Bohdan Zelinka Domination in cubes

Mathematica Slovaca, Vol. 41 (1991), No. 1, 17--19

Persistent URL: http://dml.cz/dmlcz/130019

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

DOMINATION IN CUBES

BOHDAN ZELINKA

ABSTRACT. The graph of the *n*-dimensional cube is the graph whose vertex set is the set of all *n*-dimensional Boolean vectors and in which two vertices are adjacent if and only if they differ in exactly one coordinate. In the paper the *k*-domatic number and the edge-domatic number of these graphs are studied.

The graph Q_n of the *n*-dimensional cube is the graph whose vertex set is the set of all *n*-dimensional vectors (v_1, \ldots, v_n) , where $v_i = 0$ or $v_i = 2$ for $i = 1, \ldots, n$, and in which two vertices are adjacent if and only if they differ exactly in one coordinate.

We shall study the edge-domatic number and the *k*-domatic number of these graphs.

The domatic number of an undirected graph G was introduced by E. Cockayne and S. T. Hedetniemi in [1]. The edge-domatic number and the k-domatic number were introduced by the author of this paper in [2] and [3].

A subset D of the vertex set V(G) of a graph G is called dominating if for each vertex $x \in V(G) - D$ there exists a vertex $y \in D$ adjacent to x. If k is a positive integer and if for each vertex $x \in V(G) - D$ there exists a vertex $y \in D$ whose distance from x in G is at most k, then the set D is called k-dominating. If D is a subset of the edge set E(G) of G and for each edge $e \in E(G) - D$ there exists an edge $f \in D$ having a common end vertex with e, the set D is called a dominating edge set of G.

A partition of V(G), all of whose classes are dominating (or k-dominating) sets in G, is called a domatic (or k-domatic respectively) partition of G. A partition of E(G), all of whose classes are dominating sets in G, is called an edge-domatic partition of G. The maximum number of classes of a domatic (or k-domatic, or edge-domatic) partition of G is called the domatic (or k-domatic, or edge-domatic respectively) number of G. The domatic number of G is denoted by d(G), the k-domatic number by $d_k(G)$, the edge-domatic number by ed(G).

In the following the vector (v_1, \ldots, v_n) will be denoted simply by $v_1 \ldots v_n$. The

AMS Subject Clasification (1985): Primary 05C 70.

Key words: Cube graph, Domatic number, Dominating edge set.

symbol $(v_1 \dots v_n, v'_1 \dots v'_n)$ will denote the edge in Q_n joining the vertices $v_1 \dots v_n, v'_1 \dots v'_n$.

Theorem 1. Let k, n be integers, let $1 \leq k \leq n$. Then

$$d_k(Q_n) \ge 2^{k-1} d(Q_{n-k+1}).$$

Proof. Denote $d(Q_{n-k+1}) = p$. Take the cube graph Q_{n-k+1} and choose a domatic partition \mathcal{D} of it with p classes D_1, \ldots, D_p . Now let M be the set of all ordered k-tuples (i, h_1, \dots, h_{k-1}) of integers, where $1 \leq i \leq p$ and each h_i is 0 or 1. The cardinality of M is $2^{k-1}p$. Consider the cube graph Q_n . We shall construct a partition \mathcal{D}^* of the vertex set of Q_n whose classes will be D_m^* for all elements $m \in M$. Every vertex $v_1 \dots v_n$ will be in D_m^* such that $m = (v_{n-k+2}, \dots, v_n)$, where *i* is the number such that $v_1 \dots v_{n-k+1} \in D_i$ in Q_{n-k+1} . We shall prove that \mathcal{D}^* is a k-domatic partition of Q_n . Let $m = (i, h_1, \ldots, h_{k-1}) \in M$ and let $\mathbf{v} =$ $= v_1 \dots v_n$ be a vertex of Q_n . Suppose that $v \notin D_m$. Let $\mathbf{w} = v_1 \dots v_{n-k+1} h_1 \dots$... h_{k-1} ; this is a vertex of Q_n . As the vectors v, w differ in at most k-1coordinates, their distance in Q_n is at most k - 1. In Q_{n-k+1} consider the vertex $\mathbf{v}' = v_1 \dots v_{n-k+1}$. This vertex either belongs to D_i or is adjacent to a vertex $z' \in D_i$ in Q_{n-k+1} , because D_i is a dominating set in this graph. In the first case **v** has the distance at most k - 1 from a vertex of D_m in Q_n , namely the vertex $v_1 \dots v_{n-k+1} h_1 \dots h_{k-1}$. In the second case let **z** be the vector obtained from **z**' by adding k-1 coordinates h_1, \ldots, h_{k-1} after the coordinates of \mathbf{z}' . The vertices w, z are adjacent in Q_n and therefore the distance between v and z is at most k, while $z \in D_m$. The set D_m is dominating in Q_n . As m was chosen arbitrarily, \mathcal{D}^* is a k-domatic partition of Q_n with $2^{k-1}p = 2^{k-1}d(Q_{n-k+1})$ classes, which implies the assertion. \Box

It was proved in [4] that if $n = 2^s$, where s is a positive integer, then $d(Q_{n-1}) = d(Q_n) = n$. We have a corollary.

Corollary. Let s, k be positive integers, let $n = 2^s + k$. Then $d_i(Q_{n-2}) \ge 2^{s+k-1}$,

Theorem 2. Let n be a positive integer divisible by 3. Then

$$ed(Q_n) \geq 4n/3$$
.

Proof. First consider n = 3. There exists an edge-domatic partition of Q_3 consisting of the set {(000, 100), (010, 011), (101, 111)} and the sets obtained from it by the iterations of the permutation given by $000 \mapsto 100 \mapsto 110 \mapsto 100 \mapsto 010 \mapsto 010 \mapsto 101 \mapsto 011 \mapsto 001$. (In geometry this permutation is the 90° rotation of the cube around its vertical axis.) This set has 4n/3 = 4 elements. Now consider the cube graph Q_n , where *n* is divisible by 3 and $n \ge 6$. For i = 1, ..., n/3 let F_i be the set of edges which join vertices differing in the (3i - 2)-th, the (3i - 1)-th or the 3*i*-th coordinate. The sets $F_1, ..., F_{n,3}$ form a

partition of $E(Q_n)$. The spanning subgraph of Q_n having the edge set F_i is a graph having 2^{n-3} connected components which are all isomorphic to Q_3 ; denote this graph by H_i . The vertex set of each connected component of H_1 consists of vertices for which the coordinates v_4, \ldots, v_n are the same. We shall call such a component even (or odd) if among the coordinates v_4, \ldots, v_n there is an even (odd, respectively) number of those which are equal to 1. In each even component of H_1 we take the set of edges $(000v_4 \dots v_n, 100v_4 \dots v_n), (010v_4 \dots v_n, 011v_4)$... v_n), (101 v_4 ... v_n , 111 v_4 ... v_n), in each odd component of H_1 we take the set of edges { $(100v_4 \dots v_n, 110v_4 \dots v_n)$, $(000v_4 \dots v_n, 001v_4 \dots v_n)$, $(011v_4 \dots v_n, 111v_4)$, $\dots v_n$. Let D be the union of all these sets for all connected components of H_1 . Consider the set M of vertices of Q_n which are incident with no edge of D. It consists of all vertices $001v_4, \dots v_n, 110v_4 \dots v_n$, where the number of coordinates equal to 1 among v_4, \ldots, v_n is even, and $010v_4 \ldots v_n$, $101v_4 \ldots v_n$, where this number is odd. It is easy to see that M is an independent set in Q_n . Hence each edge of Q_n is incident with at most one vertex of M and with at least one vertex of $V(Q_n) - M$. This implies that each edge of Q_n either belongs to D, or has a common end vertex with an edge of D and thus D is a dominating set in Q_n . We use the permutation given by $000v_4 \dots v_n \mapsto 100v_4 \dots v_n \mapsto 110v_4 \dots$ $\dots 010v_4 \dots v_n \mapsto 000v_4 \dots v_n, 001v_4 \dots v_n \mapsto 101v_4 \dots v_n \mapsto 111v_4 \dots v_n \mapsto$ $\mapsto 011v_4 \dots v_n \mapsto 001v_4 \dots v_n$ for any values of v_1, \dots, v_n . By this permutation and its iterations from D we obtain four pairwise disjoint dominating edge sets in Q_n (including D itself). Instead of H_1 we may take other H_i and proceed analogously. In this way we obtain an edge-domatic partition of Q_n with 4n/3 classes, which implies the assertion. \Box

REFERENCES

- COCKAYNE E. J. HEDETNIEMI S. T.: Towards a theory of domination in graphs. Networks, 7, 1977, 247 261.
- [2] ZELINKA B.: Edge-domatic number of a graph. Czech. Math. J., 33, 1983, 107 110.
- [3] ZELINKA B.: On k-domatic numbers of graphs. Czech. Math. J., 33, 1983, 309 309-311.
- [4] ZELINKA B.: Domatic number of cube graphs. Math. Slvovaca, 32, 1982, 117 119.

Received August 3, 1989

Katedra matematiky Vysoké školy strojní a textilní Sokolská 8 471 17 Liberec 1