Štefan Černák On the completion of a lattice by ends

Mathematica Slovaca, Vol. 33 (1983), No. 4, 341--346

Persistent URL: http://dml.cz/dmlcz/129703

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ON THE COMPLETION OF A LATTICE BY ENDS

ŠTEFAN ČERNÁK

Stimulated by Leader's and Finkelstein's [3] topological considerations, Arnow [1] defined the notion of a system of ends of a lattice.

Let L be a lattice. To each system of ends E there corresponds a lattice L_E . The main results of [1] are as follows (cf. [1], Theorem 1.1 and Theorem 1.2):

(A) The lattice L_E is conditionally complete.

(B) There exists an injection f of the lattice L into L_E and this mapping f is onto L_E if and only if L is conditionally complete.

Let us denote by U(A) (L(A)) the set of all upper (lower) bounds of a subset $A \subseteq L$ in L. Let d(L) be the conditional Dedekind completion of L (i.e., d(L) is the system of all sets L(U(A)) where A is a nonempty and upper bounded subset of L. Cf., e.g., Birkhoff [2], p. 126) and let f_1 be the natural injection of L into d(L). In this note it will be shown that for each system of ends E, the lattices L_E and d(L) coincide up to isomorphisms leaving L fixed, i.e., that there is an isomorphism φ of d(L) onto L_E such that $\varphi(f_1(x)) = f(x)$ is valid for each $x \in L$. In particular, if E_1 and E_2 are two systems of ends on L, then L_{E_1} is isomorphic to L_{E_2} .

Let \mathscr{L} be the class of all lattices. A mapping $t: \mathscr{L} \to \mathscr{L}$ will be said to be a *c*-mapping, if it fulfils the following conditions for each $L \in \mathscr{L}$: (a) t(L) is conditionally complete; (b) there exists an injection f_i of L into t(L) having the property that f_i is an epimorphism if and only if L is conditionally complete. Two *c*-mappings t_1 and t_2 will be called equivalent if there exists an isomorphism ψ of $t_2(L)$ onto $t_1(L)$ and injections f_{t_1} , f_{t_2} into $t_1(L)$, $t_2(L)$, respectively, such that $\psi(f_{t_2}(x)) = f_{t_1}(x)$ for each $x \in L$. It is easy to verify that there exists a proper class of nonequivalent *c*-pappings (cf. also Example 4 below).

1. Preliminaries

Let us recall some definitions and results from [1] and [3]. Let (L, \lor, \land) be a lattice. Suppose that there is defined a binary relation \ll on L satisfying the following conditions:

A₁. If $a \ll b$, then $a \ll b$.

A₂. If $a \ll b \ll c$ or $a \ll b \ll c$, then $a \ll c$.

A₃. If $a \ll b$ and $c \ll d$, then $a \lor c \ll b \lor d$ and $a \land c \ll b \land d$.

A₄. If $a \ll c$, then there exists an element $b \in L$ such that $a \ll b \ll c$.

A₅. For each $b \in L$ there exist elements a and c in L such that $a \ll b \ll c$.

A₆. If $x \ll a$ implies $x \ll b$, then $a \ll b$.

A₇. If $a \ll x$ implies $b \ll x$, then $b \ll a$.

Then the structure (L, \vee, \wedge, \ll) is said to be a regular lattice (cf. [1]). Next we suppose that L is a regular lattice.

Let a, a' be elements of L with the property $a \ll a'$. The set $\{x \in L : a \ll x \ll a'\}$ will be denoted by (a, a') and called a cell from L. Denote by S the set of all cells from L.

It can be easily verified that the following assertions hold for each cell (a, a'), (b, b') from S (cf. [1]).

(a) If $(a, a') \cap (b, b') \neq \emptyset$, then $(a, a') \cap (b, b') = (a \lor b, a' \land b')$.

(b) $(a, a') \cap (b, b') \neq \emptyset$ if and only if $a \ll b'$ and $b \ll a'$.

Let S_1 be a subset of S. We say that a cell $(x, x') \in S$ clings to S_1 if $(a, a') \cap (x, x') \neq \emptyset$ for each cell $(a, a') \in S_1$ (cf. [3]).

Define a binary relation on S as follows: for each (a, a'), $(b, b') \in S$ we put

$$(a, a') \in (b, b')$$
 if $b \leq a$ and $a' \leq b'$.

For subsets A and B of L, $A \ll B$ means that $a \ll b$ for each $a \in A$, $b \in B$. Let A, A' be nonempty subsets of L such that $A \ll A'$. Denote

 $A \times A' = \{(a, a') \in S \colon a \in A, a' \in A'\}.$

Suppose that A and A' are nonempty subsets of L with $A \ll A'$. The set $A \times A'$ is said to be an end from S if the following conditions are fulfilled (cf. [3]):

E₁. If (a, a'), $(b, b') \in A \times A'$, then there exists a cell $(c, c') \in A \times A'$ such that $(c, c') \in (a, a') \cap (b, b')$.

E₂. If (a, a'), $(b, b') \in S$ such that (a, a') clings to $A \times A'$ and $(a, a') \in (b, b')$, then $(b, b') \in A \times A'$.

The condition E_1 is equivalent to $(a, a') \cap (b, b') \neq \emptyset$ for each (a, a'), $(b, b') \in A \times A'$.

From the definition it follows that if $A \times A'$ and $B \times B'$ are ends from S with $A \times A' \subseteq B \times B'$, then $A \times A' = B \times B'$ (each end is maximal with respect to the set inclusion). The set of all ends from S will be denoted by L_E .

Now we shall describe the construction of the completion of a lattice L by ends (cf. [1]).

Let \leq be a binary relation on L_E defined in the following way: $A \times A' \leq B \times B'$ iff $A \subseteq B$. Then L_E is partially ordered by \leq , moreover, L_E is a conditionally complete lattice. The set $N^x = \{(y, y') \in S : x \in (y, y')\} \in L_E$ for each $x \in L$. The mapping $f(x) = N^x$ is an isomorphism from the lattice L into L_E and the mapping f is onto L_E if and only if L is conditionally complete. We shall call L_E the completion of L by ends.

2. The relation between d(L) and L_E

Let L be a regular lattice. In this paragraph it will be shown that the conditional Dedekind completion d(L) is isomorphic with the completion L_E by ends.

Let $x \in L$ and $z \in d(L)$. Denote

$$L(z) = \{a \in L : a \leq z\}, \quad U(z) = \{a \in L : a \geq z\};$$

$$A_x = \{a \in L : a \leq x\}, \quad A'_x = \{a \in L : a \geq x\};$$

$$A(z) = \bigcup A_x(x \in L(z)), \quad A'(z) = \bigcup A'_x(x \in U(z)).$$

The sets L(z) and U(z) are non-void. From A_5 we infer that A_x , A'_x and so A(z), A'(z) are non-void as well. Choose arbitrary $a \in A(z)$, $a' \in A'(z)$. Then there exist $x \in L(z)$, $x' \in U(z)$ such that $a \ll x$, $x' \ll a'$. By A_2 from $x \ll x'$ it follows that $a \ll a'$, and thus $A(z) \ll A'(z)$.

1. A cell $(x, x') \in S$ clings to $A(z) \times A'(z)$ if and only if $x \in L(z)$, $x' \in U(z)$.

Proof. Assume that (x, x') clings to $A(z) \times A'(z)$, u is an arbitrary element of U(z) and that $a' \in L$ with the property $u \leq a'$. Then we have $a' \in A'(z)$. The hypothesis implies that $(x, x') \cap (a, a') \neq \emptyset$ for any $a \in A(z)$. By using (b) we obtain $x \leq a'$. We have shown that $u \leq a'$ implies $x \leq a'$. Hence according to $A_7 x \leq u$. From this it follows that $x \leq z$, i.e., $x \in L(z)$. It can be verified in an analogous manner that $x' \in U'(z)$.

Fig. 1

Conversely, let (x, x') be a cell from S such that $x \in L(z)$, $x' \in U(z)$ and let (a, a') be an arbitrary cell belonging to $A(z) \times A'(z)$. There exists an element $x_1 \in L(z)$ such that $a \ll x_1$. Since $x_1 \ll x'$, by $A_2 a \ll x'$ holds. In a similar way we get $x \ll a'$. By using (b) we obtain $(x, x') \cap (a, a') \neq \emptyset$, which implies that (x, x') clings to $A(z) \times A'(z)$.

2. $A(z) \times A'(z) \in L_E$.

Proof. First, we intend to show that the condition E_1 is satisfied. Assume that

 $(a, a'), (b, b') \in A(z) \times A'(z)$. From 1 we infer that $(a, a') \cap (b, b') \neq \emptyset$. Then with respect to (a), $(a, a') \cap (b, b') = (a \lor b, a' \land b')$. There exist elements $x \in L(z)$, $y \in L(z)$ with $a \ll x, b \ll y$. Hence by A_3 we have $a \lor b \ll x \lor y$. By A_4 there exists an element $c \in L$ with $a \lor b \ll c \ll x \lor y$. Since $x \lor y \in L(z)$, we conclude $c \in A(z)$. Similarly we prove the existence of an element $c' \in A'(z)$ having the property $c' \ll a' \land b'$. Therefore $c \ll c', (c, c') \in A(z) \times A'(z)$ and $(c, c') \subset (a, a') \cap (b, b')$.

There remains to be shown that the condition E_2 holds. Suppose that (x, x'), $(y, y') \in S$, $(x, x') \in (y, y')$ and that (x, x') clings to $A(z) \times A'(z)$. Whence $y \ll x$, $x' \ll y'$ and from 1 we deduce $x \in L(z)$, $x' \in U(z)$. Then $y \in A(z)$, $y' \in A'(z)$ and thus $(y, y') \in A(z) \times A'(z)$.

Next we show that every end from S can be written in the form $A(z) \times A'(z)$.

3. Let $B \times B' \in L_E$. Then there exists an element $z \in d(L)$ such that $B \times B' = A(z) \times A'(z)$.

Proof. B(B') is a nonempty upper (lower) bounded subset of L. It is clear that $\sup L(U(B)) = \inf U(B)$. This element from d(L) will be denoted by z. Hence L(z) = L(U(B)) and U(z) = U(B).

It is enough to verify that $B \times B' \subseteq A(z) \times A'(z)$. Assume that $(b, b') \in B \times B'$. By E₁ there exists a cell $(x, x') \in B \times B'$ such that $(x, x') \subset (b, b')$, i.e., $b \ll x$, $x' \ll b'$. We claim that $b \in A(z)$, since $x \in B \subseteq L(z)$. Similarly we obtain that $b' \in A'(z)$. Consequently, $(b, b') \in A(z) \times A'(z)$ and so $B \times B' \subseteq A(z) \times A'(z)$. The validity of equality follows from the maximality of ends with respect to the set inclusion.

4. Let $z_1, z_2 \in d(L)$. Then $z_1 \leq z_2$ if and only if $A(z_1) \subseteq A(z_2)$.

Proof. Suppose that $z_1 \le z_2$ and that $a \in A(z_1)$. Hence there exists an element $x \in L(z_1)$, with $a \le x$. The assumption implies $L(z_1) \subseteq L(z_2)$. Then $x \in L(z_2)$ and so $a \in A(z_2)$. Thus $A(z_1) \subseteq A(z_2)$ holds.

Conversely, let $A(z_1) \subseteq A(z_2)$, $x \in L(z_1)$ and $u \in U(z_2)$. Suppose that a is an arbitrary element of L with $a \ll x$. As $a \in A(z_1)$, according to the assumption we obtain $a \in A(z_2)$. There exists $a_2 \in A(z_2)$ with $a \ll a_2 \ll u$. Using A_2 we get $a \ll u$. Then by $A_6 \ x \ll u$ is valid. Hence $x \ll z_2$, i.e., $x \in L(z_2)$. We have seen that $L(z_1) \subseteq L(z_2)$, and thus $z_1 \ll z_2$, as desired.

From the statement 4 it immediately follows

5. $z_1 = z_2$ if and only if $A(z_1) = A(z_2)$. Let ω be a mapping from d(L) into L_E defined by the rule

$$\psi$$
 be a mapping from $a(L)$ into L_E defined by the ru

$$\varphi(z) = A(z) \times A'(z).$$

By summarizing, we infer from 1–5 that φ is an isomorphism from the lattice d(L) onto L_E . Hence the following Theorem is valid:

6. Theorem. The lattices d(L) and L_E are isomorphic. **7.** $\varphi(f_1(x)) = f(x)$ for each $x \in L$. Proof. Let $x \in L$. We identify x and $f_1(x)$. We have to show that $A(x) \times A'(x) = N^x$. It is sufficient to prove the inclusion $A(x) \times A'(x) \subseteq N^x$. Let $(y, y') \in A(x) \times A'(x)$. Hence $y \ll x_1$ for some $x_1 \in L(x)$. From $x \in L(x)$ and $y \ll x_1 \le x$ according to A_2 it follows $y \ll x$. In an analogical way we obtain $x \ll y'$. Therefore $(y, y') \in N^x$.

Every lattice can be considered as a regular lattice if the relation \leq is taken as the relation \leq . There are regular lattices (for instance the chain (R, \leq) of all real numbers with the natural order \leq) with respect to the relation \leq equal to <.

On the other hand there exist regular lattices (L, \leq, \leq) such that (L, \leq) is a chain and that the relation \leq is different from both relations \leq and < (Example 1).

8. Let (L, \leq, \ll) be a regular lattice and let (L, \leq) be a chain $x, y \in L, x \neq y$. Then $x \ll y$ if and only if x < y.

Proof. Let $x \ll y$. Then A₁ and the assumption imply x < y.

Conversely, let there exist elements $x, y \in L$ such that $x < y, x \notin y$. Hence according to A_5 and A_6 there is an element $a \in L$ having the property $a \ll y, a \notin x$. We have two possibilities: $x \leq a \leq y$ or a < x. Suppose that $x \leq a \leq y$. Since $x \leq a \ll y$, by A_2 we obtain $x \ll y$, a contradiction. Now let a < x. From $a \ll y$ and A_4 it follows that there exists $b \in L$ with $a \ll b \ll y$. Hence $x \leq b \leq y$ or b < x. In the same way as above we obtain $x \ll y$ or $a \ll x$, respectively, contrary to suppositions. The proof is complete.

If we suppose in 8 that (L, \leq) is a lattice, the assertion fails in general (Example 2).

3. Examples

Example 1. Let (L, \leq) be a chain and let $(L, \leq, <)$ be a regular lattice. Pick out any $a \in L$. Define a relation \ll_a on L in the following way: put $a \ll_a a$ and $x \ll_a y$ iff x < y. Then (L, \leq, \ll_a) is a regular lattice. The relation \ll_a coincides neither with \leq nor with <.

Example 2. Let (R, \leq) be the chain of all real numbers with the natural order \leq . Suppose that the lattice (L, \leq) is the direct product of lattices R_i , $L = \prod R_i$ $(i \in I)$ where $R_i = (R, \leq)$ for each $i \in I$. Let *i* be a fixed element of *I*. Define $x <_i y$ on *L* to mean x(i) < y(i) and $x(k) \leq y(k)$ for each $k \in I$, $k \neq i$. Hence $(L, \leq, <_i)$ is a regular lattice. Let *x*, *y* be elements of *L* such that x(j)=0 for each $j \in I$ and y(i)=0, y(k)=1 for each $k \in I$, $k \neq i$. Therefore x < y but $x <_i y$.

The following example shows that the systems of ends can be different on the same lattice.

Example 3. Let (L, \leq) be a chain and let $(L, \leq, <)$ be a regular lattice. Take a, $b \in L$, $a \neq b$. By Example 1 (L, \leq, \ll_a) and (L, \leq, \ll_b) are regular lattices. The systems of all cells (ends) will be denoted by S_a and S_b $(L_{E_a}$ and $L_{E_b})$, respectively. Hence $N^a = \{(x, y) \in S_a : x \ll_a a \ll_a y\} \in L_{E_a}$ and a cell (a, a) belongs to the end N^a . On the other hand $N^a \notin L_{E_b}$, since $a \ll_b a$. Hence $L_{E_a} \neq L_{E_b}$ is valid.

There exists a proper class of nonequivalent c-mappings.

Example 4. Let d(L) be the conditional Dedekind completion of the lattice L. We may suppose that $L \subseteq d(L)$. Take an element $z \in d(L) - L$. Let α be an infinite cardinal and $D_z(\alpha)$ the α -diamant in the picture.

Denote by Y_z the set of all mutually incomparable elements of $D_z(\alpha)$. We suppose that card $Y_z = \alpha$. Let us form the set $f_\alpha(L) = L \cup (\cup D_z(\alpha) \ (z \in d(L) - L))$. Define a partial order \leq on $f_\alpha(L)$ by putting:

if $t_1, t_2 \in L$, then $t_1 \leq t_2$ iff $t_1 \leq t_2$ in L,

if $t_1, t_2 \in D_z(\alpha)$, then $t_1 \leq t_2$ iff $t_1 \leq t_2$ in $D_z(\alpha)$,

if $t_1 \in L$, $t_2 \in D_z(\alpha)$, then $t_1 \leq t_2$ ($t_2 \leq t_1$) iff $t_1 \leq z$ ($z \leq t_1$) in d(L),

if $t_1 \in D_{z_1}(\alpha)$, $t_2 \in D_{z_2}(\alpha)$, then $t_1 \le t_2$ iff $z_1 \le z_2$ in d(L).

Therefore $f_{\alpha}(L)$ turns out to be a conditionally complete lattice. The mapping f_{α} : $\mathcal{L} \rightarrow \mathcal{L}$ is a *c*-mapping. If $\beta > \alpha$, the mappings f_{α} and f_{β} fail to be equivalent. We conclude that the class $\{f_{\alpha}\}$ of nonequivalent *c*-mappings is a proper class.

REFERENCES

- ARNOW, B. J.: Dedekind completions of lattices by ends. Colloquium mathematicum, 38, 1978, 179-186.
- [2] BIRKHOFF, G.: Lattice theory, third edition. Providence 1973.
- [3] LEADER, S. FINKELSTEIN, L.: Regulated semilattices and locally compact spaces, ibidem 70, 1971, 49—58.

Received June 23, 1981

Katedra matematiky VŚT Švermova 9 041 87 Košice

О ПОПОЛНЕНИИ СТРУКТУР КОНЦАМИ

Štefan Čermák

Резюме

Понятие пополнения структуры концами определил Б. Й. Арнов. В этой статье доказано, что пополнение структуры L при помощи концов изоморфно условному дедекиндову пополнению структуры L.