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(Communicated by Milan Medvea") 

ABSTRACT. Possibilities of using the Baker-Campbell-Hausdorff (BCH) for
mula to describe the u)-limit behavior of dynamical systems generated by two 
alternating vector fields (zig-zag dynamical systems) are studied. It is shown tha t 
in the case when the two vector fields generating the zig-zag dynamical system 
are linear the usage of the BCH formula is useful. Limitation for nonlinear case 
are discussed. 

1. Introduction 

In this paper we are going to study a particular class of dynamical systems 
that we chose to call "zig-zag dynamical systems" for its dynamics is determined 
by two smooth vector fields alternately operating on the phase space. Motivation 
for the study of such systems can be found in [5] and partially also in [6]. Both 
papers deal primarily with the study of periodic points of the zig-zag system, 
mostly in the case where the two vector fields are F-related by some involutive 
diffeomorphism F. In this article we will consider arbitrary smooth vector fields. 

2. Preliminaries 

Let M be a smooth manifold of dimension m with two smooth vector fields 

u , v : M -±TM 
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defined on it. The flows of these vector fields will be denoted by tp1, ^ ' , where 
t € K., respectively. 

Next, we consider a 2p periodic function r (t) defined on [0,2p) by 

/ x f 0 for * 

•(<) = { l for< 
0 f o r t € [ 0 , p ) , 

€\p,2p). (1) 

The zig-zag dynamical system is now described by the following non-autonomous 
differential equation with a 2p-periodic piece-wise continuous right hand side 

i = f(x, *) = u(s) + rp(t) [v(x) - u(x)] . (2) 

P(x0) = ф*(<P(x0)) 

ixo) 

FIGURE 1. T h e trajectory of the zig-zag dynamical system. Start ing from t h e 
initial condition x0 t h e mo t ion in t h e phase space is governed by t h e equat ion 
x = u(x) for the first half of the period and by t h e equation x — v(x) for the 
second half of the period. T h e vector field u has the flow (p* a n d the vector field 
v has the flow \j)1 . 
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Let us denote by $(£; 0, x0) the solution of (2) satisfying the initial condition 
$(0;0,.x0) =- x0. Using the phase flows (/?* and ipl we can express this solution 
for t G [0, 2p) in the form 

^ ' ^ - { ^ ( ^ ( x , ) ) ioTt€\p,2p). ( 3 ) 

Let us define 
P(x) = $(2p;0,x). (4) 

Then the mapping P is a period map (also called a stroboscopic m,ap) for the 
equation (2) and the a;-limit behavior of the solution of (2) can be described by 
the CJ-limit behavior of the mapping P , i.e. by the LJ-limit behavior of the orbit 
{x0,P(x0),P*(x0),...} = {P»(x0)}™=0. 

From (3) and (4) it follows that 

P = iPPo(pP. (5) 

The situation is depicted on Fig. 1. 

3. Averaging method and the BCH formula 

In [5] we used the averaging method for finding periodic solutions of (2), with 
which we have associated an autonomous averaged system 

x = u(x) + v(x) (6) 

whose trajectories, as is well known, approximate solutions of (2) for small p on 
some finite interval. The right hand side of (6) is the first term of the Baker-
Campbell-Hausdorff (BCH) formula, which, for the reader's convenience, we now 
briefly review, hoping that in the process we illustrate its importance in the study 
of the zig-zag systems. 

The BCH formula for matrices. 
From the classical theory of Lie groups and Lie algebras it follows that the 

matrix exponential satisfies 

eA eB - e ( A + B ) if and only if AB = BA 

i.e. if the two matrices commute. In case the matrices A, B do not commute, 
then eA eB = e c , where the matrix C is given by the BCH formula (see [10], 
[3]) 

C = A + B + 1[A, B] + -L ( [ A ) [A, B]] - [B, [A, B]]) + • • • , (7) 

where [A, B] = AB — BA is the commutator of the matrices A and B. We will 
use this fact in Sections 5 and 6. 
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The B C H formula for vector fields. 
Here, we would like to provide some heuristic and motivational reason

ing. Following [1], we denote by Diff^°(M) the group of C°° diffeomorphisms 
with compact support. The set Diff£°(M) is an infinite-dimensional Lie group, 
whose Lie algebra is the algebra XC(M) of smooth vector fields on M. Foi 
u, v G Xc(M) we denote by [u, v] the usual Lie bracket of the two vector fields, 
(see e.g. [2]). 

It is well known that a vector field u G XC(M) generates a phase flow 
ipl G Diff£°(M), t G R. The diffeomorphism (p1 is called the time one map 
of the flow ipl. The correspondence 

is a well defined mapping 

Exp: XC(M) —> Diff~(M), (8) 

that is called the exponential mapping. This mapping is an analogy of the expo
nential mapping for finite dimensional Lie groups. 

Unfortunately, for the vector fields, this exponential mapping does not have 
the nice properties of the finite dimensional case (see [1], [4], [7], [11]), particu
larly it is neither one-to-one nor surjective near the identity (cf. [1], [7]), so there 
are diffeomorphisms from Diff^°(M) that are arbitrarily close to the identity, 
and yet do not have any pre-image in Xc(M) under the exponential mapping. 
The set 

Exp(Xc(M))=S (9) 

will be called the set of embeddable diffeomorphisms, i.e. the diffeomorphisms 
that can be embedded into a flow ipf of some vector field u G Xc(M). Typically, 
the set £ is a rather irregular first category — like subset of Diff^°(Af), (see [9]). 

Let us now return to our zig-zag dynamical system and consider the vector 
fields u , v from (2). Then 

Exp(u) = v?1 

and 

Exp(v) = V'1 , 

and thus 

(pp = Exp(pu) 

and 

ipp = Exp(pv). 

Let us assume, for this moment, the validity of the BCH formula even in this 
infinite-dimensional case, i.e. let us assume that the following holds 

(Exp(v)) o (Exp(u)) = Exp(w(v : u)) . (10) 
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One might expect that then the vector field w(v : u) is given by the BCH 
formula 

w(v : u) = (v + u) + I [ v , u] + - L ([v, [v, u]] - [u, [v, u]]) + • • • . (11) 

In Paragraph 7 we show that this is not true and we derive a correct formula. 
With respect to relation (10) the period map P for the zig-zag system would be 
given by 

P = ijjP o cpp = Exp(pv) o Exp(pu) = Exp(w(pv : pu)) , (12) 

where 

2 3 

w ( p v : p u ) = p ( v + u) + ^ - [v ,u] + ^ ( [ v , [ v , u ] ] - [u, [v, u]]) + • • • . (13) 

Then we could embed the period map P into the phase flow of the vector 
field w(pv : pu ) . The orbits of the mapping P would lie on trajectories of the 
vector field w and the to -limit behavior of these orbits will be determined by the 
u;-limit behavior of the trajectories of w . At the same time we see that using 
the averaging method we obtain the first term in the BCH formula. 

In Paragraph 4, the case is investigated, when the right-hand side of (11) is 
reduced to its first term and in Paragraphs 5 and 6 we will consider two cases in 
which the BCH formula for matrices can be applied for the study of qualitative 
properties of the linear zig-zag systems. Finally in Paragraph 7 the nonlinear 
case of zig-zag system is treated. In the last Paragraph 8 the numerical study is 
provided as a demonstration of using the BCH formula for an example of zig-zag 
system. 

4. The case [u,v] = 0 

In this paragraph, we will assume that the Lie bracket of the vector fields 
u, v from (2) is equal to 0, i.e. 

[u,v] = 0. (14) 

It is well known (see [2; p. 155, Theorem 7.12]) that the relation (14) is 
equivalent to 

cp1 oips = ips oy>* for all * , s e R , (15) 

where (pl and ij)1 are the phase flows of the vector fields u , v respectively. In 
this case, the following theorem holds. 
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THEOREM 1. Let u , v be two vector fields in XC(M) and ipl, ty1 their phase 
flows. If [u, v] = 0, then 

TJ* ==-0* <V , t G R , (16) 

is the phase flow of the vector field u + v . 

P r o o f . The first two properties of the flow are evident, 
(i) rf = ^ o ^ = \d\M; 

(ii) rf o 77s = -0* o ipl o i/js o ips = -0 t+s o (Dt+S = rf+s. 

For (iii) we need to show that 

drf(x) 
dí 

= u(тj*(z))+v(У(x)). 

We have 

^tøҶ-^-^tøWí*)) 
_ Wtfjx)) d^^jx^d^jx) 

dt dx dt 
= y{vt(x))+^{ip\x))vi{ipt{x)), 

or more briefly 
17* = ^ t + ^ 0 t = v + ^ u > (17) 

where we use the notation from [1; p. 3], According to [2; p. 141, Theorem 5.7], 
we obtain that 

so that 
rf = u + v , 

which was to be proved. D 

Remark 4.1. In this case, the BCH formula takes the form 

Exp(v) o Exp(u) = Exp(u + v) (18) 

and the period map for the equation (2) is simply 

P(x) = rf(x). 

The orbits of the mapping P lie on the trajectories of the vector field u + v . 

Remark 4.2. For each u G XC(M) and for each F G Diff^M) 

E x p ( F » = F o Exp(u) o F " 1 , (19) 

as follows from considerations in [2; p. 137, Example 4]. The relationship (19) 
implies that for all F G Diffc

K)(M) 

F o [Exp(*c(M))] o F " 1 c Exp(*c(M)). (20) 

Let us now recall the Thurston's theorem (see [1; p. 24]): 
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THEOREM T . For any smooth manifold M, the identity component Diff^°(M)0 

in Diff^°(Af) is a simple group. 

This theorem and the relation (20) clearly imply that the set Exp(Xc(M)) 
cannot be a subgroup of the group Diff£°(M) for if it were one, then by (20) it 
would have to be a normal subgroup which contradicts the Theorem T. 

R e m a r k 4 .3 . Suppose that 

Exp(u) o Exp(v) = Exp(w(u : v)) , (21) 

where w 6 XC(M) i.e. the diffeomorphism cp1 otp1 is embeddable. Then for each 
.FeDiff~(A/) we get 

E x p ( F » o E x p ( F » = Exp(F ,w(u : v)) , (22) 

since on the left hand side we have, according to (19) 

F o Exp(u) oF'1 oFo Exp(v) o F'1 

= Fo Exp(u) o Exp(v) o F'1 

= F o E x p ( w ( u : v)) o F " 1 

= E x p ( F > ( u : v ) ) . 

5. The linear zig-zag system 

In this paragraph we set M = Kn and consider two linear vector fields 

u(x) = Ax and v(x) = Bx, (23) 

where A, B are arbitrary square matrices of order n , x G l " . The corresponding 
phase flows are then 

ip*(x) = etAx and ^ ' (x ) = e ' B x , (24) 

so that 
Exp(Ax) = e A x and E x p ( B x ) = e B x . 

That implies 

Exp(Ax) o Exp(Bx) = eA e B x = eC x = Exp(Cx), (25) 

where the matrix C is determined by (7). 
Let us now return to the period map P for the equation (2), where the vector 

fields u and v are given by (23). Then, considering (24) we obtain 

P(x) = ippo ipp(x) = epB epA x = e D x , 
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where the matrix D is, according to (7), given by 

D=p(B + A) + -^[B>A] + ^( [B > [B,A]] - [A, [B > A]] )+ . . . . (26) 

Thus the mapping P(x) can be embedded into the flow r/^x), which is the 
phase flow of the linear system 

x = Dx. 

The orbits of the period map P are lying on the trajectories of this linear 
system. Thus we have proved the following theorem. 

THEOREM 2. Let A, B be matrices of order n and rp(t) be a function defined 
by (1). Let furthermore P: W1 -» Rn be the period (time 2p) map of the system 

x = Ax + r p ( t ) [Bx-Ax]. 

Then for sufficiently small p > 0 there exists a matrix D, given by (26), 
such that every orbit Op = [Pn(xQ) : n 6 N} of the mapping P, lies on the 
trajectory of the linear system x = Dx, passing though the initial state xQ . 

Remark 5.1. Let us return to the relation (25). It was obtained by using the 
BCH formula for matrices. We will show how to write this relation using the 
BCH formula for linear vector fields. For this purpose we must consider that the 
usual bracket product of linear vector fields satisfies 

[Ax, Bx] = BAx - ABx = -[A, B]x. 

When we introduce a more convenient bracket product (see [7; p. 1041]) 

[v,u]~ = - [v ,u ] , 

i.e. the appropriate bracket product is just the negative of the usual bracket 
product of vector fields, then 

[Ax, Bx]~ = [A, B]x 

and the vector field Cx in (25) can be expressed in the form 

Cx = Ax + Bx + ^[Ax, Bx]~ + - ^ ([Ax, [Ax, Bx]~]~ - [Bx, [Ax, Bx]~]~) +• • • , 
(27) 

which is just the BCH formula for linear vector fields. 
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6. Nonhomogeneous linear zig-zag system 

In this paragraph we set M = Rn again and consider two vector fields 

u(x) = A ( x - x 0 ) and v(x) = B(x - xx), (28) 

where x0, x1 G Rn and x0 / xx. 

Remark 6.1. The case when x0 = xx can be converted to the linear case using 
(22) from the Remark 4.3. If we choose F in the form 

F(x) = x + x0 , 

then F#(Ax) = A(x —x0) and Fm(Bx) = B(x —x0) and we obtain easily a result 
similar to Theorem 2. 

The vector fields (28) determine nonhomogeneous linear differential equations 

x = A(x — x0) and x = B(x — xx) 

with the corresponding phase flows 

^ ( x ) = x0 + e fA(x - x0) and ^ ( x ) = xx + e t B (x - x L ) . (29) 

The corresponding period map has the form 

P(x) = </>p o ipp(x) = xx+ epB (x0 + e^A(x - x0) - x{). (30) 

Let us set 
e P B . e P A = e D ) 

where the matrix D is given by (26) and let us consider the differential equation 

x = D(x-x* ) 

with the phase flow 
r /(x) = x * + e ' D ( x - x * ) (31) 

into which we want to embed the mapping P = tpp o tpp so that 

<ij)p o ipp = r;1 . (32) 

Substituting (30) and (31) into (32) we get 

x, + epB [x0 + ep A(x - x0) - x j = x* + eD (x - x*) 

and after simplification 

[E - epB epA] x* = xx + epB(x0 - x,) - epB ep A x0 , (33) 
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where E is the identity matrix. Assuming that E — e D is regular, we can solve 
this equation for x*: 

x * = [ E - c D ] - 1 . [ x 1 + e " B ( x 0 - x 1 ) - e D x 0 ] . 

This fully determines the phase flow (31). 

(34) 

Remark 6.2. The previous argument shows that the embedding of the diffeo-
morphism (30) into the flow (31) may not be always possible but if the matrix 
E — e D is not regular then the diffeomorphism (30) can still be embedded into 
a flow of a more general vector field, namely 

x = D x + Xi D » 

where x n is a constant vector. 

E X A M P L E 6.1. As an illustration, we will discuss a simple example from [5], 
which is called "blinking nodes" there. 

We will consider two two-dimensional vector fields 

u(x, y) = (-x + 1, -y), v(x, y) = (-x - 1, -y) , 

and the corresponding differential equations 

x = — x + 1, 

If = -y, 

and 

x = —x — 1, 

y = -y, 

whose phase flows are described explicitly as 

<p*(x,y) = ( l + ( z - l ) e - ' , y e " * ) , 

1>t(x,y) = ( - l + (x + l ) e - ' , i J e - ' ) . 

In this case, considering the notation (28), we obtain 

A = B = - E , x0 = (1, 0) = -xx , PA = ;;B = -pE . 

The equation (34) has then the form 

(35) 

E - (Г 2 " E 

= [ 
= [ - - - ' 

X Q " - --'Xrv C У\Ç\ C 

1 - 1 

-E + 2e - Р E _ e ~ 2 p E 

л 0 . 
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Cons idering the mat r ix identities 

e " 2 ^ = 

and 

we obtain 

-2pE 1 - 1 [E-e 

( 2 e - ' Æ - e - 2 P E - E ) = 

Є~2P 0 
0 e" 2 ? 

ì 
1 - Є - - P 

0 
1 - Є - - P 

X = 

- ( Є - P - 1 ) 2 0 

0 - ( e - ^ - 1 ) 2 

0 
( e - p - U 
l - e - - P 

Є ~ p - 1 
Є - P + 1 

0 

0 . 2 0 . 4 0 . 6 

F I G U R E 2. The solid line is the trajectory of the zig-zag system "blinking nodes" . 
Our goal is to find a vector field whose trajectory (the dashed line) contains the 
orbit of the period m a p of the "zig-zag" system. The point x* is the a t t ractor of 
the period m a p P. 

The situation is depicted in Fig. 2, where the solution curve of the zig-zag 
system (2) is marked by a solid line, while the trajectory of the phase flow (31) 
is marked by a dashed line. We note that this result agrees with the result from 
[5], which was obtained by a different way. 
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7. Nonlinear zig-zag system 

From the reasons discussed in [7] it follows that the generalization of the BCH 
formula from finite dimensional Lie groups to infinite dimensional Lie groups is 
possible only in the case when this infinite dimensional Lie group can be provided 
with a real analytic structure. This is not possible for Diff£°(M) (cf. [7]). Thus 
the BCH formula in general setting for the group Diff£°(M) does not even make 
sense. 

Another difficulty with the BCH formula for the group DiSc
x>(M) follows 

from the Remark 4.2, namely even when the diffeomorphisms 

ip1 = Exp(u) and ip1 = Exp(v) 

are embeddable, then their composition 'i/j1 o tp1 is not necessarily embeddable, 
because the set Exp(A'c(M)) is not a group. 

Despite of this it seems to us reasonable to consider the following problem. 

PROBLEM FORMULATION. Let us consider two vector fields u, v G XC(M) 
(sufficiently "small") with the phase flows </?*, ipl, i.e. 

ipl = Exp(u) and ipl = Exp(v) . 

Let us suppose that 
^oy1 eExp(Xc(M)), (36) 

i.e. the composition of corresponding 1-flows is an embeddable diffeomorphism. 
That means there exists a vector field w G XC(M) with the phase flow // 
satisfying 

r r = ^ < V , (37) 
or 

Exp(w) = V1 o <pl . (38) 

Let us try to find the vector field w satisfying (38). There may exist more 
than one such vector fields because the mapping Exp is not one-to-one. It is 
obvious that the vector field w depends on the two vector fields u and v . We 
denote this dependence w(v : u ) . We want to express the vector field w in 
terms of the two vector fields v and u . 

The method used below is based on the expression of the phase flow </?' of a 
vector field u G XC(M) using the relation [8; (1.19)], i.e. for t G R, x G M we 
have the Lie series 

~ tk
 L., , . . , , r2 

^ X ) = J2 fcîu*(x) = x + *u(x) + T u 2 ( x ) + ' " ' ' (39) 

A- = 0 

For details see [8]. 
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We will work with local coordinates and let us set M = W1 for simplicity 
and the vector fields will be given using the coordinate functions in the form 

n f) 

u(x) = ^ ^ ( x ) — , 
i—1 l 

n f) 

i=\ l 

where x = (x1,x2, — - , #n) G Rn. Let us recall that the Lie bracket of these 
vector fields is given by 

M=i{UM'*rv'%))*;-
We will use the short form 

[u, v] = u(v) — v(u) = v'u — u 'v , 

where 

V ^ í / M - l -
Further we will write briefly 

u2 = u(u), u3 = u(u2) etc 

Let us denote for t = p 

y = </(x) = X +PU(X) + JU2(X) + • - - (40) 

and 

z = r(y) = y + pv(y) + V- v2(y) + •. • . (41) 

Now we want to find a vector field w with the phase flow rf such that 

771 = <0P o <pP , (42) 

i.e. 

7r(x) = z = vp(y). (43) 
We want to find the vector field w = w(v : u) as a formal series 

00 

w(x) = Wj(x) + w2(x) + w3(x) + • • • = J2 wfc00 > (44) 
fc=i 
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where w j x ) e XC(M) and 

wfe(pv : pu) = p*wfc(v : u ) . (45) 

By substituting from (40) into (41) we get after simplification 

z = x +pu(x) + ^u 2 (x) + ^u 3 (x) + 0(p4) 

+ p{v(x + pu(x) + ^u 2 (x) + 0(p3))} 

+ j { v 2 ( x + pu(x) + 0(p2))} + ^ { v 3 ( x + 0(p))} 

= x + pu(x) + ^u 2 (x) + ^u 3 (x) + 0(p4) 

r2 
+ p{ v(x) + v'(x) [pu(x) + P-v?(x) + 0(p3)]} 

P3 

3! 
+ ţ{v2(*) + (v2(x))'Ы*) + o(p2)]} + ţ{v3(X) + o(P)} 

= x + pu(x) + ^ u 2 ( x ) + ^ u 3 ( x ) + 0(p4) 

+ p{v(x) + pu(v(x)) + ^-uҶv(x)) + 0(p3)} 

p3 

3! 
+ {v2(x) +pu(v 2(x)) + 0(p2)} + £ { v 3 ( x ) + 0(p)} , 

so that 
n2 

(46) 
z = x + p{v(x) + u(x)} + y { v 2 ( x ) + 2u(v(x)) + u2(x)}+ 

+ ^ { v 3 ( x ) + u3(x) + 3u2(v(x)) + 3u(v2(x))} + 0(p4). 

Now we rewrite (43) in the form 

z = r1
1(x) = x + w(x) + -w2(x) + 3JW3(X) + • • • , (47) 

and we use (44) for w(x). Then (when omitting x) 

w2 = (wj + w 2 + w 3 H )(wj + w 2 + w3 -i ) 

= w 2 + wt(w2) + Wj(w3) + • • • + w2(Wj) + w
2 + • • • + w3(Wl) + • 

(48) 

w 3 = w(w2) = (wx + w 2 + • • -)(w
2 + wt(w2) + w2(wx) + • • •) 9 

= w 3 + w2(w2) + w2(w
2) + ---. 
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From (48) and (49) we put into (47) and we get 

Z = X + (W. + W2 + W3 + •••) + i [W2 + W.(W2) + W2(WJ + • • •] 
1 (50) 

+ 5 I K + --.] + o(p4). 
By comparing (46) and (50) and using (45) we get 

pl : Wj = v + u , (51) 

p2: w2 + ± w 2 = ± { v 2 + 2u(v) + u 2 } , (52) 

ps : w3 + ±w,(w2) + | w 2 ( W l ) + ± w 3 = ± ( v 3 +3u2(v) + 3u(v2) + u3) . 
1 l 6- 6- (53) 

Now we put from (51) into (52) using 

w2 = (v + u)(v + u) = v2 + v(u) + u(v) + u2 (54) 
and we get 

w2 = l ( u ( v ) - v(u)) = - I [ v , u] = ±[v, u]~ , (55) 

where we use the modified Lie bracket [•, -]~ from Remark 5.1. Now we put into 
(53) using 

w3 = wx(w2) = (v + u)(v2 + v(u) + u(v) + u2) g 

= v3 + v2(u) + v(u(v)) + v(u2) + u(v2) + u(v(u)) + u2(v) + u3 ; 

w1(w2) = (v + u) ( i (u(v) -v(u) ) ) = i (v 2 (u)-v(u(v))+u(v(u))-u 2 (v)) ; 
W J (57) 

w2(w.) = | (v (u ) - u(v))(v + u) = i(v(u(v)) + v(u2) - u(v2) - u(v(u))) . 
(58) 

After putting (56), (57) and (58) into (53) and simplifying we get 

w3 = T V ( N V > U ] ] - [«.[v,u]]) = ^ ( [ v , [ v , u ] ~ ] ~ - [u,[v,u]~]~) . (59) 

This result suggests the following hypothesis: 

HYPOTHESIS. One of the vector fields satisfying (38), i.e. Exp(w) = 
Exp(v) o Exp(u), is the vector field w(v : u) given by the following BCH 
formula 

Kv :u ) = v + u + | [ v , u ] ~ + ^ ( [ v , [ v , u ] ~ ] ~ - [ u , [ v , u ] ~ ] ~ ) + - - -

and the convergence of the right-hand side implies that the diffeomorphism 
i/;[ o ĉ 1 is embeddable. 

Remark 7.1. It is useful to note that our hypothesis is also supported by the 
result from the Paragraph 5, because the result (27) from Remark 5.1, obtained 
by a fully rigorous way, agrees with our hypothesis for linear vector fields. 
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8. Numerical experiment 

As mentioned in the Remark 7.1 the full proof of our Hypothesis is not 
complete in the sense that the problems with the convergence in the BCH formula 
are not yet solved. 

Because of this, we have made the following numerical experiment to shed 
more light on the relation between the u-limit behavior of the orbits of pe
riod mapping P and the CJ-limit behavior of the trajectories of the vector field 
w(v : u). 

-1 

-2 
-1.0 

FIGURE 3. Invariant curve of the period map P for the zig-zag dynamical system 
"blinking cycles". 

Let us have two planar vector fields 

u(x,y) = 

v(x,y) = 

џ(x-l)-y-(x-l)[(x-l)2 + y2] 
(x - 1) + џy - y[(x - l)2 + y2] 

џ(x+l)-y-(x + 1) [(x + l ) 2 + y2] 
(x + \) + џy - y[(x + l)2 + y2] 

(60) 

(61) 

each of which has a stable limit cycle with the radius yfji and the center (1; 0), 
(—1;0) respectively. Consider now the zig-zag dynamical system (2) with these 
vector fields for the switching period p = 0.02, where \i = 3.5. 
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Then the corresponding period map P has the invariant closed curve depicted 
in Fig. 3. 

-1.0 

F I G U R E 4. To approximate the dynamics of the zig-zag system "blinking cycles" 
shown in Fig. 3, we use the first 1 to 4 terms of the BCH formula. When taking 
the first 1 or 2 t e rms the resu lting dynamica l system has a qua litative ly different 
a t t ractor (a stab le stat ionary point) not shown here. When taking the first 3 
or 4 terms the resu lting dynamica l system has a stab le limit cycle t h a t is a lmost 
indistinguishab le from the invariant curve of the original zig-zag system. Cf. Fig. 3. 

Now we construct using (60) and (61) the vector fields 

W, = V + U, 

w2 = 2Іv'ul~ ' 
w з = ̂ [ v - u »[ v > u Г]~> 

w4 = --L[v,[u,[v,u]~П~, 

i.e. these vector fields are successive terms in the BCH formula. The computation 
of wfc was made using the computer algebra system Mathematica. Further we 
construct the vector fields 

95 



ALOIS KLl'C — PAVEL POKORNY — JAN S E H A C E K 

w l , l = W P 

W l , 2 = W l + W2> 

W l , 3 = W l + W 2 + W 3 > 

W l , 4 = W l + W 2 + W 3 + W 4 , 

and we solve numerically the differential equations 

x = w l i f . ( x ) , 2 = 1,2,3,4. (62) 

The first two systems have only stable steady states, while the last two systems 
have an almost indistinguishable stable limit cycle depicted in Fig. 4. The readei 
can convince himself that the coincidence of the invariant curve from Fig. 3 with 
the closed trajectory in Fig. 4 is surprisingly good. 

This demonstrates clearly how the BCH formula can be used to approximate 
the dynamics of a zig-zag dynamical system by an autonomous system. The BCH 
formula gives an essential refinement of the averaging method studied in [5]. 
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