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CONVERGENCE OF SERIES AND SUBMEASURES 
OF THE SET OF POSITIVE INTEGERS 

MILAN PASTEKA 

ABSTRACT . We introduce the notion of compact submeasurc and shaw a conection 
between this notion and a convergence of infinite series. 

Denote by the set of all positive integers and by P( I) the system of all 
subsets of I. 

A function m: P( ) -> [0, oo) is said to be a submeasure if for any two sets 
A, BeP( ) there holds: 

(i) A c B=>m(A) <m(B) 

(ii) m(A u B) < m(A) + m(B) 

If m is a submeasure, let Z(m) denote the system of all sets A e P( ) satisfying 
the condition m(A) = 0. In [l] it is proved that ilf m is the upper asymptotic 

/. 
density then the infinite series £ an, with nonnegative elements, converges if 

n = I 

and only if for every A e Z(m) we have £ an < x . The aim of our paper is to 
ne A 

show that this result can be extended to a broader class of submeasures for which 
the system Z(m) can be smaller than the system of all sets A e with asymptotic 
density 0. 

A submeasure m: P( ) -> [0, x ) is said to be compact if and only if 

(iii) m({a\) = 0 for every ae 

(iv) For every c > 0 there exists a decomposition Ax u ... u Ak = 
such that m(Aj) < £, / = l, 2, ..., k. 

Theorem. Let m be a compact submeasure. Then the infinite series with 

A M S S u b j e c t C l a s s i f i c a t i o n (1980): Primary 40A05, Secondary 28A10. 
Key w o r d s : Compact submeasures. Infinite scries. 
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nonnegative elements Z an converges if and only if for every set A e Z(m) there 
/ ; = 1 

holds 

Z an < °° 
II £ A 

Proof. The necessity of the condition is evident. Assume that 

X a„= co, «„>0 , n = 1, 2, ... 
n = i 

For AeP( ) put 

W) = X a„ 
ne.A 

According to (iv) we obtain that there exists a decomposition 

A\])u ...uA[]) = M (1) 

XL 

such that m(A,) < 1. / = 1,2 k,. From the divergence of the series £ A., we 
/; = I 

deduce that there exists an index /() such that 

</(A{]))= oo (2) 

Put A{]) = A{]). Again (iv) implies that there exists a decomposition 

A\2)u...uA[2)= ' 

such that m(Af) < - , j = 1, 2, ..., k2. Using the equality 

A{]) = (A(]) n A\2)) u ... u (A(]) n A[2)) 

and (2) we obtain that there exist j0 such that 

Sf(A{])nA{2)) = cc 

Let us denote A(2) = A{]) n A(2). From (i) it follows that m(A{2)) < - . By induc

tion we can construct a sequence of sets 

A { ] ) => A { 2 ) = D . . . ^ A ( , , ) ZD ... 

such that 
</'(A{n)) = x , A? = 1, 2, ... (3) 

274 



and 

m(A(n))<-, n= 1, 2, ... (4) 
n 

According to (3) it is easy to see that there exists a sequence of positive 
integers AH,, m2, ... such that 

. W ' n { l , 2 , ..., m,})> 1 

.<S(Awn{m„_] + 1 m„})> 1 

for /? = 1, 2 Let us put m„ = 0 and 

5" = /.<">n {w„_ , + 1, . . . ,m ,} , #.= 1,2, ... 

(5) 

ß = IJ B" 
1 1 = I 

then, by virtue of (5), we have 

2 > , = ^ ( £ ) = 00 

The sets /i", A; = 1,2,... are finite. Consequently it follows from (iii) and (ii) that 
m(B") = 0, n = 1, 2 It is trivial that 

fl"us"+lu... _ AM, n= 1, 2, .... 

And therefore for n = 1,2, ... there holds according to (i) and (4) 

1 
m{B) < m(B] u ... u B") + m(Ain + ") < 

n + 1 

Thus, for r? -• oc we have m(B) = 0. The proof is completed. 
In paper [2], the measure density of a set A e P( ) has been introduced in the 

following way: 
Let the symbol a + <d> denote the arithmetic sequence {a + nd, n = 0, 

1 ? * 

For two sets 5,, B2 let the symbol 5, <± /?, denote that the set 

B\B2 

is finite. We shall write Z?, = B2 instead of the fact B] cz B2 and 52 cz 5,. It is easy 
to see that /?, = .52 if and only if the sets 5, and B2 differ at most in a finite 
number of elements. 
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Let Q0 be the system of all subsets S c M such that there exists a finite number 
of arithmetic sequences a} + <d,> ..., ak + <dA> such that 

S = a} + <d,>u...utfA + <dA> 

Now we introduce on Q0 a real function A in the following way: For every 
disjoint union of arithmetic sequences 

S = a^ + <d,>u ...uak + <dA> 

we put A(S) = — + . . . + — and for each S' = S we put A(S') = A(S). 
d\ dk 

If AeP(M) then the value 

H(A) = inf(zlOS); A ± S A Se$0} 

will be called the measure density of the set A. 
In [2, p. 562] it is proved that the measure density has the following proper

ties: 

(v) A ^ B => n(A) < n(B) 

(vi) ^(AKJB)<H(A) + H(B) 

(vii) For each arithmetic sequence a + <d> there holds 

H(a + <d» = -
d 

From (v) and (vi) it follows that // is a submeasure. 
If ae then for every de I we have 

{*} = * + <d> 
and therefore 

MM) = o 
It is clear that for every de 

• = < d > u l + < d > u . . . u d - 1 + <d> 

Thus according to (vii) we obtain that /u is a compact submeasure. 
Consider now the set 

A = {n + A?!, n = 0, 1, 2, ...} 

It is obvious that the asymptotic density of the set A is 0. Contrary to this fact 
we prove that 
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M(A) = 1 (6) 

Clearly, /x(A) < 1. Suppose that n(A) < 1. Then by definition of //, there 
exist such a disjoint system of arithmetic sequences 

a, + <«/,>, ..., aK + <</A> 
that 

A c a , + <*/,> u . . . uc7 A + <</,.> (7) 
and 

• 1 
- + ... + —< 1 
c7, dk 

Denote the least common multiple of d,, ..., dk by d. It is easy to see that every 
arithmetic sequence a, + <d,>, / = 1, 2, ..., k, can be expressed in the form 

a( + <d,> = a, + <d> u a, + d, + <d> u ... u c/, + r,. d, + <d> 

where r,• = 1, / = 1, 2, ..., k. The decomposition on the right-hand side is 
d, 

disjoint and contains exactly — arithmetic sequences. From (7) it follows that 
d, 

Ac: y 6,+ <</>, blE^j= 1, . . . ,r (8) 
/ = i 

and 
r \ 1 
- = - + ...+ — < 1 
d d, dk 

Then r < d, and therefore/?,, ..., br is not the complete residue system modulo d. 
By virtue of (8), there exists such an arithmetic sequence b + <d> that at most 
a finite number of elements of A belong to b + <d>. 

But it is trivial that for // = 1, 2, ... there hold 

b + nd+(b + nd)\eb + <d>, 

whence the sequence b + <d> has infinitely many common elements with A 
— a contradiction. This proves (6). 

As a consequence of (6) we obtain that /u(B) = 1 for every set B 2̂ A. It can 
be easily proved that if /J{C) = 0 then C has zero asymptotic density. This 
implies that if we consider the measure density /L then /u is a compact sub-
measure, and Z(/i) is a proper subset of the system of all sets with asymptotic 
density zero. 
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To conclude with, let us remark that (6) is also valid in the case ewhen 

A = {n + (n\f\ l7 = 0, 1, 2, ...} 

where {k,,} is an arbitrary sequence of positive integers. 
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