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DARBOUX PROPERTY OF FINITELY ADDITIVE
MEASURE ON 4-RING

VLADIMIR "OLEJCEK

1. Introduction. Let ¥ be a §-ring (i.e. a ring closed over countable intersections)
and let @ be a positive finitely additive measure on %, i.e. @ is a real function
defined on &, where :

(i) Ee¥>0<s@(E)<x>,
(i) Ee¥, Fe¥, EnF=0> @(EUF)=@(E)+ @(F).

Definition. We say that a set E € & is an atom (with respect to @) if (E)>0 and
if for every set A € ¥, A c E we have either ¢(A)=0 or ¢(A)=@(E). We say
that @ is nonatomic on E if & contains no atom A c E. We say that @ has the
Darboux property on E if for every number a such that 0< a < @(E) there exists
aset Ae ¥, A cE and such that p(A) = a. We say that @ is nonatomic (@ has the
Darboux property) if @ is nonatomic (@ has the Darboux property) on E for every
set Ee . )

This is an extended definition of that in [2, §2, 9, def. 4] and moreover we use
the formulation “‘@ has the Darboux property on E’’ instead of “E has the Darboux
property with respect to @’

It is well known that if @ is countably additive on & and o-finite on E, then
a sufficient condition for ¢ having the Darboux property on E is the fact that @ is
nonatomic on E ([2, §2, 9, prop. 7]). -

In this paper it will be shown in section 2 that the preceding proposition for
a finitely additive measure is false in general. We shall prove the existence of
a nonatomic positive finitely additive measure without the Darboux property.

In section 3 there are given some sufficient conditions for a finitely additive
measure @ having the Darboux property, namely by means of the decomposition of
@ on the o-additive part and the purely additive part by [4].

2. Nonatomic measure and the Darboux property.
Lemma 1 ([3, lemme 1]). Let E be an arbitrary set and let 3¢ be a nonempty class

of subsets of the set E. There exists a set function m, where the following
conditions hold;
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(a) m attains on every subset of the set E one of the two values 0 and 1,

(B) if AcE, BcE and AnB=0, then m(AuB)=m(A)+ m(B),

(y) if Ae¥, then m(A)=0,

(6) m(E)=1,
if and only if there exists a class of sets M, satisfying the next conditions :

(a) every element of the class M is a subset of the set E,

(b) if AeM and Be M, then AUB e M,

(c) if Ac#M and Bc A, then Be M,

(d)y E¢M,

(e) f AcE, then AeM or E—A e M,

(f) Hc M.

Note 1. In lemma 1 we can write an arbitrary positive real number « instead
of 1.

Note 2. The conditions (a)—(d) ((a)—(e)) are equivalent to the fact that / is
an ideal (maximal ideal) in E.

Lemma 2. Let u be an arbitrary nontrivial positive finitely additive measure
defined on the o-algebra of all subsets of the set of positive integers (i.e. on 2").
Then for an arbitrary positive real number a there exists a nontrivial positive
finitely additive measure v defined on 2" such that either v(A)=0 or v(A)=a for
every A €2" and

1(A)=0>v(A)=0.

Proof. Put ¥ ={A cN: u(A)=0}. Evidently in % holds conditions (a)—(d),
i.e. X is an'ideal in N and it can be extended to a maximal ideal .#, for which the
conditions (a)—(f) are fulfilled. From lemma 1 it follows that there exists
a nontrivial two-valued positive finitely additive measure v defined on 2™ and
vanishing on %, i.e. such that y(A)=0=>v(A)=0.

Let A c N. Denote A(n) the number of elements of A, which are smaller or
equal to n, i.e.

Am)= 3 1.

Put a,=n""'A(n). The numbers As(A)=1lim inf,a, and #*(A)=Ilim sup,a, are
called lower and uppgr asymptotic density of the set A, respectively. If
hx(A)=h*(A), i.e. if there exists lim,a,, it is called the asymptotic density of the
set A and is denoted 4(A). The set function 4 is positive finitely additive on the
family < 2" of all subsets of the set N for which there exists the asymptotic
density and it can be extended to a positive finitely additive measure g, defined on
2" such that

) he(A)<up(A)<h*(A)  ([1,p.231]).
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For example we can put u(A)=Lim a,, where Lim means the Banach limit ([1,
p. 34)). :

Lemma 3. The measure u is nonatomic on N. 4
Proof. Let AcN and u(A)>0. Let k 'be an integer, for which
k™ 'h*(A)<u(A). Decompose the sét A ={a,, @, a,, ...} into k sets

B, = {alv Aivts vovs i1y Am+)k+15 }
B.= {aZa Arr3y oony Apcr25 Ams 1)k +25 }

B.={ai, au, ..., Qunstris Qmezris ---} -

For an arbitrary i<k put

B(n)= > 1.

aeBasn
Then B,-(n)=m-+ 1 if and only if
. Aksi SN < Qi 1314 -
It follows that
mk+i=(m+1Dk+i—k<An)<(m+1)k+i
and therefore

k A(n)
k

B(n)+=% <B(n)+%

Hence multiplying »~' and passing n—  we obtain

( ) A(n) _

h*(B;)=lim sup —— n

=lim sup — = h*(A)
The measure y is additive and B,nB; =@ for i#j. It follows that there exists an
integer i, <k such that «(B,)>0. Summarizing we have

i

O<u(B

DS (B) = B (A)<u(A).

Consequently A is not an atom.

Theorem 1. There exists a positive finitely additive measure, which is nonatomic
and which has not the Darboux property.

Proof. Let ¥ be the o-algebra of all subsets of the set N of positive integers. Let
u be the measure defined above for which (I) holds. According to lemma 2 there
exists a positive finitely additive measure v defined on & such that v(A)=0 or
v(A)=2 and u(A)=0>v(A)=0 for every set Ae%. Put p=u+v. Then @ is
a positive finitely additive measure on &. Let ¢(A)>0. If there were u(A)=0,
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then v(A)=0 as well and hence @(A)=u(A)+v(A)=0. Consequently
u(A)>0. Since u is a nonatomic measure, there exists a set B € & such that Bc A
and 0<u(B)<u(A). But then

0<@(B)=u(B)+v(B)<u(A)+v(A)=g@(A).

Consequently A is not an atom with respect to ¢ and therefore @ is nonatomic on
N. Since @ attains no value in the open interval (1, 2), @ has not the Darboux
property on N.

3. Decomposition and the Darboux property.

Let @ be a positive finitely additive measure defined on a d-ring @ of subsets of
aset X. Letforaset Ee ¥be 0<@(E)<. According to [4, 1.24] there exists one
and only one pair of positive measures y, & defined on the o-algebra
Fe={AeF AcE} such that y is o-additive, & is purely additive and
@(A)=y(A)+r(A) for every A € F:.

Theorem 2. The measure @ has the Darboux property on the set E € ¥ if at least
one of the following two conditions is fulfilled :

(i) Y(E)>n(E) and vy is nonatomic on E,

(i) w(E)<n(E) and & has the Darboux property on A for every A € %.

Proof. It is sufficient to show that for every number a € (0, 2™ '@(E)) there
exists a set Fe ¥, Fc E and such that @(F)=a. In case of a e (27 '@(E), ¢(E)),
let us denote a’=@(E)—a. Then a'€(0, 27 '@(E)) and if F' € ¥ is such that
@(F')=a’, then for the set F=E — F' we have

P(F)=@(E-F)=@(E)-@(F)=@(E)-a'=a.

Let the condition (¢) hold and let a € (0, 27'@(E)) = (0, yw(E)). According to [4,
1.19] there exists a set Be¥, BcE and such that #(E—-B)=0 and
y(B)<e=9y(E)—a. Whence a<y(E)—y(B)=vy(E— B). Since by (i) y is
nonatomic on E, it is nonatomic on E — B as well. Therefore 3 has the Darboux
property on E—B ([2, §2, prop. 7]). It follows that there exists a set A € ¥,
AcE—-B and such that ¢y(A)=a. Since 0<a(A)<n(E - B)=0, we have
x(A)=0 and

p(A)=y(A)+n(A)=a.

Now let (i) hold and let a € (0, 27'@(E)) =(0, 7(E)). According to [4, 1.19]
there exists a set C, € ¥ such that 7(C)=xa(E) and y(C)<g =min {1, a}.
Since s has the Darboux property on every A € = and C, € %, there exists a set

A,€ %, A, cC, and such that 7(A,)=a. Since A, c C, we have y(A,)<g, and
consequently
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as<y(A)+rn(A)<a+eg,
whence
as@p(A)<a+eg.

Since & has the Darboux property on A,, there exists a set B, € &, B, = A, and such
that &(B,) = a — ¢,. From the fact B,c A, c C, it follows that y(B,)<g¢,. Conse-

quently
a-&=n(B)<y(B)+x(B)<a,
whence ‘
a—g<@(B)<a.
Finally we have '
(A, - B)=1(A) - 7(B) = a— x(B)=a— @(B)>0.

Summarizing, there exists a number ¢, 0<g <1 and sets B,c A, such that

Osa-g<sg@gB)<as@p(A)<a+tg.

Suppose now that there exists a number &,, 0<é&, <n"' and sets B, = A, such that
n(A,—B,)=a—¢@(B,) and

Osa-e<@pB)<as@p(A)<a+g,.

According to [4, 1.19] there exists a set C,..€ ¥, C,..c A, — B, such that
a(C,..)=n(A,—B,) and y(C,.,)<&., =min {(n+1)"', a—@(B,)}. Since &
has the Darboux property on C..,, there exists a set A/,,cC,,, such that
n(Al)=a—-e@(B,). Since A/.,<C,., then -y(A,.)<g,... Putting
A,..,=B,UA/.,, we obtain

a=@(B,)+x(A.)<@(B.)+a(Al)+Y(AL)<ate.
and since B,, A/., are disjoint, it follows
asW(Au+l)<a + £n+l .

According to the assumption of this theorem, & has the Darboux property on A,,,.
It follows that there exists a set BJ.cA/,, such that a(B.))=
=a — @(B,) = &,... Since B!,,c AJ.1cC,.y, then Y(B/,,) <&+, consequently .

0<a-é&.=@(B.)+x(Bi.)<@(B.)+#(B..)+y(B..)<a.
Putting B,,,=B,UB/,,, we obtain, since B,, B.., are disjoint
a"£n+|s‘p(Bn+l)<a-
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Further, we have

(A1 — Boo)=n((B,VA/,)—(B.UB/,))=
=”(A",+l —B’:+|)=”(Arl’+l)_”(Br:+l)= a —W(B;-)_
—(a—@(B,) =€) =€ =a — @(B,.1)>0.

Summarizing, there exists a real number &,,,, 0<&.,<(n+1)"' and sets An.i,
B,., such that B,cB,,,c A, , cA,, n(A,.; —B...)=a—@(B..:) and

Osa-gu<@B,.)<a<@(A,.)<a+&..
In this way we have found by means of recurrence sequences { A, }.-, and {B,}.-
of sets belonging to ¥ such that
B,cB,c..cB,c..cA,c...cA,c A,

and
1 1
a —;S eB)<a=sg@(A)<a +;l—
for every positive integer n. Denote

A=) A..

Then A € % and for every n we have B,c A c A,. It follows that
1
a-1<g(B)<@(A)S@(A)<a+,

for every n and consequently

p(A)=a.

REFERENCES

[1] BANACH, S.: Théorie des opérations linéaires.

[2] DINCULEANU, N.: Vector measures, Berlin 1966.

[3] TARSKI, A.: Une contribution a la théorie de la measure, Fundam. Math. 15, 1930, 42—50.

[4] YOSHIDA, K., HEWITT, E.: Finitely additive measures, Trans. Amer. Math. Soc. 72, 1952,
46—66.

Received November 21, 1975

Katedra matematiky
Elektrotechnickej fakulty SVST
Gottwaldovo nam. 2
880 19 Bratislava

200



CBOVICTBO JAPBY KOHEYHO AOOUTHBHOW MEPhI
HA 6-KOJIBLIE

Baagumup Oneiiuek
Pesome

Mepa @ onpepenena Ha Konbue S oGnagaeT cBoicTBOM [lapOy Ha MHoXecTBe E € ¥, ecnu fns
NPOM3BONLHOTO YKCAa a u3 uHtepsana (0, @(E)) cywectsyeT MHOXecTBO A € &, A c E, nas koToporo
@(A)=a. F'oBopaTt uto @ obnagaet cpoiicTeoM [lap6y, ecnu @ o6nanaet coicrBoM [lap6y Ha E nns
kaxpaoro Ee€ .

Teopema 1. CyweCTByeT KOHEYHO aJAHTHBHAsA MeEpa, KOTOPas ABIACTCA HEATOMHYECKOH H He
o6napaer cBosictsom [apby.

Ecnin @ KOHEYHO agauTHBHasi Mepa Ha O-Koablie & M ¥ W & 06pa3’yloT ee pa3nNoXKEHHE Ha
O-aJIMTHBHYIO M YMUCTO AQAMTHBHYIO 4YacTb Ha o-anrebpe ¥ ={A €¥: AcE}, To nMeeT MecTo
cnenyiouas TeopeMa.

Teopema 2. Mepa @ o6nagaer cBosictsom [lap6y Ha MHOXecTBe E, ecitH BBITIONIHEHO N0 KpaKHEH
Mepe OQHO H3 CJEAYIOWHX YCIOBHHA :
(n) Y(E)>na(E) n y aBnsercs HeaTOMHYECKOH Ha E,
(un) y(E)<a(E) n & o6nagaer ceoricteoM [Jap6y Ha A AN Kaxaoro A € $.
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