Mathematic Slovaca

Michal Fečkan

On a certain type of functional differential equations

Mathematica Slovaca, Vol. 43 (1993), No. 1, 39--43

Persistent URL: http://dml.cz/dmlcz/130391

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON A CERTAIN TYPE OF FUNCTIONAL DIFFERENTIAL EQUATIONS

MICHAL FEČKAN
(Communicated by Milan Medved')

Abstract

Certain types of advanced functional-differential equations are studied by means of a simple fixed point theorem.

1. Introduction

The purpose of this paper is to give an approach to solve certain functional differential equations similar to the following

$$
\begin{align*}
u^{\prime}(x) & =f(u(u(x))) \tag{1.1}\\
u(0) & =0
\end{align*}
$$

where $f \in C^{1}(\mathbb{R}, \mathbb{R})$. Hence we shall study equations containing the term $u(u(x))$.

To show the existence of solutions of (1.1) we can apply the Leray-Schauder degree theory. But we would like to obtain more. We are interested in the existence of a Picard iteration method for (1.1). Then such a technique will enable us to approximate a solution of (1.1). The difficulty in the derivation of a Lipschitz like inequality for (1.1) is the term $u(u(x))$. Since to obtain this inequality in C^{0}-norm we have to use C^{1}-norm of u. Thus it is impossible to apply the classical implicit function theorem to (1.1). To overcome this difficulty we use a simple fixed point theorem.

Similarly, we study the equation

$$
\begin{equation*}
u(x)=\int_{0}^{1} G(x, t) \cdot f(u(u(t))) \mathrm{d} t \tag{1.2}
\end{equation*}
$$

[^0]Key words: Advanced functional-differential equations, Bifurcations.
and the bifurcation problem

$$
\begin{gather*}
-u^{\prime \prime}(x)=\lambda \cdot f(u(1+u(x)))+u \tag{1.3}\\
u(0)=u(\pi)=0
\end{gather*}
$$

with $f(0)=0, f^{\prime}(0) \neq 0, \lambda \in \mathbb{R}$ is near to 0.
A related problem is studied in [1]. There is also explained a motivation of the investigation of such advanced differential equations. We refer the paper [2] for a philosophical background.

2. A simple fixed point theorem

Let $X \subset C^{0}([0,1], \mathbb{R})$ be a closed nonempty subset. Consider an operator $T: X \rightarrow X$ such that
i) T is continuous.
ii) $T(X) \subset C^{1}([0,1], \mathbb{R})$.
iii) $\left\|T\left(u_{1}\right)-T\left(u_{2}\right)\right\| \leq \alpha\left(\max \left\{\left\|u_{1}^{\prime}\right\|,\left\|u_{2}^{\prime}\right\|\right\}\right) \cdot\left\|u_{1}-u_{2}\right\|$ for $u_{1}, u_{2} \in C^{1}([0,1], \mathbb{R})$.
iv) $\left\|(T(u))^{\prime}\right\| \leq \beta\left(\left\|u^{\prime}\right\|\right)$,
for α, β continuous functions. Here $\|\cdot\|$ is the C^{0}-norm.
THEOREM 2.1. If there is $r>0$ such that $\beta(t) \leq r$ and $\alpha(t)<1$ for each $0 \leq t \leq r$, then there is a u satisfying $u=T(u)$. Moreover, $u_{n} \rightarrow u$ in C^{0}-norm for $u_{n}=T^{n}(0)$. This convergence is geometrical.

Proof. We take

$$
Y=\left\{u \in X, \quad\left\|u^{\prime}\right\| \leq r\right\}
$$

Then $T(Y) \subset Y$ and

$$
\left\|T\left(u_{1}\right)-T\left(u_{2}\right)\right\| \leq \gamma \cdot\left\|u_{1}-u_{2}\right\|
$$

for each $u_{1}, u_{2} \in Y$ with $\gamma=\max _{[0, r]} \alpha$. We know that $\gamma<1$. Hence T is a contraction and the proof is finished.

Remark 2.2. In our applications usually $\beta(\cdot)=\beta$ is constant and α is increasing. Then the assumptions of this theorem have the form $\alpha(\beta)<1$.

ON A CERTAIN TYPE OF FUNCTIONAL DIFFERENTIAL EQUATIONS

3. Results

First of all, we need the following estimate for $u_{1}, u_{2} \in C^{1}([0,1],[0,1])$

$$
\begin{align*}
& \left|u_{1}\left(u_{1}(x)\right)-u_{2}\left(u_{2}(x)\right)\right| \\
\leq & \left|u_{1}\left(u_{1}(x)\right)-u_{1}\left(u_{2}(x)\right)\right|+\left|u_{1}\left(u_{2}(x)\right)-u_{2}\left(u_{2}(x)\right)\right| \tag{3.1}\\
\leq & \left\|u_{1}^{\prime}\right\| \cdot\left\|u_{1}-u_{2}\right\|+\left\|u_{1}-u_{2}\right\| \\
= & \left(1+\left\|u_{1}^{\prime}\right\|\right) \cdot\left\|u_{1}-u_{2}\right\| .
\end{align*}
$$

Now we shall study the problem (1.1).
Theorem 3.1. Let $|f(0)|<1$. Then there is $c>0$ such that (1.1) has a solution $u \in C^{1}([-c, c],[-c, c])$ and $u_{n} \rightarrow u$ uniformly on $[-c, c]$ for

$$
u_{0}=0, \quad u_{n+1}(t)=\int_{0}^{t} f\left(u_{n}\left(u_{n}(s)\right)\right) \mathrm{d} s, \quad t \in[-c, c]
$$

Proof. Since $|f(0)|<1$, there is $c>0$ such that

$$
\begin{equation*}
|f(t)|<1 \tag{3.2}
\end{equation*}
$$

for $|t| \leq c$. We take

$$
\begin{aligned}
X & =C^{0}([-c, c],[-c, c]) \\
T(u) & =\int_{0}^{t} f(u(u(s))) \mathrm{d} s
\end{aligned}
$$

By (3.2) $T(X) \subset X$. If c is sufficiently small, then Remark 2.2 holds and the proof is finished.

Further, we investigate the equation (1.2) under the following assumptions: $G \geq 0$ and it is C^{1}-smooth, $f:[0,1] \rightarrow[0, \infty)$ is continuous, Lipschitz with the constant M. We put

$$
\begin{aligned}
m & =\max _{[0,1]} f(t) \\
K & =\max _{[0,1]} \int_{0}^{1} G(x, t) \mathrm{d} t \\
\tilde{K} & =\max _{[0,1]} \int_{0}^{1} \frac{\partial}{\partial x} G(x, t) \mathrm{d} t
\end{aligned}
$$

MICHAL FECKKAN

Theorem 3.2. If

$$
\begin{array}{r}
M \cdot K \cdot(1+m \cdot \tilde{K})<1 \\
m \cdot K \leq 1
\end{array}
$$

then (2.1) has a solution $u:[0,1] \rightarrow[0,1]$ and $u_{n} \rightarrow u$ uniformly on $[0,1]$ for

$$
\begin{aligned}
u_{0} & =0 \\
u_{n+1}(x) & =\int_{0}^{1} G(x, t) \cdot f\left(u_{n}\left(u_{n}(t)\right)\right) \mathrm{d} t, \quad x \in[0,1]
\end{aligned}
$$

Proof. We take the space $X=C^{0}([0,1],[0,1])$ and

$$
T u=\int_{0}^{1} G(\cdot, t) \cdot f(u(u(t))) \mathrm{d} t
$$

Since $m \cdot K \leq 1$, we have $T(X) \subset X$. The first assumption of this theorem ensures the validity of the condition iii) of Section 2. Indeed, by (3.1) we have

$$
\left\|T u_{1}-T u_{2}\right\| \leq M \cdot K \cdot\left(1+\left\|u_{2}^{\prime}\right\|\right) \cdot\left\|u_{1}-u_{2}\right\|
$$

Moreover, it is clear that

$$
\left\|(T u)^{\prime}\right\| \leq \tilde{K} \cdot m
$$

Hence we can choose

$$
\begin{aligned}
\alpha(t) & =m \cdot K \cdot(1+t) \\
\beta(t) & =\tilde{K} \cdot m
\end{aligned}
$$

Since $\alpha(m \cdot \tilde{K})<1$ the proof is finished.
Finally we shall solve the bifurcation problem (1.3).
We take $w=v+c \cdot \sin t$, where c is small and

$$
v \in X=\left\{y \in C^{0}([0, \pi],[-1 / 2,1 / 2]), \quad \int_{0}^{\pi} y(t) \cdot \sin t \mathrm{~d} t=0\right\}
$$

ON A CERTAIN TYPE OF FUNCTIONAL DIFFERENTIAL EQUATIONS

We decompose (1.3) in the following way

$$
\begin{align*}
& v=\lambda \cdot \mathcal{K} \cdot \tilde{Q} f(v(1+v+c \cdot \sin t)+c \cdot \sin (1+v+c \cdot \sin t)) \tag{3.3}\\
& 0=P f(v(1+v+c \cdot \sin t)+c \cdot \sin (1+v+c \cdot \sin t)) \tag{3.4}
\end{align*}
$$

where \mathcal{K} is the "inverse" of $u \rightarrow-u^{\prime \prime}-u, u(0)=u(\pi)=0, \tilde{Q}=I d-P$ and $P u=\frac{2}{\pi} \int_{0}^{\pi} u(t) \cdot \sin t \mathrm{~d} t \cdot \sin t$.

For c small we can solve (3.3) by applying Theorem 2.1 to obtain a solution $v(\lambda, c) \in X$. Using the standard arguments we see that v depends on λ, c continuously and $v(0, c)=0$. We put this solution into (3.4) and have

$$
Q(\lambda, c)=P f(v(\lambda, c)(1+v(\lambda, c)+c \cdot \sin t)+c \cdot \sin (1+v(\lambda, c)+c \cdot \sin t))=0
$$

Hence $Q(0, c)=\frac{2}{\pi} \int_{0}^{\pi} f(c \cdot \sin (1+c \cdot \sin t)) \mathrm{d} t$. We have

$$
Q(0,0)=0, \quad \frac{\partial}{\partial c} Q(0,0)=2 \cdot f^{\prime}(0) \cdot \sin 1 \neq 0
$$

This implies the existence of a small solution c of $Q(\lambda, c)=0$ for each λ small. Summing up we obtain

THEOREM 3.3. Under the above conditions the problem (1.3) has a small nontrivial solution bifurcating from $u_{0}=0$.

Of course, a similar approach can be applied to the following problem:

$$
\begin{gathered}
-u^{\prime \prime}=f\left(u^{\prime}(u(x))\right) \\
u(0)=u(1)=0
\end{gathered}
$$

REFERENCES

[1] EDER, E.: The functional differential equation $x^{\prime}=x(x(t))$, J. Differential Equations 54 (1984), 390-400.
[2] DRIVER, R. D.: Can the future influence the present?, Phys. Rev. D (3) 19 (1979).

Received December 5, 1991
Revised February 20, 1992

Mathematical Institute
Slovak Academy of Sciences
Štefánikova 49
Bratislava
Slovakia

[^0]: AMS Subject Classification (1991): Primary 34C23. Secondary 34K10.

