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COMPACT PARTIALLY ORDERED SETS 
AND COMPACTIFICATION 

OF PARTIALLY ORDERED SETS 

ALEXANDER ABIAN—JUDITA LIHOVA 

We call a partially ordered set P compact if and only if every subset S of P has 
a nonzero lower bound in P (i.e. a lower bound which is not the least element of P), 
provided every finite subset of S has a nonzero lower bound in P. A compact 
extension Q of a partially ordered set P which preserves all the existing infima and 
suprema of subsets of P, except perhaps the zero infima (if P has a zero) of certain 
infinite subsets of P is called a compactification of P. Every partially ordered set 
without zero has a compactification. For partially ordered sets with zero it is not the 
case. We give one necessary and one sufficient condition for the existence of 
a compactification of a partially ordered set. 

In what follows we refer for the sake of simplicity to a partially ordered set 
simply as a poset. The least element of a poset P, if it exists, is called the zero of P 
and is denoted by 0. 

Definition 1. A poset P is called compact if and only if for every subset S of PS 
has a nonzero lower bound if every finite subset of S has a nonzero lower bound. 

Let S be a subset of a set P. We say that S has the finite lower bound property if 
and only if every finite subset of S has a nonzero lower bound. Thus, Definition 1 
can be rephrased as follows: 

Definition 2. A poset is called compact if and only if every subset of it which has 
the finite lower bound property has a nonzero lower bound. 

Let P be a poset without zero. We denote by Pu{0} the poset with the zero 
element 0 which is obtained by adjoining 0 to P in the most obvious way (we 
assume that 0 is not used as a symbol for an element of P). But then from the above 
Definitions it follows: 

Lemma 1. Let P be a poset without zero. Then P is compact if and only if the 
poset Pu{0} is compact. 

The significance of Lemma 1 is revealed by Lemma 2 which shows that 
compactness is formulated rather conveniently in posets with a zero element. 
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Lemma 2 . Let P be a poset with zero 0. Then P is compact if and only if for every 
subset G of P in the case of 0 being the infimum of G. 0 is already the mfimum of 
a finite subset of G. 

Proof. By Definition 2, P is compact if and only if every subset of it which has 
no nonzero lower bound, fails to have the finite lower bound property. Since 
a subset of P has no nonzero lower bound if and only if 0 is its infimum, the 
statement is evident. 

Let (P, ^ ) , (Q, < ) be posets and Pc.Q. We say that (Q, sg) is an extension of 
(P, ^ ) if and only if the order relation between the elements of P in (Q, ^ ) is the 
same as that of P in (P, =S). Clearly, an extension (Q, ^ ) of (P, ^ ) need not 
preserve the zero or the infima or the suprema of the subsets of P ; however, if it 
does preserve them, then we say that the extension (Q, ^ ) is zero-, or inf ima-, or 
suprema- (depending on the case) preserving. For instance, if (P, sg) has no zero 
element, then the extension (Pu{0) <) is both infima- and suprema-preserving 

Let (P, ^ ) be a poset. We hall be interested in the existence of a poset (Q, =S) 
with the following properties: 
(1) (Q, sS) is an extension of (P, =£) such that the zero of (P, s£) (if it exists) is also 

the zero of (Q, <) . 
(2) (Q, ^ ) preserves all the existing infima and suprema of the subsets of P, 

except the zero infima of those infinite subsets of P which have the finite lower 
bound property, each of which, however, acquires a nonzero infimum in 

(Q, «)• 
(3) (Q, ^ ) is compact. 

Definition 3 . An extension (Q, ^ ) of (P, s£) satisfying (1), (2) and (3) is called 
a compactification of (P, ^ ) . 

The following theorem is evident. 

Theorem 1. Let (P, =£) be a poset without zero. Then the ordinal sum any two 
element chain and (P, ^ ) is a compactification of (P, <.). 

In what follows we shall suppose that (P, « ) is a poset with zero 0. 
If A is a subset of P having the finite lower bound property, then by Zorn's 

Lemma there exists a subset of P maximal with respect to the finite lower bound 
property and containing A. 

Lemma 3. If M is a subset of P maximal with respect to the finite lower bound 
property, then inf M exists. If inf M = p=£0, then p is an atom in (P, ^ ) and 
M-{xeP: x^p). 

Proof. Let M(cP) be maximal with respect to the finite lower bound property. 
If 0 is the unique lower bound of M, then 0 = inf M. Suppose that M has a nonzero 
lower bound p. Then Mu{p} has evidently the finite lower bound property and 
using the maximality of M we obtain pe M. Hence p = inf M. Assume that there 
exists pi such that 0 < p i <p. Then pt is also a nonzero lower bound of M, hence 
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p, =inf M. We have a contradiction. Evidently Mc{xeP: x^p}. Assume that 
qePand q^p. Then M\j{q} has the finite lower bound property. Consequently 
by the maximality of M we have qeM. 

Denote by M the system of all subsets of P maximal with respect to the finite 
lower bound property with zero infima. 

Theorem 2. / / (Q, s£) is a compactification of (P, s£), then {infoM: Me M) is 
an antichain. Further if MeM and xeP—(Mu{0}), then inf0M and x are 
incomparable. 

Proof. If MeM, then M has the finite lower bound property and infPM=0, 
hence M must be infinite. By (2) we see that inf0Me Q — P exists. Let M,,M2e M, 
Mi ± M2 and suppose e.g. inf0M, s£inf0M2. Pick meM, — M2. The maximality of 
M2 ensures the existence of a finite subset K of M2 with infP(Ku{m}) = 0. Then 
(2) implies that info(.Ku{m}) = 0. On the other hand inf0M,<m and inf0M, s£ 
inf0M2 < k for every keK, hence inf QM, is a nonzero lower bound of KKJ {m} in 
(Q,*s). 

Further let MeM and xeP—(Mu{0}). Suppose that x<inf0M. Then x is 
a nonzero lower bound of M in (P, s£) and we have a contradiction. Assume that 
inf0M<x. Since x^M, there exists a finite subset L of M such that 
infP(Lu{;r}) = 0. Then we have info(Lu{*}) = 0, a contradiction. Therefore 
inf0M and x are incomparable. 

Consider the following conditions: 
(a) / / Nc M for some Me M and N has in P a nonzero infimum, then the latter 

belongs to M. 
(b) If M,, M2eM and M,±M2, then infP(M,nM2)=£0 (i.e. M,r\M2 has in 

P a nonzero lower bound). 

Theorem 3. / / (P, s£) has a compactification, then (P, s£) satisfies condition (a). 
Proof. Suppose that (Q, «£) is a compactification of (P, s£). Let MeM, N c M 

and infPN=p4:0. By (2) we have inf0N=p and since inf0Ms£inf0.V=p, in view 
of Theorem 2, p must belong to M. 

Let M={M,: heH). Denote by Q the disjoint join of P and H and define 
a relation s£ in Q as follows: for every x, y e P let x s£ y in Q if and only if x «£ y in 
P; for every x, y eH let xs£y if and only if x = y; for every xeP and y 6H let 
*s£y if and only if x = 0 and ys£jc if and only if xeMy. It is easy to verify that 
(Q, ^) is a poset. 

Theorem 4. Lef (P, s£) satisfy condition (a). The poset (Q, s£) defined above is 
a compactification of (P, s£) if and only if (P, s£) satisfies (b). 

Proof. Suppose that (Q, «£) defined above is a compactification of (P, s£). Let 
h,, h2eH and h,£h2. Assume infP(M»,nMfc,) = 0. Then, as the set MH,r\M^ has 
the finite lower bound property, it must be infinite. By (2) there exists q e Q and 
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<7=£0 with inf0(M>l,nMh2) = t7. Evidently q^P. Since A,, A2 are lower bounds of 
M^nM^, we must have A,, h2*Sq. We have a contradiction. 

Now suppose that (P, =S) satisfies (b). Evidently (Q, ^ ) is a zero- and sup-
rema-preserving extension of (P, ^ ) . Let now iniPA=p4:0 for some A = P. 
Suppose that h(eH) is a lower bound of A. Then A = Mh and by (a) we have 
p e Mh. Hence h^p. Therefore p = inf0A. Further let infpA = 0 for some A = P. 
If 0 is the unique lower bound of A in (Q, ^ ) , then inf0i4 = 0. Suppose that there 
exists a lower bound A(e H) of A in (Q, ^ ) . Then A = Mh which implies that A 
has the finite lower bound property and it is infinite. We show that A = inf0.A. Let 
A, e H be a lower bound of A different from A. Then A = Mhl. From the relation 
A = MhnMhl it follows that iniP(MhnMhl) = 0, which contradicts (b). 

It remains to prove that (Q, =S) is compact. Let A be a subset of Q having the 
finite lower bound property. If A = P, then there exists a subset M of P maximal 
with respect to the finite lower bound property containing A. If in f P M=p+0 , then 
p is a nonzero lower bound of A. If infPM= 0, then M=Mh for some heHand A 
is a nonzero lower bound of A. Now suppose that AnH+0. Then evidently A 
contains just one element of the set H. Let AnH= {A}. For every x e A and x4=- A 
the set {JC. A} has a nonzero lower bound, hence we have h<x. Thus A is a lower 
bound of A. 

R e m a r k . In view of Theorem 2 every compactification of (P, ^ ) is an extension 
of the one mentioned above if P is a poset satisfying (a) and (b). 

We recall that a poset is called lower semilattice [1] if and only if every two 
elements of it have an infimum. But then, based on Theorem 4, we have: 

Corollary 1. Lef (P, < ) be a lower semilattice satisfying (a) and (b). Then the 
compactification (Q,^) of (P, « ) mentioned in Theorem 4 is also a lower 
semilattice. 

Proof. By (2) the compactification (Q, ^ ) preserves all the infima of two-elem
ent subsets of (P, ^ ) . It remains to show that every two elements of Q, where at 
least one of them belongs to H, have an infimum in (Q, =S). But this is obvious, 
since inf {A,, A2} = inf {x, A,} = 0 for every A,, h2eH, h,£h2 and j r ePsuch that 
x^ht. 

Let us recall that a poset is called complete lattice if and only if every subset of it 
has an infimum (or equivalently, a supremum). Based on Theorem 4, we have: 

Corollary 2 . Let (P, ^ ) be a complete lattice satisfying (a) and (b). Then the 
compactification (Q, ^ ) of (P, ^ ) mentioned in Theorem 4 is also a complete 
lattice. 

Proof. Let S be a subset of Q. If S = P, then from (2) it follows that inf0S 
exists. If SnH contains more than one element, then infoS = 0 since the elements 
of H are pairwise incomparable and 0 is the only element of Q which is less than 

324 



every one of them. Finally if SnH={h}, then either inf0S = A if A is a lower 
bound of S, or infos = 0 otherwise. 
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КОМПАКТНЫЕ ЧАСТИЧНО УПОРЯДОЧЕННЫЕ МНОЖЕСТВА 
И КОМПАКТИФИКАЦИЯ ЧАСТИЧНО УПОРЯДОЧЕННЫХ МНОЖЕСТВ 

Александер Абян-Юдита Лихова 

Резюме 

В работе определяется понятие компактного частично упорядоченного множества и компак-
тификации. Исследуется вопрос существования компактификации частично упорядоченного 
множества (теоремы 1, 3, 4). 
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