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(Communicated by Michal Feckan)

ABSTRACT. In this paper, Liapunov-type inequalities are obtained for higher
order nonlincar, nonhomogeneous differential equations. These inequalities are
used to obtain criteria for disconjugacy of linear homogeneous equations on an
interval and to show that oscillatory solutions of the equation converge to zero
as t — oo. It is also shown, using these inequalities, that (t,,,, —t,,) = oo as
m — oo, where 1 <k <n-—1 and {¢,,} is an increasing sequence of zcros of an

oscillatory solution of D™y + p(t)y = 0, t > 0, provided that p € L? ([0, 00),R),
1<0<o0.

1. Introduction

It is known that (see [6]) if y(t) is a solution of

y" +p(t)y =0 (1)
with y(a) =0 =1y(b) (a <b) and y(t) # 0 for t € (a,b), then
b
/|p(t)| dt > 4/(b—a). (2)

In [5], Hartman obtained an inequality which is more general than (2). The
inequality (2) is generalized to second order nonlinear differential equations by
Eliason [2], to delay-differential equations of second order by Eliason [3],
[4] and Dahiya and Singh [1] and to higher order differential equations by
Pachpatte [7]. Indeed, Pachpatte derived Liapunov-type inequalities for
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the equations of the form

D" [r(t) D" (p(t)g(y' ()] + y(®)f (£, y(t)) = Q(2), (3)
D™ [r(t) D" (p(t)h(y(t))y' ()] + y() f (£, y(t)) = Q(¢), (3")
D" [r(t) D"~ (p(t) h(y() gy (t))] + ¥ () F (£, 3(t)) = Q(¢) (3"

under appropriate conditions, where n > 2 is an integer and D" = d" /dt".
It is clear that the results in [7] are not applicable to odd order equations. In

a recent work [8], the authors have obtained Liapunov-type inequality for third
order equations of the form

y" +p(t)y=0. (4)

This inequality is used to study many interesting properties of the zcros of
an oscillatory solution of (4) (sec [8; Theorems 5, 6]). In [9], Liapunov-type
inequality is obtained for delay-differential cquations of third order of the formn

y"' () + p@)ly)]" sgny(t) + m(@)|y(t — 7)|"sgny(t — 7) =0,

where p,m € C([0,00),R), p >0, v>0,and 7> 0.

The object of this paper is to derive a Liapunov-type inequality for nth order
differential equations of the form

(CaGolar)) ) ren=a0 o

under appropriate assumptions on r,(t), 1 <i<n -1, f and Q. Here n > 2
may be an odd or even integer. In [7; Theorem 1] it is assumed that «, > ay >
>, >, >a, ) > > ay, g, where these are the zeros of

Dp(t)g(y' ()], D*[p(t)g(v'(1))], - -

- D" (Mg (' (1)), () D" p(Dg (v (8)], D) D" (p(Dg(' (1)), -
L D) DT (p(1) (' (1))

respectively and y(t) is a nontrivial solution of (3). In this work we remove
this restriction on the zeros of higher order derivatives. We may observe that
in [7; p. 530, Example], y""(3n/4) # 0 because y"'(t) = 2¢ ! (cost — sint).
On the other hand, y"'(7/4) = 0, but 7/4 ¢ (7/2,37/2) and y"'(57/4) = 0,
but 57/4 £ w. Although this example does not illustrate [7; Theorem 1], it has
motivated us to remove the restriction on the zeros of higher order derivatives
of the solution of (3). Further, we show that every oscillatory solution of (5)
converges to zero as t — oo with the help of Liapunov-type inequality. We also
generalize a theorem of Patula (see [10; Theorem 2]) to higher order equations.
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2. Main results

Equation (5) may be written as

D"y +yf(t,y) = Qt), (6)
where n > 2 is an integer,
1 1 ; '
Dy=——y, Diy=—x(D""y),
A0 rol Y

2<i<n and r,(t) =1. Suppose that
(C,) 7;: I = R is continuous and r,(t) >0,1<i<n-1,and Q: I - R is
continuous, where I is a real interval.

(C;) f: I xR — R is continuous such that |f(¢,y)] < W(t,|y|), where
W: I x Rt — R* is continuous, W(t,u) < W(t,v) for 0 < u < v

and Rt = [0,00).
Following Pachpatte [7], we definc

E(t’ T2(t)? 7‘3(’52)’ e ’Tn—l (371—2); Z(Sn—l))

Sn-3 Sn—2
:rz(t)/ra(sz)/r4(33)... / Tpo1(Sp—2) / 2(8,_q) ds,_; ds, _,...ds,,
gy [e] an-3 Qn-—2

where 2(t) is a real valued continuous function defined on [a,b] C I (a < b)
and a;,a,,...,,_, are suitable points in [a,b], and

E(tv 7.2(t)’ T3(32)’ e Th (Sn—‘Z); z(sn——l ))

(a5} (e )
Sn—3 Sn—-2
’ / Tpe1(8m_s) / 2(8,_y) ds,_ | ds,_, ‘ ds,|.
Qpn—3 Qn_—2

THEOREM 1. Suppose that (C,) and (C,) hold. Let o,...,a,_, € [a,b],
where «,...,a,_, are zeros of D?y(t), D> y(t), ..., D" 2 y(t), D"~ y(t) re-
spectively, [a,b] C I (a < b) and y(t) is a nontrivial solution of (6) with
y(a) = 0 = y(b). If ¢ is a point in (a,b) where |y(t)| attains mazimum and
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M = max{|y(t)| : t € [a,b]} = |y(c)|, then

b b
4 < (/7'1(31) (131> (/[E(sl,rz(sl),7'3(32),...,7'”_1(371_2);W(s”_l,]\[))

%E(317T2(51)’7‘3(82)’ Ty (8,220 1Q(s, )] ] d""l)

(7)

+

for n >3 and

b b b
4< (/Tl(t) dt) [/W(t,M) dt + 737/ 0(1)] dt} (8)

a

for n=2.

Proof. Let n > 3. Integrating (6) from «,_, to t € [a,b], we obtain

t t
Dn_l :lj(t) + / y(sn—l)f(sn—-l’y(sn—l)) d‘sn—l = / Q(sn—l) dsn—l ’

Qn—2 Qn-—-2
that is,

t

(Dn——;Z ?/(t))’ + 7'n——1(t) / y(sn—l)f(sn—l’y(’sn—l)) ds"“l

Qn-2

Further integration from «,,_, to t € [a, b] yields

t Sn—-2
D”_z y(t) + / Tn—l(sn—2)( / y(sn—-l)f(sn—l’y(sn——l)) dsn~1> d'sn——’z
Qn_—3 An—2

t
Wn—3

Sn—-2
Tn—l(sn—‘z) ( / Q(Sn—l) (1.8'"_1> dsn—‘z '
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Proceeding as above we obtain

t

D?y(t) + /r3(32) fr4(33) .

: / Tn—l('sn—Z)( / ( n—l)f( n 1Y ( n 1)) ) dsn—-?"‘ d32
Sn-3 Sn—2
/ 52)/7'4(53) / Tno1(85-2) / Q(s,_1) ds,_y ds, ... ds,,
an-3 Qn-2

that is,

(Dy(t)) + E(t, 7o), 75(53)s s 1 (5p—2); Y(Sn1)F (Sn1s¥(50_1)))
~'_'E(t T2(t) r3(32)’ °) n 1( n— 2) Q( n— 1))

Hence
I(D y(t))l|_<_ AfE(t, Ty (), 75(82)s - s Tp_1 (Sp_2)s W(Sp_1, M)) 9)
+E(ta Tz(t)/":;(sz)a <o Thoy (Sn_z); IQ(sn—l)l) .
Since
— 0@l = | [ ¥ ds, | < [l as
and
b b

M=l =| [ (s s, | < [ e as,,

then

2M _<_/|y'(51)| ds, .
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First, using Cauchy-Schwarz inequality and then integrating by parts, we obtain

- b
4M? < /I?Jl(sl)| d31]

b b
1 , 2
< (/7"1(31) d31> </T1(31)(y (51)) dsl>
ab a ’ , b (10)
_ (/rl(sl) dsl) <[y—%]a—/(Dy)'(sl)y(sl) dsl)
b b
- (/( dsl) /(Dy 5 )y(s,) ds,
_(/ dsl)/wy Dlly(s)] ds,
Use of (9) yields
b
4M? < (/rl(sl) dsl) .
’ b
. []V[2/—E(51,T2(81),T3(32),...,T‘n 1(8_); W(s,_,, M)) ds,
’ b
+M/E(31a7'2( $1):T3(82)s -3 T (8,22)3 1Q (s, D) dsl],

that is,

(o)

b
+%/E(517T2(51);73(32):-~"7'n—1(3n—2)3‘Q(Sn—l)D d'gl] :

b
/E $1,To(81):73(89) s T 1 (8—0); W(s,,_q, M)) ds,
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If n =2, then (6) has the form

Dy)' ) +y(®)f(ty) = Q(t) .
Hence (10) yields

b b b
4M? < ( / T (sy) dsl) [ / ly(@®)1?| £ (¢, y(2))| dt + / ly(®)||Q(®)] dt] ,

a

that is,

b

4< (/rl(sl)da‘l) [/bW(t,M dt+—/|Q )| dt]

a

Thus the proof of the theorem is complete. O
Remark.
(i) f n >3 and a = a,,a,,...,a,_;,a, = b are consecutive zeros of a

solution y(t) of (6), then D?y(t),D3y(t),...,D" 2y(t) and D" !y(t) have
zeros in [a, b].

(i) I y(t) = (¢ - )t -2)"", m > > 2, then y(b), y'(2), ¥"(2), . ..

Ly (t), y(»=V(t) have zeros in [1,2] an t) #0 for t € (1,2).

Remark. For equation (4), inequality (7) takes the form

4< (b- a)/b l ]1|P(32)| ds,

which is same as the inequality in [8; Theorem 1]. For equation (1), inequality (8)
takes the form (2).

b
ds, < (b= [ (o) at,

EXAMPLE. Consider
y@ +4y=0, t>0.

Clearly, y(t) = e~ cost is a solution of the equation with y(Z) =0 = y(3F),
y"(m) =0, y"(3£) = 0. From Theorem 1 it follows that

E(311T2(31)7T3(32);4) dsl b

S

IA

N
M~
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57 1.2 _ 3xn2 : 57 5T
_{4[ 31_531—T], lf«92<7,7r<s1 or s, > 5, s;<m,

372 4 1.2 _ 5r : 57
AP +3st - s, ifs,<

5
X, sy <mor s>, s>,

3

: 5w
- s, <¥ r<s ors,>%, 1>5,
3

[ BGsuorator)rsi4) as,

i ; ks Sm
T sy <, s <mor 5,> 3, s >,

s, >m and

As E>0, then s, < 3T s <1 or sy > 2,
3
2

3
— ™
E(sl,r2(sl),r3(32);4) ds, = T

S

Thus, by Theorem 1, 4 < %4 or 24 < 7, which is obviously true.

Remark. Under appropriate assumptions on g and h, Liapunov-type inequal-
ities can be derived for (3), (3’) and (3”).

Remark. If
b

b
4> (/7'1(31) dsl) (/E(sl’r2(31)7r3(52)7'"’rn—l('sn—2);,p(sn—l)l) dsl) )

then
D"y +p(t) =0 (11)
is disconjugate on [a, b], where p is a real-valued continuous function on (a,b].

Indeed, if (11) is not disconjugate on [a, b], then it admits a nontrivial solution
y(t) which has n zeros in [a,b]. Let these zeros be given by a < ap <a,<...
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- < a,_, < a, <b. Then D?y(t), D3 y(t), ..., D" ' y(t) have zeros in
[a,,a,]. From Theorem 1 it follows that

4< ( /rl(s ) d.s]> (/E(sl,rz(sl),?'?,(sz),...,7',,1_1(5,1_2); Ip(s,_)1) dsl>

a)

(/ MJ(/E 51050, (5, WQAuwﬁwummwm>,

a contradiction. Thus (11) is disconjugate on [a, b].

THEOREM 2. Let (C,) and (C,) hold. Let oy, a,,...,q, s, ., be zeros
of D*y(t), D*y(t), ..., D" 2y(t), D" y(t) in [a,b] C I (a < b) respectively,
where y(t) is a nontrwzal solution of

D"y +yf(t,y) =0

with y(a) = 0 = y(b). If ¢ is a point in (a,b) where |y(t)| attains mazimum,
then
c

-1 b -1
(/7'1 (t) dt) < 00 and (/7'1(t) dt) < 00.

a c

Proof. Let M =max{|y(t)|: t € [a,b]} = |y(c)|. Then y'(c) = 0. Since

c

vo = [y a,
a
using Cauchy-Schwarz inequality and integrating by parts we obtain

c c

2 2
M? = (/y'(t) dt) = [/r?(t)rf%(t)y’(t) dt]

~([rwa)| [owor ]
—(jn@dﬁ([%)«Mmﬁ—/mm%>udQ
s(jnmdﬂ fmmnmmndﬂ
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Proceeding as in Theorem 1 we obtain

(D) ()] < ME(t,r5(),75(89)s -y Ty ($5_s); W(s,_1, M)) .

Hence

¢ -1 b
(/7-1@) dt) < /E(t,rz(t),rs(sz),..‘,1"" 1(85—0)s W(s,, 1,J\[)) dt < .

a a
(12)
Thus ¢ cannot be very close to a because

c

-1
Cl_i,lf+ (/rl(t) dt) =00.

a
Next we show that ¢ cannot be very close to b. Since

b

ly(e)l = | [ v al.

4

then proceeding as above we obtain

b 2
M?= [/y’(t) dt]

c

<</rl(t dt) (/| (Dy) (®)||y(t |dt)
b
< ]b[( . (t) dt) </| (Dy)'(t dt)

a

b
S]\[z(/ 1(t)dt)</ (8,79 (t),73(55)s -+ oy Ty (852); W(s, 1) M) (1t>.

Hence

b
</ (t) dt) /E (t, 7yt So)yee Ty 1(8,_0); W(s,_y, M)) dt < oco.

c

Thus ¢ cannot be very close to b. This completes the proof of the theorem. O

Remark. Theorem 2 need not hold if «; ¢ [a,b] for some i € {1,...,n —2}.
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DEFINITION. A solution y(t) of (6) is said to be oscillatory if there exists a
sequence (t_ ) C [0,00) such that y(¢,,) =0, m>1,and t,, — 00 as m — co.

THEOREM 3. Let p € L?([0,00),R), where 1 < 0 < c0. Let r,(t) < K for

t>0and 1<i<n-1, where K > 0 is a constant. If (t,,) is an increasing
sequence of zeros of an oscillatory solution y(t) of

D"y+p(t)y=0, t20,
such that ay,...,a,_5 € (t,,t,1): 1 < k < n—1, for every large m,
then (t,,, —t,) — 00, as m — oo, where «y,...,, , are the zeros of
D?y(t), D3y(t),..., D" 2 y(t), D" ' y(t), respectively.
Remark. If n > 3 and k =n—1,thent ,t .,,...,¢, ., _, are n-consecutive

zeros of y(t) for every m, and hence ay,...,a,_, € (t,,t,,1,—1) - f n =2,
such a condition is not required (see [10; Theorem 2]).

Proofofthe theorem. If possible, let there exist a subsequence (¢, )
of (t,,) such that (¢, . —t, ) < M for every ¢, where M > 0 is a constant.
Let max{|y(t)] : t € [t,,,,tn, 1]} = ly(s;)], where s; € (¢,,.,t,, ,,). Since
p € L?([0,00),R) , then

m:)

o0

/|p(t)|" dt < 00.
0

Hence
o0

/|p(t)|" ds =0 as t—o0.
t
Thus, for 1 < ¢ < 0o, we may have

/ lp(t)la dt < [I(n—an—l'f'%:I_g

tm,

for large ¢, where . + 2 = 1. From (12) we obtain

Si -1 tmi+k
RPN n—2
( / Tl (t) dt) S K" (t171;+k - tm.,') / Ip(t)l dt7
tm, tm,
that is,
tm 4k
rn—1 n—1
1<K (b - t,) Ip(t)] dt. (13)

tm,
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The use of Holder’s inequality yields

|-
=
~
~
=
qQ
o
o~

o — -1
1<K n (tmi—{»k - tm,- )" (tm,-—H\: - tvn,-)

oo
— n—1+% -
< = )" | 0001 at

tm,
< KA [K"—IM"—H%] o,

a contradiction. If o = 1, then we choose i large enough such that

/ [p(t)] dt < (KM)~(»=1)

trul

Hence from (13) we obtain

1< (KM)"! / Ip(t)] dt < 1,

a contradiction. Hence the theorem is proved. O
ExaMpPLE. Consider

thy(™ _ 24y =0, t>1. (14)
Clearly, the conditions of Theorem 3 are satisfied. A basis of the solution space

of (14) is
{-1— t4, t2 cos( V15 logt>, t2 sin(—-\/g-logt) }

t’ 2

The zcros of

<

(t) =t? cos( ‘/35 logt>

arc given by

1
t, = exp( (2n — 1)7r> , n=1,2,3,
15
Hence
2nm 5m T
lyiy—t, =eves [em —e m] — 00
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as n — 00. We may note that the zeros of u”(t) are expressed as

tr —exp[—z—{tan_l( 3 nw n=12
n \/B _E - ) = Ly4yeeey

and hence t}, ¢ [t,,t, ,,] for any large n. However, u”(t) has azeroin (t,,t,,,)
for every n. As the zeros of u/’(t) are given by

t;*=exp[\/il_5{tan‘1‘/%—n7r}:|, n=12...,

then t3* ¢ [t,, ¢, ,] for any large n. But u"(t) has a zero in (tprtnys). If
u(t) = % + 13 cos( V15 logt> =t3 [t_% + cos( \/21_5 logt)] ,

2
then it is an oscillatory solution of (14). The zeros of v(t) may be written as

t,f?é +cos(2nn+@logtn> =0, n=12,.... (15)

From Theorem 3 it follows that ¢, 3 —t, — 0o as n — co. However, it is not

easy to show that ¢, , —¢ — 0o as n — oo using (15).
As an application of Theorem 1, we prove the following theorem. *

THEOREM 4. Suppose that (C,) and (C,) hold with I = [0,00). Let there
ezist a continuous function H: I — R such that W(t,L) < H(t) for every
constant L > 0. Let

/rl(t) dt < 0.
0
If

7E(t,r2(t),r3(s2), ety (5,_2)1Q(s,_)]) dt < oo
and ’ )

/ E(t,ry(8), ma(52)s- 1Ty (50_2); H(s,_y)) dt < 00,
orns 3 and

/H(t)dt<oo and /|Q(t)|dt<oo for n=2,
0 0
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then every oscillatory solution of (6) converges to zero as t — oo.

Proof. Let y(t) be an oscillatory solution of (6) on [T 00), T, > 0. To
complete the proof of the theorem, it is enough to show that lun qup Iy ) =0.

If possible, let 11m sup|y( )] = A > 0. Choose 0 < d < A/2. From the given

assumptions it follows that it is possible to choose a large T, > 0 such that, for
t>T,,

o0
/T1(51) ds, <1,
t

[ Bsriralsn) o) 7y (5,01 1@, ) sy < d
t
and

/E I’TZ )7 (82) s T ](Sn—‘Z);H( n-— 1)) d81 <1

(o ¢]
for n > 3 and fH ds < 1 and [|Q(s)|ds < d for n = 2. Since y(t)
¢

is oscillatory, we can find a t; > T such that y(t;,) = 0. Let Tj > t,

be such that a,a,,...,a, 5,a, , € [tl,TO*], where a;,a,,...,a,_5,a, ,

are the zeros of D2y(t), D3y(t), ..., D" 2y(t), D" ' y(t) respectively. Fur-

ther, limsup|y(t)] > 2d implies that we can find a T3* > ¢, such that
t— 00

sup{ly(t)| : ¢ € [t;,Ty*]} > d. Let T, = max{T;,Tg*}. Let t, > T| such
that y(t,) = 0. If M = max{|y(t)| : t € [t,,t,])}, then M > d. From Theorem 1
we obtain (7) for n > 3 and (8) for n = 2, with a = ¢, and b = t,. Hence, for
n>3,

4< r,(s,) ds >< E(s T(81),73(S0)s -+ 3T (Sp_a)s H(s,,_1))
(!1 1) 48, tl/[ 10 T2(81), 73087 1 2 1

+ LB (s 7y (50D (525 QD) 1>

<(1+%)<2,
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a contradiction. For n = 2,

4< <7r1(31) dsl> [7H(t) dt + % /°°|Q(t)| dt]
t f

ty
d

<[1+M]<2,

a contradiction. Hence limsup |y(t)| = 0. Thus the theorem is proved. |
t— o0

Following example illustrates Theorem 4.
ExAaMPLE. Consider
!
(e’ (et y')l> +4y =10e " cost +4e 3t sint, t>0.
Thus 7 (t) = e™, r,(t) = e7t, f(t,y) = 4, and hence H(t) = 4. Clearly,

y(t) = e~3sint is a solution of the equation with y(0) = 0 and (ey'(t))" = 0
for t = n/4. Hence o = w/4. Since

E(s,,m5(5,); H(sy)) =4e™* (51 - %) for s, >m/4,
and
E(s]7r2(51); |Q(52)|) < —10e7 2 —% e %1 410e (1 7) +%e_(51+%)

for s, > m/4, then
/E(sl,rz(sl);H(sz)) ds, =4
0

and

3
e 4

SO

/E(Slar2(31); |Q(32)D ds, < 1—36‘ —10e™ % —
0

From Theorem 4 it follows that every oscillatory solution of the equation tends
to zero as t — 0o. Indeed, y(t) = e 3'sint + 0 as t — oo.
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