every t € (-*,--). 

3. Existence theorems 

THEOREM 1. Let / : (—7r,7r) XH XH —+ H be completely continuous operator 
and for every (r ,x,y) G (—7r,7r) X H X H is 

(/(i,x,y),x) = -a\\x\\2 - b\\x\\\\y\l where a + \b\ < a2 . 

Then there is a solution to the problem (1), (2) for every h(t) G Li ((—7T, 7T), H) . 

P r o o f . The problem (1), (2) is equivalent to the equation 

x = Tx (5) 
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where T is a completely continuous operator. 
Let x be a solution to the equation 

x = XTx for AG (0,1). (10) 

Then 

7T 7T 7T 

- f(x"(t),x(t))dt+ f a2(x(t),x(t))dt+ f X(f(t,x(t),x(-t)),x(t))dt 
— 7T — 7 T — 7 T 

7T 

= J(h(t),x(t))dt, 
— 7T 

and 

ll*'ll! + «2ll^ll2 - (a + \b\)\\x\\l = ||A(t)||i (yf^MU + ̂ \\x'\\A . 

The last inequality can be rewritten in the form 

\\*'\\l - A\\x'\\2 + (a2 - (a + \b\))\\x\\l - B\\x\\2 = 0 ' (11) 

where A, B are constants. 

Obviously if (11) is valid then ||a?||2 = d and ||.x'||2 = C2 , CUC2 are 
suitable constants. 

Then if x is a solution to (10), there holds 

= \ / ^ C i + ^*C2 = C. I^llo = y 
V Z7T 

The existence of the solution to the equation (5) follows from the Leray-
Schauder theorem. 

THEOREM 2. Let H be a separable Hilbert space, f: (—7r,7r) x H x H —> H 
be a completely continuous operator. Suppose that there are a,b,c,d,e € R such 
that a + |b| < 1 + a2 and 

(f(t,x,y),x) = -a | |x | | 2 - 6||x||||y|| - c||x|| - cf||y|| - e 

for every (t,x,y) G (—TT, TT) X H X H. 
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Suppose that either 
7T 7T 7T 

(i) if f x(t)dt = 0 and J y(t) dt = 0, then f /(r, x(t), y(t)) dt = 0, 

or 
7Г 7Г 

(ii) / f(f(t,x(t),x(-t)),x(s))dtds^O, 

J J(f(t,x(t),x(-t)),x(s))dtds 

— 7Г — 7 Г 

0Г 

(iii) liminf 
x£ S 

| | x ( I ) | І 2 - ~ 

> - a " , 
\\fx(t)dt\\' 

— 7T 

7T 

where S = {x(t), f x(t) ^ 0} . 
— 7T 

holds. 
Then there is a solution to the problem (1) . (2) for every h(t) £ L\ (( — 7r, 7T), H), 

/ h(t)dt = 0. 
— 7T 

P r o o f . The problem (1), (2) is equivalent to the equation (5). At first we 
prove that under the condition (i) there is 

T(Л') C K (12) 

inhere 

v = {x(t)ec, I x(t)dt = o}. 
— 7T 

Operator T is given b r (6) and it is ea y to prove that 

7T 7T T 7T 

I h(t)dt-0 impli f f G(t,s)h(s)ds 

— 7Г L — 7 Г 

ìt 0. 

It is obvious no to s e that the condition (i) impl'e (12) 

Let x(t) G A be a solution to th equation 

Then 

ЛT , Л Є (0 1) 

-x"(t) + a2x(t) + \f(t (t) (-t)) A ť) 

(10) 

(13) 
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and 

\\x'\\l + a*\\x\\l - a\\x\\l - \b\\\x\\l - 2x(c + d)\\x\\0 - \\h(t)\\i H o - e £ 0. (14) 

We use the inequalities (7) and (8) from Lemmas 3 and 6. Supposing a2 — 
(a + \b\) < 0, we obtain 

(l + a 2 - ( a + | 6 | ) ) | | . - ' | | 2 - B | | x ' | | 2 - e ^ 0 

where B = (27r(c + d) -f- ||/-•(*) II i\/77 ls a constant. 

The last inequality implies that ||-c'(£)l.2 _ C\ , where C\ is a suitable constant. 

In case a2 — (a + \b\) _ 0 we argue similarly as in the proof of the preceding 
theorem. 

In both cases we obtain the estimation 

| | x ( t ) | | o^C , 

and we can use the Leray-Schauder theorem in subspace K. This theorem im
plies the existence of a solution x(t) G K to the equation (5). 

In case that (ii) or (hi) holds, we prove that if x(t) E C((—7r,7r),H) is a 
solution to (10) then 

7T 

J x(t)dt = 0. 

Equation (13) implies that 
7T 7T 

a2 I x(t) dt + \ I / ( r , x(t), x(-t)) dt = 0 and 

a2 

7T 7T 7T 

x(t)dt\ +A / (f(t,x(t),x(-t)),x(s))dtds = 0. 

(15) 

— 7Г — 7 Г 

Condition (ii) implies that J x(t) dt = 0. 
— 7T 

Now using the same argumentation as in the preceding part we obtain that 
for a solution x(t) to the equation (10) holds 

\\m\o = c. 
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T h e existence of a solution to the equation (5) follows again from the Leray-
Schauder theorem . 

Case (iii). 
It follows from (15) tha t 

7T 7T 7T 

-a2II J x(t)dt > J f(f(t,x(t),x(-t)),x(s))dtds. 
— 7T —IT — If 

We use (iii) and choose C\ such tha t for every x(t), \\x(t)\\2 > C\ is 

/ j(f(t,x(t),x(-t)),x(s))dtds 
ZJLUL > _ „ 2 

||/x(0d<||2 

— 7T 

Last two inequalities are in a contradiction, which implies tha t | |x( / ) | 2 __ Ci 
for every solution to (10). 

This es t imat ion and the inequality (14) give the inequality 

| |x' | | l-„| |x' | |2-BgO, 

where A, B are constants . From the last inequality we obta in the es t imat ion 

ll*'ll- < c2. 
Finally, from the inequality (9) follows tha t 

N|o ̂  \j^C\ + V^C2 = c, 

and we can again use the Leray-S hauder theorem. 

4 . E x i s t e n c e w h e n / is c o n t i n u o u s 

T h e continuity instead of the complete continuity of the opera tor / is as
sumed in this pa r t . The operator T, defined by (6), is not nece arily completely 
continuous. Adding other assumptions for the operator / we can prove the ex
istence and uniquene s of the solution to the problem (1) (2) al o in this ca e. 

In following we a ume tha t 

(A) H is s parable Hilbert space, {ez} is the or thonormal ba is in H , the 
operator / : (—7r,7r) X H H —• H is contin us and bounded and 
h(t)eL2((-x,Tr),H). 
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THEOREM 3. Assume that (A) holds and that for every x,y,u,v G H and 
every t G (—7r,7r) 

(/(*, *, y) - /(*, u, *), -r - ti) = -a\\x - u\\2 - b\\x - u\\\\y - v\\, (16) 

where a + \b\ < a2 . 
Then tfhere is a unique solution to the problem (1), (2). 

P r o o f . 

Uniqueness. 
Let x\,x2 be two solutions to the problem (1), (2), x\,x2 G Ci ((—7r, 7T),H) . 
Then 

~(x\ - x2)" + a2(x\ - x2) + f(t,xx(t),x\(-t)) - f(t,x2(t),x2(-t)) = 0 

and 

| | * i - * 2 | | ! + a 2 | | s x - . - 2 | | -
7T 

+ f(f(t,Xl(t),Xl(-t)) - / (* ,* 2 ( i ) , .5 2 ( -0) ,* i (<) - * 2 ( 0 ) d t = o-
— 7T 

Using (16) we obtain 

H - x'2\\l +(a2-a- \b\)\\Xl - x2\\
2

2 £ 0. (17) 

The last inequality implies that 

l l * i - * £ 1.2=0 a n d \\xi-x2\\l=0. 

Then x\(t) = x2(t) for every t G (-7r,7r). 

Existence. 
Denote by En C H, En = [e\,... , en] the finite-dimensional subspace of H , by 
Pn the orthogonal projection onto En , Fn = {x G L2) x(t): (-7r,7r) —> En}, 
Vn the orthogonal projection of L2 onto Fn , and denote xn = Vnx. (We use 
simply L2, C instead of L2((-^^)JH), C((-TT,n),H) .) 

Denote also L: D(L) -+ L2 the operator Lx = —x" + a2x and N: C —• C 

the operator Nx = f(t,x(t),x(-t)), where D(L) = {x G C, x' G AC and 

* " G L 2 } . 
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Let us consider the problem 

-xl(t) + a2xn(t) + Pnf(t, xn(t\ xn(-t)) = Pnh(t) (18) 

xn(—K) = xn(7r), -r'n(-7r) = x'n(>K). (2) 

Obviously the operator Pnf: (—7r,7r) x En x En —• F7n is continuous and 
bounded. Since jEn is the finite-dimensional subspace, Pnf is completely con
t inuous. 

From the inequality (16) for u — v = 0 we obtain 

( P n / ( r , * , y ) , z ) ^ - a | H | 2 - 6||*||||y|| - OH, (19) 

where c = max | | P n / ( * , 0 ,0 ) | | . 
t€(-7r,7r) 

Theorem 1 implies the existence of a solution to the problem (18), (2) and a 
priori est imations 

IM|2^Ci, ||x'| |2^c2, W o g c 

for the solution, where C i , C2, C are suitable constants independent of Fn . 

T h e complete continuity of the operator Tn: C —+ C and the a priori esti

mat ions mean tha t the set of the solution to the problem (18), (2) is compact 

in (C, || • ||o) for every n G N . Moreover the set of solutions is compact in 

(L2, || * ||2) • (These s ta tements are trivial in case when Tnx = x has a unique 

solution . The proof is to be used also in a more general case.) 
00 

Denote by Un the set of solutions to (18), (2) and Vn = (J Uk • Obviously 
fc=n 

Vn D Vn+i and Vn is a bounded set for every n G N . 

Let Wn = V n be the weak closure of Vn in L2 • Then Wn is weakly compact 
and Wn D VVn+1 • Then means there is 

x0 ef]wn 

and the sequence xn G Vn such tha t xn —-• XQ . 

Obviously ||-cn||2 ^ c> where c is a suitable constant . T h a t means we can 
choose from {xn} such subsequence tha t 

Lxn = —x'n -f a2xn —- v in F2-
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Since the graph of L is a closed convex set it is weakly closed and v = Lx0 , 
xo eD(L). 

We prove the inequality 

((L + N)u-h,u-xo) = 0. (20) 

Let u G D(L) H F m , xn G Fn and n = m. Inequality (16) implies 

((L + N)x-(L + N)y,x-y) 
TT 

= \\x' -y'\\l + a2\\x-y\\l+ j (f(t,x(t),x(-t))-f(t,y(t),y(-t)),x(t)-y(t))dt 
— 7T 

^ 11̂ ' - y'lll + («2 - a - |6|)Hx - y|H =t 0. 

Then 

0 =((L+N)u-(L+N)xn,u-xn) = ((L+N)u-h,u-xn)-/(L+N)xn-h,u-xn). 

Since H = Fn®Fn
L, u - xn e Fn , Vn((L + N)xn - h) G Fn , then 

((L + N)xn -h,u-xn) = (Vn((L + N)xn -h),u- xn) = 0. 

The last equality follows from the fact that xn(t) is a solution to (18). 
Then 

0 = ((L + N)u -h,u-xn), 

and for n —> oo we obtain 

0= ((L + N)u-h,u-x0). 

Now we prove the inequality (20) for every u G D(L). 
Using the Fourier series from Lemma 4 and 5 we obtain 

oo oo oo 

u(i) = 5>.(0e., u'(0=5>',(t>., «"(*) = £a*'(')ci 
i = l i = l i = l 

where at(t) = (u(t),ei) G C1
 ( (-TT, TT), R) and a['(t) G L2((-TT,TV), R) . 

We denote 
n 

wn(<) = y^Qi(Qei-
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T h e sequence un(t) —> u(t) in H for every t G (—7r, 7r). Since 

| |u n(«) - u n (*) | | - \\Pnu(s) - P n u ( * ) l l ^ | |u(a) - u(<)||, 

the sequence {un} is equicontinuous. The same is t r u e for {u'n} . 

Then 
un =} u, u'n =} u', and un —> u " in L2-

As un E Fn the inequality 

0 ^ ( ( L + N)un — h,un — x 0 ) is valid. 

The fact tha t Lwn —> Fix and Nun —> Nu in L2 implies t ha t 

0 ^ ( (L + N)u - ft, u - x0) for every u G D(L). 

Let now v G -D(£) , r _ 0 and u = XQ + rv. Then 

0 ^ ( ( L + N)(:ro + ™ ) - / i ^ ) 

and for r —> 0 
0=((L + N)x0-h,v). 

T h e density of D(L) in F2 implies tha t 

(L + N)x0 = h. 

T H E O R E M 4 . Assume that (A) AOto and that (16) hoto /Or a + |b | < 1 + a2 . 
Further assume that (i), (ii), or (iii) holds. Then there is a solution to the problem 

7T 

(1 ) , (2) for every h(t) such that J h(t)dt = 0 . In the case (i) or (ii) the 
— 7T 

solution is unique. 

P r o o f . Let x, y be two solutions to (1), (2). By the same method as in 
proof of Theorem 2 we obtain in case (i) or (ii) tha t 

7Г 7Г 

I x(t)dt= Í y(t)dt = 0. 

Using the inequality (8) in (17) we obtain 

(l + a*-a-\b\)\\x-y\\lZ0. 

Then \\x — y\\\ = 0 and since x,y G C1 , x(t) = y(t) for every t. 

The proof of the existence of a solution is similar to tha t of Theorem 3, only 
the existence of a solution to the finite-dimensional problem (18), (2) follows 
now from Theorem 2. 
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5. Critical case 

Let a = 0 i.e. we consider the problem 

-x"(t) + f(t, x(t), x(-t)) = h(t) (21) 

X(-TT) = X(TT), X'(-TT) = X'(TT)., (2) 

The homogeneous problem has a nontrivial solution in this case and there is no 
Green's function associated to the problem (21), (2). 

Instead of (21) we consider the equation 

-x"(t) + a2x(t) + h (t, x(t), x(-t)) = h(t), (22) 

where 
fi(t,x,y) = f(t,x,y)-a2x. (23) 

Because the function a2x, as function H —* H, is only continuous and 
bounded (and is not completely continuous), we have the same assumptions for 
/ , and use the same method as in Theorem 3 and 4. 

THEOREM 5. Assume that (A) and the inequality (16) hold for a+ \b\ < 0. 
Then the problem (21), (2) has a unique solution. 

P r o o f . We use the equation (22), where fi is given by (23). Inequality 
(16) implies that 

(fi(t,x,y) - fi(t,u,v),x -u) = - a 2 | | x - u | | 2 - a\\x - u||2 - b\\x - u\\\\y - v\\, 

and obviously a2 + a + \b\ < a2 . 
Theorem 3 implies the existence and uniqueness of the solution to the problem 
(22), (2) and then also to (21), (2). 

THEOREM 6. Assume that (A) and (16) hold for a+ \b\ < 1. Assume that (i) 
or 

(ii') there is /3 > 0 such that 

/ ](f(t,x(t),x(-t)),x(s))dtds>p\\jx(t)dt\\2 

— 7T — n —n 

or 

J J(f(t,x(t),x(-t)),x(s))dtds 

(-»') liminf — > 0 , 
H*(')il2-~ || / x(t)d<|| 
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7T 

where S = {x(t), J x(t) ^ 0} holds. 
— 7T 

Then there is a solution to the problem (21), (2) for every h(t) such that 
n 

J h(t) dt = 0 and if (i) or (ii') holds, the solution is exactly one. 
— 7T 

P r o o f . We use again the equation (22). Assumptions (i), (ii') resp. (hi') for 
the function / imply that (i), (ii) resp. (iii) is true for the function f\ . In case 
(ii) we choose a such that 0 < a < (3. Using Theorem 4 we obtain Theorem 6. 

6. Connectedness of the set of solutions 

LEMMA 9. Let the assumptions of Theorem 1 hold. Assume that (16) holds 
for a + \b\ = a2 . 
Then the set of solutions to the problem (1), (2) is nonempty, compact and 
connected. If xyy are solutions to (1), (2). then x — y = const. 

We omit the proof of the lemma since it is similar to the one of the following 

THEOREM 7. Let the assumptions of Theorem 2 hold. Assume that (16) holds 
for a+ \b\ =a2 + 1. 

Then the set of solutions to the problem (1), (2) is nonempty. Moreover it 
is compact and connected in case (i) or (ii). 

P r o o f . The existence of a solution follows from Theorem 2. Proving that 
theorem we have obtained the estimation ||#(E)IIO < c f° r a solution to the 
equation 

x = \Tx AG (0,1), (10) 

where T is given by 

Tx(t) = -L~lNx(t) + L-Xh(t). 

Moreover for every solution x(t) J x(t)dt = 0 is valid when (i) or (ii) holds. 
— 7T 

For xyy solutions to (1), (2) we obtain 

7T 

0 = J (x" - y" + a2(x-y) + f(t, x(t), x(-t)) - f(t, y(t), y(-t)) , x(t) - y(t)) dt 

— 7T 

— 7T 

= \\x'-y'\\2+a2\\x-y\\2 + J f(t,x(t),x(-t))~f(t,y(t),y(-t)),x(t)-y(t))dt 
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and using the estimation (8) we get 

TT 

(l+a2)\\x-y\\2
2 + J(f(t,x(t),x(-t))-f(t,y(t),y(-t)),x(t)-y(t)) dt ^ 0. (24) 

We use KrasnoseTskij's theorem [7, p . 155]. We choose / n (z ,# ,y) = 
A n / ( r , x ,y ) , where 0 < An < 1 and An —• 1. Obviously fn satisfies the same 
assumptions as / , i.e. fn is completely continuous and satisfies (i) resp. (ii). 

We define the operator Tn by 

Tnx(t) = -L~lNnx(t) + L~lh(t), 

where 
Nnx(t) = fn(t,x,(t),x(-t)). 

Then the sequence {Tn} and the operator T satisfies the assumptions of 
KrasnoseTskij's theorem. 

Really, if we choose 0 = {x(t) G C, ||x(r)||0 < c} , then 

s u p | | T n ( x ) - T ( x ) | | 0 - * 0 , 

the estimation ||x||o < c implies that the Leray-Schauder degree 

d(I - T, fi, 0) ^ 0 and Tx ^ x on 9 0 . 

Using the estimation (24), we obtain that there is at most one solution to the 
equation 

x = Tnx + z for every z G C. 

The Krasnosefskij theorem implies that the set of solutions is compact and 
connected. 
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