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Math. Slovaca 33,1983, No. 4, 341—346 

ON THE COMPLETION OF A LATTICE BY ENDS 

STEFAN CERNAK 

Stimulated by L e a d e r ' s and F i n k e l s t e i n ' s [3] topological considerations, 
A m o w [1] defined the notion of a system of ends of a lattice. 

Let L be a lattice. To each system of ends E there corresponds a lattice LE. The 
main results of [1] are as follows (cf. [1], Theorem 1.1 and Theorem 1.2): 

(A) The lattice LE is conditionally complete. 
(B) There exists an injection / of the lattice L into LE and this mapping / is onto 

LE if and only if L is conditionally complete. 
Let us denote by U(A) (L(A)) the set of all upper (lower) bounds of a subset 

A czL in L. Let d(L) be the conditional Dedekind completion of L (i.e., d(L) is 
the system of all sets L( 17(A)) where A is a nonempty and upper bounded subset 
of L. Cf., e.g., Birkhoff [2], p. 126) and let /i be the natural injection of L into 
d(L). In this note it will be shown that for each system of ends E , the lattices LE 

and d(L) coincide up to isomorphisms leaving L fixed, i.e., that there is an 
isomorphism q> of d(L) onto LE such that (f(fi(x)) = f(x) is valid for each x e L. In 
particular, if Ex and E2 are two systems of ends on L, then LEl is isomorphic to L^. 

Let i£ be the class of all lattices. A mapping t: !£-*!£ will be said to be 
a c-mapping, if it fulfils the following conditions for each LeiE: (a) t(L) is 
conditionally complete; (b) there exists an injection f, of L into t(L) having the 
property that / is an epimorphism if and only if L is conditionally complete. Two 
c-mappings U and t2 will be called equivalent if there exists an isomorphism \p of 
t2(L) onto U(L) and injections /ri, /2 into U(L), t2(L), respectively, such that 
VK/2OO) = /..(*) f ° r e a c h xeL.lt is easy to verify that there exists a proper class of 
nonequivalent c-pappings (cf. also Example 4 below). 

1. Preliminaries 

Let us recall some definitions and results from [1] and [3]. Let (L, v , A ) be 
a lattice. Suppose that there is defined a binary relation <̂  on L satisfying the 
following conditions: 

A,. If a<tb, then a^b. 
A2. If a<tb^c or a^b<4c, then a<tc. 
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A3. If a<b and c<Ad, then avc<bvd and at\c<b/\d. 
A4. If a<c, then there exists an element beL such that a<b<c. 
A5. For each beL there exist elements a and c in L such that a<b<c. 
A6. If jc<^a implies JC<^6, then a^b. 
A7. If a<^jc implies 6<^JC, then b^a. 
Then the structure (L, v , A, <̂ ) is said to be a regular lattice (cf. [1]). 
Next we suppose that L is a regular lattice. 
Let a, a' be elements of L with the property a<a'. The set {jceL: a<^jc<^a'} 

will be denoted by (a, a') and called a cell from L. Denote by S the set of all cells 
from L. 

It can be easily verified that the following assertions hold for each cell (a, a'), 
(b, b') from S (cf. [1]). 

(a) If (a, a')n(b, b') + 0, then (a, a')n(b, b') = (avb, a'Ab'). 
(b) (a,a')n(b, b')±0 ii and only if a<b' and b<ta'. 
Let Si be a subset of S. We say that a cell (JC, JC ' )GS clings to Si if 

(a, a')n(x, x')±0 for each cell (a, a ' ) eS i (cf. [3]). 
Define a binary relation on S as follows: for each (a, a'), (b, b')eS we put 

(a,a')^(b,bf) it b<^aand a'<Zb'. 

For subsets A and B of L, A <^B means that a <t b for each a e A , 6 € B. Let 
A, A ' be nonempty subsets of L such that A<tA'. Denote 

AxA' = {(a,a')eS:aeA,a'eA'}. 

Suppose that A and A ' are nonempty subsets of L with A<A'. The set A X A ' 
is said to be an end from S if the following conditions are fulfilled (cf. [3]): 

Ei. If (a, a '), (b, b')eA x A ' , then there exists a cell (c, c')eA xA' such that 
(c,c')^(a,a')n(b,bf). 

E2. If (a, a '), (b, b')eS such that (a, a') clings to A x A ' and (a, a')^(b, b'), 
then (b,b')eAxA'. 

The condition Ex is equivalent to (a, a')n(b, b') + 0 for each (a, a'), 
(b,b')eAxAf. 

From the definition it follows that if A x A ' and BxB' are ends from S with 
A x A ' cz B x B', then A x A ' = B x B' (each end is maximal with respect to the 
set inclusion). The set of all ends from S will be denoted by LE. 

Now we shall describe the construction of the completion of a lattice L by ends 
(cf. [1]). 

Let ^ be a binary relation on LE defined in the following way .AxA'^BxB' 
iff AczB. Then LE is partially ordered by ^ , moreover, LE is a conditionally 
complete lattice. The set Nx = {(y, y')eS: xe (y, y')} e LE for each xeL. The 
mapping f(x) = Nx is an isomorphism from the lattice L into LE and the mapping / 
is onto LE if and only if L is conditionally complete. We shall call LE the 
completion of L by ends. 
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2. The relation between d(L) and LE 

Let L be a regular lattice. In this paragraph it will be shown that the conditional 
Dedekind completion d(L) is isomorphic with the completion LE by ends. 

Let xeL and zed(L). Denote 

L(z) = {aeL: a^z}, U(z) = {aeL: a^z}; 
Ax = {aeL: a<tx}, A'x={aeL: a>x}; 

A(z) = uAx(x eL(z)), A'(z) = uA'x(x e U(z)). 

The sets L(z) and U(z) are non-void. From A5 we infer that Ax, A'x and so 
A(z), A'(z) are non-void as well. Choose arbitrary aeA(z), a'eA'(z). Then 
there exist x e L(z), x' e U(z) such that a <^x, x' <t a'. By A2 from x ^ x ' it follows 
that a<a', and thus A(z)<A'(z). 

1. A cell (x, x')e S clings to A(z) xA'(z) if and only if x eL(z), x'e U(z). 
Proof. Assume that (x, x') clings to A(z) x A'(z), u is an arbitrary element of 

U(z) and that a'eL with the property u<Aa'. Then we have a'eA'(z). The 
hypothesis implies that (JC, jc')n(a, a') + 0 for any a e A(z). By using (b) we obtain 
jc<^a'. We have shown that u<a' implies x<a'. Hence according to A7 JC^U. 
From this it follows that x^z, i.e., xeL(z). It can be verified in an analogous 
manner that x' e U'(z). 

. \z 

Fig.l 

Conversely, let (x, x') be a cell from S such that xeL(z), x' e U(z) and let 
(a, a') be an arbitrary cell belonging to A(z)x A'(z). There exists an element 
Xi e L(z) such that a <£xx. Since JCî  x', by A2 a <tx' holds. In a similar way we get 
x<£a'. By using (b) we obtain (x, x')n(a, a') + 0, which implies that (JC, JC') clings 
to A(z)xA'(z). 

2.A(z)xA'(z)eLE. 
Proof. First, we intend to show that the condition Ei is satisfied. Assume that 
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(a, a'), (b,b')eA(z)xA'(z). From 1 we infer that (a, a')n(b, b')±0. Then 
with respect to (a), (a, a')n(b, b') = (avb, a' /\b'). There exist elements xeL(z), 
y eL(z) with a<tx,b<ty. Hence by A3 we have a vb <xvy. By A4 there exists an 
element ceL with avp<^c<^jcvy. Since j cvyeL(z ) , we conclude ceA(z). 
Similarly we prove the existence of an element c'eA'(z) having the property 
c '<^a'A .y.Thereforec<^c' ,(c, c ' ) e A ( z ) x A ' ( z ) and (c, c')c=(a, a')n(b, b'). 

There remains to be shown that the condition E2 holds. Suppose that (JC, JC'), 
(y, y')eS, (x, x')(^(y, y') and that (JC, JC') clings to A(z)xA'(z). Whence y<x, 
jc'<^y' and from 1 we deduce xeL(z), JC'G U(z). Then y e A(z), y' eA'(z) and 
thus (y,y')eA(z)xA'(z). 

Next we show that every end from S can be written in the form A(z)x A '(z). 

3. Let B xB' eLE. Then there exists an element z e d(L) such that BxB' = 
A(z)xA'(z). 

Proof. B (B') is a nonempty upper (lower) bounded subset of L. It is clear that 
sup L(U(B)) = 'mi U(B). This element from d(L) will be denoted by z. Hence 
L(z) = L(U(B)) and U(z)= U(B). 

It is enough to verify that B x B ' c A ( z ) xA'(z). Assume that (b, b')e B x B'. 
By E\ there exists a cell (x, x')eB xB' such that (x,x')cz(b, b'), i.e., b<tx, 
x'<tb'. We claim that beA(z), since jceJBczL(z). Similarly we obtain that 
b'eA'(z). Consequently, (b, b')e A(z) x A'(z) and so B x B'cz A(z) x A'(z). 
The validity of equality follows from the maximality of ends with respect to the set 
inclusion. 

4. Let z\, z2ed(L). Then Z\^z2 if and only if A(zi)cz A(z2) . 
Proof . Suppose that Zi^z 2 and that a e A ( z i ) . Hence there exists an element 

JC eL(zi) , with a<^jc. The assumption implies L(zi)czL(z2). Then JC eL(z2) and so 
aeA(z2). Thus A(z i ) cA(z 2 ) holds. 

Conversely, let A(z i ) cA(z 2 ) , JceL(zi) and ueU(z2). Suppose that a is an 
arbitrary element of L with a<^jc. As aeA(z\), according to the assumption we 
obtain aeA(z2). There exists a2eA(z2) with a<ta2^u. Using A2 we get a<tu. 
Then by A6 x^u is valid. Hence JC^Z 2 , i.e., xeL(z2). We have seen that 
L(zi)_=L(z2), and thus Zi^z2 , as desired. 

From the statement 4 it immediately follows 

5. Zi = z2 if and only if A(z\) = A(z2). 
Let cp be a mapping from d(L) into LE defined by the rule 

<p(z) = A ( z ) x A ' ( z ) . 

By summarizing, we infer from 1—5 that cp is an isomorphism from the lattice 
d(L) onto LE. Hence the following Theorem is valid: 

6. Theorem. The lattices d(L) and LE are isomorphic. 

7' <f(fi(x)) = f(x) f°r eacn xeL. 
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Proof. Let jceL. We identify JC and /I(JC). We have to show that A ( J C ) X 

A ' ( JC) = N \ It is sufficient to prove the inclusion A(x)x A'(x)^Nx. Let 
(y, y')e A (x)x A '(JC). Hence y< ĴCi for some xxeL(x). From JCGL(JC) and 
y <t JCi ^ JC according to A2 it follows y <̂  JC. In an analogical way we obtain JC <ty'. 
Therefore (y,y')eNx. 

Every lattice can be considered as a regular lattice if the relation ^ is taken as the 
relation <C There are regular lattices (for instance the chain (R, ^ ) of all real 
numbers with the natural order ^ ) with respect to the relation <̂  equal to < . 

On the other hand there exist regular lattices (L, ^ , < )̂ such that (L, ^ ) is 
a chain and that the relation <̂  is different from both relations ^ and < 
(Example 1). 

8. Let (L, ^ , <4) be a regular lattice and let (L, ^ ) be a chain JC, y e L, x±y. 
Then x<ty if and only if x<y. 

Proof. Let jc<^y. Then Ax and the assumption imply jc<y. 
Conversely, let there exist elements JC, yeL such that x < y , Jc<^y. Hence 

according to A5 and A6 there is an element a e L having the property a <ty, a<^x. 
We have two possibilities: j c ^ a ^ y or a<jc. Suppose that j c ^ a ^ y . Since 
JC ^ a <t y, by A2 we obtain JC <^y, a contradiction. Now let a < JC. From a<ty and A4 

it follows that there exists beL with a<tb<ty. Hence j c ^ 6 ^ y or 1><jc. In the 
same way as above we obtain JC <y or a <x, respectively, contrary to suppositions. 
The proof is complete. 

If we suppose in 8 that (L, ^ ) is a lattice, the assertion fails in general 
(Example 2). 

3. Examples 

E x a m p l e 1. Let (L, ^ ) be a chain and let (L, ^ , < ) be a regular lattice. Pick 
out any aeL. Define a relation < â on L in the following way: put a<aa and x<tay 
iff jc<y. Then (L, ^ , <^a) is a regular lattice. The relation <̂ a coincides neither 
with ^ nor with < . 

E x a m p l e 2. Let (R, ^ ) be the chain of all real numbers with the natural order 
^ . Suppose that the lattice (L, ^ ) is the direct product of lattices Rt, L = n.R, 
(iel) where K, = (R, ^ ) for each i e I. Let i be a fixed element of / . Define x<ty 
on L to mean jc ( / )<y(0 and jc(fc)^y(fc) for each kel, k+i. Hence (L, ^ , <4.) is 
a regular lattice. Let JC, y be elements of L such that JC(J) = 0 for each jel and 
y(/) = 0, y(fc) = l for each kel, k^i. Therefore jc<y but jc<^,y. 

The following example shows that the systems of ends can be different on the 
same lattice. 

E x a m p l e 3. Let (L, ^ ) be a chain and let (L, ^ , < ) be a regular lattice. Take 
a, beL, a+b. By Example 1 (L, ^ , <ta) and (L, ^ , <tb) are regular lattices. The 
systems of all cells (ends) will be denoted by Sa and Sb (LEa and LEb), respectively. 
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Hence Na = {(x, y)eSa: x^aa <ay) eLEa and a cell (a, a) belongs to the end Na. 
On the other hand Na$LEh, since a^ba. Hence LEa^LEb is valid. 

There exists a proper class of nonequivalent c-mappings. 
Examp le 4. Let d(L) be the conditional Dedekind completion of the lattice L. 

We may suppose that L cz d(L). Take an element z e d(L) — L. Let a be an infinite 
cardinal and Dz(a) the a-diamant in the picture. 

Denote by Yz the set of all mutually incomparable elements of Dz(a). We 
suppose that card Yz = a. Let us form the set fa(L) = L u ( u D z ( a ) (z e d(L) — L)). 
Define a partial order ^ on /„(L) by putting: 

if fi, t2eL, then U^t2 iff U^t2 in L, 
if U, t2eDz(a), then U^t2 iff U^t2 in Dz(a), 
if UeL, t2eDz(a), then u^t2 (t2^u) iff u^z (z^U) in d(L), 
if UeDZl(a), t2eDZ2(a), then f-^fe iff z^z2 in d(L). 
Therefore /«(L) turns out to be a conditionally complete lattice. The mapping fa: 

$£—.>5£ is a c-mapping. If j3>a, the mappings /„ and fp fail to be equivalent. We 
conclude that the class {/a} of nonequivalent c-mappings is a proper class. 
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О ПОПОЛНЕНИИ СТРУКТУР КОНЦАМИ 

§1егап С е г т а к 

Р е з ю м е 

Понятие пополнения структуры концами определил Б. И. Арнов. В этой статье доказано, что 
пополнение структуры ^ при помощи концов изоморфно условному дедекиндову пополнению 
структуры ^ . 
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