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ON d-ALGEBRAS 

J . N E G G E R S * — H E E S I K K I M * * 

(Communicated by Anatolij Dvurečenskij ) 

A B S T R A C T . In this paper we introduce the notion of d-algebras which is an­
other generalization of BCK-algebras, and investigate several relations between 
d-algebras and BCK-algebras. Furthermore, we show t h a t t h e class of oriented 
digraphs corresponds in a simple way to the class of edge d-algebras and t h a t 
arbitrary d-algebras also determine unique edge d-algebras in a natura l manner . 

1. Introduct ion 

Y. I m a i and K. I s e k i introduced two classes of abstract algebras: 
BCK-algebras and BCI-algebras ([1], [2]). It is known that the class of 
BCK-algebras is a proper subclass of the class of JBCI-algebras. In [3], [4] 
Q. P. H u and X. L i introduced abroad class of abstract algebras: BCH-alge­
bras. They have shown that the class of JBCI-algebras is a proper subclass of the 
class of jBCif-algebras. BCK -algebras also have some connections with other 
areas: D. M u n d i c i [6] proved that MV-algebras are categorically equivalent 
to bounded commutative BCK -algebras, and J. M e n g [5] proved that im­
plicative commutative semigroups are equivalent to a class of BCK-algebras. 
We introduce the notion of d-algebras, which is another useful generalization of 
BCK -algebras, and then we investigate several relations between d-algebras and 
BCK -algebras as well as some other interesting relations between d-algebras 
and oriented digraphs. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06F35, 06A06. 
K e y w o r d s : BCK-algebra, d-algebra, edge, d-transitive, digraph. 
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2. d-algebras 

A d-algebra is a non-empty set X with a constant 0 and a binary operation 
* satisfying the following axioms: 

(I) x * x = 0, 
(II) 0*x = 0, 

(III) x * y = 0 and y * x = 0 imply x = y for all x, y in X . 
A BCK-algebra is a d-algebra (X;*,0) satisfying the following additional 

axioms: 

(IV) ((x*y) * (x*^)) * (z* V) = °> 
(V) (x * (x * T/)) * y = 0 for all x,y,z in X . 

EXAMPLE 2.1. 

(a) Every J3C.RT-algebra is a d-algebra. 
(b) Let X := {0,1,2} be a set with the following Table 1. 

* 

T 
0 

T 
1 

T 
2 

T 
1 2 0 2 

2 1 1 0 

Table 1. 

Then (X] *, 0) is a d-algebra, but not a £?CftT-algebra, since (2 * (2 * 2)) * 2 = 
( 2 * 0 ) * 2 = 1 * 2 = 2T- -0 . 

(c) Let R be the set of all real numbers and define x * y := x • (x — y), 
x, y G R, where • and — are the ordinary product and substraction of real 
numbers. Then x * x = 0, 0 * x = 0, x * 0 = x 
x(x — y) = 0 and x2 = xy, y(y — x) = 0, y2 = xy 
2/ = 0; if y = 0, x2 = 0, x = 0 and if xy 7-- 0, then x = y. Hence (R; *, 0) is a 
d-algebra, but not a BCK -algebra, since (2 * 0) * 2 7-= 0. 

2 I fx*2/ = y * x = 0, then 
Thus if x = 0, y2 = 0, 

Remark. 
1. If a d-algebra (X; *, 0) is associative, then 0 * x = 0 = ( x * x ) * x = 

x * ( x * x ) = x * 0 , and thus by (III) x = 0, i.e., d-algebras are the "most 
non-associative" algebras. 

2. Let (X;*,0) be a d-algebra. If 5 C X is closed under *, then x G S 
implies X * X = 0 G S ' , S O that (5; *, 0) is a d-algebra. 

DEFINITION 2.2. Let (X; *,0) be a d-algebra and x e X. Define x * X := 
{x * a I a € X } . X is said to be edge if for any x in X, x * X = {x, 0}. 
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R e m a r k . If (X, <) is an ordered set (poset), then the operation * on X given 
by x*y = 0 if and only if x < y and x*y = x otherwise defines a BCK-algebra. 
On the other hand, from our viewpoint it has the "edge" property. Although edge 
d-algebras are not in general BCK -algebras, they come close to being so, as we 
note below. 

LEMMA 2.3. Let (X; *, 0) be an edge d-algebra. Then x*0 = x for any x G X. 

P r o o f . Since (K; *, 0) is an edge d-algebra, either x * 0 = x o r x * 0 = 0 
for any x G X. If x / 0 and x * 0 = 0, then by (III) x = 0, a contradiction. 

• 
PROPOSITION 2.4. If (X;*,0) is an edge d-algebra, then the condition (V) 
holds. 

P r o o f . If x = 0, then (x * (x * y)) * y = 0 by (II). Let x ^ 0. Assume 
(x * (x * y)) * y ^ 0 for some y G X. Let a := x * (x * y). Then a * y ^ 0 
and a / 0. This means that x^x*y£x*X = {x,0} and hence x * y = 0. 
It follows that, by Lemma 2.3, (x * (x * y)) * y = (x * 0) * y = x * y = 0, a 
contradiction. • 

DEFINITION 2.5. A d-algebra (X\ *,0) is said to be d-transitive if x * z = 0 
and z * y = 0 imply x * y = 0. 

THEOREM 2.6. Let (X;*,0) be a d-transitive edge d-algebra. Then (X;*,0) 
zs a BCK -algebra. 

P r o o f . By Proposition 2.4, it is enough to show that condition (IV) holds. 
Assume that ((# * y) * (x * z)) * (z * y) ^ 0 for some x,y,z G X. Since (x * y) * 
(x * z) G (x * y) * X = {x * y, 0 } , 

(x * y) * (x * z) = x * y . (a) 

If x*y = 0, then 0 ^ ((x*y)*(x*z))*(z*y) = (0*(x*z))*(z*y) = 0*(z*y) = 0, 
a contradiction. It follows that 

x * y = x . (b) 

Hence 

x = x * y [by (b)] 

= (x * y) * (x * z) [by (a)] 

= x * (x * z) [by (b)] 

that is, 
x = x * (x * z). (c) 
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If x * z 7-- 0, then x * z = x, since X is an edge d-algebra. By applying (III), 
x = x*(x*z) = x*x = 0. This means that 

0 7-- ((x * y) * (x * z)) * (z*y) 

= (x * x) * (z * y) 

= 0 * (z * y) 

= 0, 

a contradiction. Thus we conclude 

x * z = 0 . 

We claim that z*y = 0.1iz*y = z, then 

0 ^ ((x * y) * (x * z)) * (z *y) 

= ((x * y) * 0) * z 

= (x * y) * z 

= x * z 

= 0, 

[by (b) and x * z = x] 

(d) 

[by (d) and z * y = z] 

[by Lemma 2.3] 

[by (b)] 

[by (d)] 

a contradiction. Thus we obtain that x * z = 0 and z * y = 0. Since X is 
d-transitive, x * y = 0, and hence 0 / ((x * y) * (x * z)) * (z * y) = 0, a 
contradiction. This proves the theorem. • 

Remark. Both conditions, i.e., to have the d-transitive and edge properties, 
are necessary for a d-algebra of this type to be a BCK-algebra. Thus, arbi­
trary BCK-algebras do not always have the edge property even if the standard 
examples derived from posets do indeed possess it. 

E X A M P L E 2.7. Consider the following d-algebra X with the Table 2. 

* 0 1 2 3 

0 0 0 0 0 

1 1 0 0 1 

2 2 2 0 0 

3 3 3 3 0 

Table 2. 

We can easily see that 1*2 = 0, 2 * 3 = 0, but 1*3 = 1, and hence (X; *, 0) 
is non-d-transitive edge d-algebra. Since ((1 * 3) * (1 * 2)) * (2 * 3) = 1 ^ 0 , 
(X\ *,0) is not a BCK -algebra. 
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EXAMPLE 2.8. Let X := {0,1,2,...} and let the binary operation * be denned 
as follows: 

( 0 i fx<2/, 
x *y := < 

I 1 otherwise. 

Then x * z = 0, z * y = 0 implies x < z, z < y and in particular x < y, i.e., 
x*y — 0 also. Furthermore, x * x = 0, 0 * x = 0 and x*y = y*x = 0 if x < y, 
y < x, whence x = y. Thus, the algebra (X;*,0) is a d-transitive non-edge 
d-algebra. Also, (2 * (2 * 0)) * 0 = (2 * 1) * 0 = 1 * 0 = 1, so that (X; *, 0) is not 
a BCK-algebra. 

3. Construction of edge d-algebras 

Suppose that (X;*,0) is an arbitrary d-algebra. Assume that (X;*,0) is 
not an edge d-algebra. Define a binary operation ©: X x X -> X by 

f z if 
X 2 , : = І 0 ot 

^ * 2 / ^ 0 , 

otherwise. 

Then we can see easily that (X; ©, 0) is a d-algebra. Suppose now that x © X 
= {0}. Then x * y = 0 for all y G X. In particular, x * 0 = 0 = 0*o;,so that 
also x = 0. Hence, if x ^ 0, then x © X = {x, 0}. We summarize: 

THEOREM 3.1. Given a d-algebra (X; *, 0) we can construct an edge d-algebra 
(.K;©,0), called the extended edge d-algebra. 

PROPOSITION 3.2. A d-algebra (.K;*,0) is d-transitive if and only if its 
extended edge d-algebra (X;©,0) is d-transitive. 

P r o o f . If (X; *, 0) is d-transitive then x © z = 0 and z © y = 0 imply 
x*z = 0 = z*y, so that x*y = 0 and x©y = 0 as well. Conversely, if (X; ffi, 0) 
is d-transitive, then x * z = 0 and z * y = 0 imply x®z = 0 = z®x,so that 
x © y = 0 and x * t/ = 0 as well. • 

EXAMPLE 3.3. There are 27 d-algebras as follows: 

* 0 

1Г 
a ò c * 0 

1Г 0 0 0 

a a 0 0 u 

b b V 0 0 

c 1 c 0 w 0 
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where u,v,w E {a,b,c}. All of these algebras have the same unique edge 
d-algebra as follows: 

0 a 6 c 

0 0 0 0 0 

a a 0 0 a 

b b b 0 0 

c c 0 c 0 

This d-algebra is not d-transitive since a 0 b - = b © c - = O , while a © c = a ^ 0 . 
It also has the following d-chain property: x © y / 0 implies y 0 x = 0. 

Properties of edge d-algebras are properties of d-algebras having the edge 
property. This may be a useful observation in the reduction of certain ques­
tions from d-algebras to the simpler situation where one has to deal with edge 
d-algebras. 

Let V be a digraph such that if (x,y) is an edge, then (y,x) is not an edge. 
Such a digraph T' is said to be oriented. Let 0 be adjoined to V and denote 
by T the oriented digraph with edges (0, x), x eV added to those of Tf. On T 
define the operation * by x * x = 0; x * 0 = x\ 0 * x - = 0 and x * y = x if (x, y) 
is not an edge, x * y = 0 if (x, y) is an edge. Then (T; *, 0) is an edge d-algebra. 
We summarize: 

THEOREM 3.4. Every edge d-algebra (X;*,0) produces an oriented digraph 
r -= T; U {0} and conversely. 

4. Direct sum(product) of d-algebras 

Let {(X^ *,0 i) | i E 1} be a non-empty family of d-algebras and let Yl Xi 
iei 

consist of all vectors (x{)ieI) xi E X{. Then (xi = 0{)ieI = 0 serves as 0 

if we define ( x . ) i e / * (y{)ieI := (x{ * y . ) i e / and ( \[ X{\ *,o) is a d-algebra, 
xiei ' 

called the direct product of the d-algebras {(X{\ *,0) | i E / } . Similarly, 0 Xi 
iei 

consisting of all vectors (xi)ieI, x{ G l ^ , such that xi = 0i except for a finite 

number of i, is a subset of Yl Xi which is closed under *, whence ( 0 Xt; *, 0) 
iei ^iei ' 

is a d-algebra, called the direct sum of the d-algebras {(X f ;*,0) | i E / } . 
Let (X;*,0) and (Y";*,0) be d-algebras. A mapping / : X -> F is called a 
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d-morphism if f(x * y) = f(x) * f(y) for any x,y G X. Note that f(0x) = 0Y. 
Using this concept we study some edge properties. 

PROPOSITION 4 . 1 . Let f: (X;*,0) -> (y ;* ,0 ) be an onto d-morphism and 
let (K ;* ,0) be an edge d-algebra. Then (y*,*,0) is also an edge d-algebra. 

P r o o f . Consider y = f(x), b = f(a). Then y*b = f(x)* f(a) = f(x*a) e 
{/(x)> fia)} — {2/5 0} 5 whence the conclusion follows. • 

Even though (X;*,0) and (y ;* ,0 ) are edge d-algebras, their direct sum 
X © y need not have the edge property. 

Let x G X and y G Y, and let x * a = x , 7/ * b = 0 for some a G X and 
beY. Then (x ,y )* (a ,b ) = (x*a,y*b) = (x,0) £ {(x,y) , (0,0)} if y^O. In 
order for a Cartesian product of two d-algebras to have the edge property, we 
introduce a n e w binary operation ®. Let (X ;*,0) and (y ;* ,0 ) be d-algebras. 
Define the binary operation ® on X x Y as follows: (x,y) ® (a, b) := (X,T/) 
unless x * a = 0 = 2/*b , when (x,?/) ® (a,b) := (0,0). Then we can easily see 
that (X x Y] ®, 0XxY) is an edge d-algebra, denoted by X ® Y, and called the 
edge product of d-algebras (X;*,0) and ( y ; * , 0 ) . Given X © y and X ® y , 
there are inclusion mappings t x and t y , and projections /KX and 7ry. Now, 
t x ( x * a) = (x * a,0) = (x,0) * (a, 0) = tx(x) * ^ ( a ) . Similarly, ^y(y * b) = 
tY(y) * tY(b). Moreover, irx(x* a,y * b) = x*a = 7Tx(x,y)*irx(a,b). Similarly, 
7ry (x * a, 2/ * b) = 7ry (x, ?/) * 7ry (a, 6). We summarize: 

PROPOSITION 4 .2. T7ie inclusion mappings and projections relative to X($Y 
are d-morphisms. 

THEOREM 4.3. Let (X;*,0) and (y-,*,0) be d-algebras. Then X (or Y, 
respectively) is an edge d-algebra if and only if the inclusion mapping tx (or 
tY , respectively) is a d-morphism relative to X ® Y. 

P r o o f . Suppose tx is a d-morphism relative to X ® Y. Then (x * a, 0) = 
tx(x * a) = tx(x) ® tx(a) = (x,0) ® (a ,0) , and hence x * a G {x,0} for any 
a e X. This means x * X = {x, 0} for all x e X. Thus X is an edge c?-algebra. 
Similarly, if tY is a d-morphism relative to X®Y, then y is an edge d-algebra. 
Conversely, assume X is an edge d-algebra. Consider the inclusion mapping 
tx relative to X ®Y. Then tx(x * a) = (x * a,0) = (x,0) or (0,0), and 
tx(x) ® ̂ x (a ) = (x, 0) ® (a, 0) = (x, 0) or (0, 0) both according as to x * a = x 
or x * a = 0 . Thus t,x is a d-morphism. Similarly, if Y is an edge d-algebra, 
then tY is a d-morphism. • 

Since X ®Y is an edge d-algebra, the following proposition is an immediate 
consequence of Proposition 4 .1 . 
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PROPOSITION 4.4. If the projection 7tx (or 7Ty, respectively) is a d-morphism 
relative to X ®Y, then X (or Y, respectively) is an edge d-algebra. 

Remark. Even though X and Y are edge d-algebras, the projections nx and 
7Ty relative to X ®Y need not be d-morphisms. 

Indeed, suppose that y * 0 = y ^ 0. Then 7rx ((X, y) ® (a, 0)) = nx (x, y) = x. 
On the other hand, /nx(x, y) * nx(a, 0) = x * a, so that if x * a = 0, then x ^ 0 
implies 7rx((x,y) ® (a,0)) 7-= 7Tx(x,y) * 7rx(a, 0), i.e., 7rx is not a d-morphism, 
nor is 7ry a d-morphism. 
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