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ABSTRACT. It is shown that the differential map in the universal enveloping 
algebra of a commutator Lie algebra and the right and left differential maps in the 
Ito Hopf algebra over an associative algebra each generate first order differential 
calculi in the sense of Woronowicz in which the Leibniz formula is found by 
absorbing the Ito term of the Leibniz-Ito formula into either the left or the right 
action. In general these first order calculi are not bicovariant. 

1. Introduction 

In [4] a differential calculus was formulated in the universal enveloping alge
bra U of a Lie algebra C in which the bracket is got by taking commutators 
in an associative multiplication, usually nonunital, over the same vector space. 
This calculus was abstracted from a concrete version [6] formulated in terms of 
operators in a Fock space using quantum stochastic calculus [5], [8]. Recently, 
motivated by [1], an extension of this calculus [7] has been used to describe a 
general method of quantisation of Lie bialgebras giving a partial simplification 
of the method of E t i n g o f and K a z h d a n [2]. 

This extension lives in the space T(C) of tensors over £ , which becomes 
a Hopf algebra when equipped with the noncommutative Ito extension of the 
shuffle product over C given by a(3 — 7 where the nth homogeneous component 
of the tensor 7 is given in terms of those of a and j3 by 

1= £ "iVfri- w 
AuB = {l,2,...,n} 
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Here the notation is as in [4] and [6] so that the sum is over all 3n ordered pairs of 
subsets (A,B) whose union is {1, 2 , . . . , n}, the place notation aAi means that 
the homogeneous |A|th rank tensor a\A\ is located in the \A\ copies of C within 
n 

0 C labelled by A with f3PB< being defined analogously, and double occupancies 
are reduced using the multiplication in C. If the sum in (1) is restricted to the 
2n pairs of disjoint subsets (A, B) the resulting commutative multiplication is 
well known as the shuffle product. The standard coproduct making the shuffle 
product algebra into a Hopf algebra, whose action on homogeneous product 
vectors is 

n 

A(LX ® L2 ® • • • ® Ln) = Y^Li ® *' * ® Lj) ® (Lj+i ®'"®Ln), (2) 
3=1 

remains a coproduct when the It6 terms are included in (1) so that a nonco-
commutative and noncommutative Hopf algebra is thereby obtained ([7]) which 
we call the ltd Hopf algebra over C. The subspace S(C) of T(C) comprising 
symmetric tensors is a sub-Hopf algebra isomorphic to the Hopf algebra U under 
the universal extension v of the Lie algebra homomorphism 

£3Lh->(0,L ,0 ,0 , . . . )GT(>C). 

The purpose of this paper is to study the various differential calculi of [4], 
[6] and [7] and in particular to relate them to differential calculus in the sense 
of [9]. 

2. Differential maps 

In [4] and [6] the calculus in U was constructed in terms of a differential map d 
from U to U ® C defined as follows. First one forms the universal extension \£, 
called the enabling map, to the ideal V in U generated by C, of the identity 
map in C regarded as a Lie algebra homomorphism from the Lie algebra C to 
the commutator Lie algebra of the associative algebra C. One may then imitate 
the definition of the differential of a polynomial 

df(x) = f(x + dx)-f(x) 

to define the differential map d: U -> U ® C by 

d(Ert = (idw®*)(A(Crt-C t®lw) (3) 

where A denotes the coproduct of U, that is, the universal extension of the Lie 
algebra homomorphism 

C3L\->L®lu + lu®LeU<g)U. 
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Because of the cocommutativity of the coproduct A, this "right differential 
map" differs from the corresponding left differential map 

(r o d)(U) = (* ® idu)(A(/7) - lu ® U) (4) 

from U to L ® W only by intervention of the flip map r , the linear map from 
U ® L to L ® W which exchanges components of product tensors. In [7] (see 
also [4]) differential maps are defined on T(L). Because the coproduct is no 
longer cocommutative it is necessary to distinguish right and left maps from 
T(L) to T(L) ® L and L ® T(L) respectively, which may be defined by linear 
extension of their actions on homogeneous product vectors, 

d (L1 ® L2 ® • • • ® Ln) = (L1 ® L2 ® • • • ® Ln_!) ® Ln , 

d (Lx ® L2 ® • • • ® L J = Lx ® (L2 ® L3 ® • • • ® L J . 

That the conjugates under v of the restrictions of these maps to S(L) are 
consistent with (3) and (4) can be seen by observing that, in view of (1), the 
map 

is an associative algebra homomorphism to L from the ideal in T(L) consist
ing of elements with vanishing zero rank homogeneous components L whose 
restriction to the corresponding ideal in S(L) is conjugate under v to \I/; see 
also [4]. 

3. The Leibniz-It6 formula 

The differential map d satisfies a modification of the Leibniz rule called the 
Leibniz-Ito formula, namely 

d(UV) = d(U)V + U d(V) + d(U) d(V). (5) 

Here, in the first two terms on the right hand side, U ® L is regarded as a 
ZY-bimodule using the natural tensorial biaction of U got by linearly extending 
multiplication on the first component of product tensors, and in the third term 
as an associative algebra using the natural tensor product multiplication. (5) 
can be verified directly using the definition (4) (see [4]). The maps d and d 
also satisfy the Leibniz-Ito formula 

it (a/3) = lt(a)P + alt (/3) + ~f(a)~f((3), 

*d(aP) = *d(a)/3 + cA"(/?) + *d(a)*d(P), 
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where now T(C) ® C and C ® T(C) are regarded as T(>C)-bimodules using the 
tensorial biactions and as associative algebras using the tensor product multi
plication. To see this one may use the multiplication formula for homogeneous 
product vectors, equivalent to (1), 

(L1®L2®...®Ln)(Ln+1®Ln+2®...®Ln+J = Y,(LPl®Lp2®...®LPk). (6) 
per 

Here the sum is over all ordered partitions P = (Pi,P2,..., Pk) of (1,2, . . . 
. . . ,n+ra) into subsets P1,P2,... ,Pk such that each P is either a singleton 
{t}, in which case Lp is defined to be Lt, or a pair (r, s) with r G (1, 2, . . . , n) 
and s G (n+ l ,n+2 , . . . ,n+ra), in which case Lp is defined to be LrLs, and 
such that the subsets (1,2, . . . , n) and (n+1, n+2 , . . . , n+ra) retain their relative 
orders in the permutation (P1,P2,..., Pk) of (1,2, . . . , n+ra). The three terms 
on the right of the Leibniz-Ito formula are obtained from (6) by distinguishing the 
partitions P = (P1,P2,..., Pk) corresponding to the three possibilities that Pk 

is a singleton subset of {1,2, . . . , n} , a singleton subset of {n+1, n + 2 , . . . , n+ra} 
or a pair. 

4. Differential actions 

Let D be a map from a unital algebra A to either A®C or C®A satisfying 
the Leibniz-Ito formula 

D(AB) = D(A)B + A D(B) + B(A) B(B) 

where as before the first two terms on the right hand side refer to the tensorial 
biaction of A on the bimodule M = A® C or C ® A, and the third to the 
tensor product multiplication. Note that the tensorial biaction is bicompatible 
with the multiplication, in that for arbitrary A G A and MX,M2 G M 

A{MXM2) = (AM1)M2 , (MXM2)A = M1(M2A), (M1A)M2 = MX(AM2) 

as is easily verified by bilinear extension of the case when Mx and M2 are 
product tensors. 

Using the map D we define a linear map V from A x M to M by 

i V i l f = AM + D(A)M, AeA,MeM, (7) 

where the two terms on the right hand side have their previous meaning. 
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THEOREM 1. V is a left action of A on M which is compatible with the 
right tensorial action and with the multiplication in the associative algebra M. 
That is, we have 

A'T(B<TM) = (AB)4TM, (8) 

(A^M)B = A"T(MB), (9) 

AJT(M1M2) = (A'TMl)M2 (10) 

for arbitrary A,B € M and M,Mt,M2€M. 

P r o o f . To prove (8) we write the left hand side as 

i V ( 5 V M ) = A(BM + D(B)M) + D(A)(BM + D(B)M) 

= (AB + D(A)B + AD(B) + D(A) D(B))M 

= (AB + D(AB))M 

= ( A B ) V M 

where we used the compatibility of the tensorial action with multiplication in M 
(5). Also 

(A^M)B = (AM + D(A)M)B 

= A(MB) + D(A)(MB) 

= A^(MB). 

Finally 

A'T(M1M2) = A(MXM2) +D(A)(MXM2) 

= (AM1)M2 + (D(A)M1)M2 

= (AM1+D(^1)M1)M2 

= (A^MX)M2 

using the compatibility of the left tensorial action with multiplication in M and 
the associativity of multiplication in M. • 

Defining the map V from M x A to M by 

M-?A = MA + MD(A), AeA, MeM, 

we prove in exactly the same way: 

THEOREM 2. V is a right action of A on M compatible with the left tensorial 
action and with the multiplication in the associative algebra M. 
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Finally we prove: 

THEOREM 3. The left and right actions • and * are mutually compatible 
and bicompatible with the multiplication in the associative algebra M, that is, 

(A^M)~?B = A^(M~?B), 

(Ml~?A)M2 = Ml(A'TM2) 

for arbitrary A,B £ A and M,MVM2€ M. 

P r o o f . We have, using the bicompatibility of the tensorial biaction and 
the associativity of multiplication in U ® £ , 

(A^M)~?B = {AM + D(A)M)B + (AM + D(A)M) B(B) 

= (AM)B + (D(A)M)B + (AM) B(B) + (B(A)M) B(B) 

= A(MB) + D(A)(MB) + A(MD(B)) + D(A)(MD(B)) 

= A(MB + MD(B)) + B(A)(MB + MB(B)) 

= A*f(M~?B). 

Similarly 

{M^A^M^ = (MXA + Mj D(A))M2 

И M . Л ^ + tM .D l^M, 
^MЛAMJ + MЛDЩMJ 
= Mг(AM2 + Ъ(Ä)M2) 

= MЛ.4<Ï-M2). 
D 

5. Woronowicz differential calculus 

Following W o r o n o w i c z [9], a first order differential calculus over a unital 
algebra A is an ^4-bimodule M together with a linear map d from A to M 
satisfying the Leibniz formula 

d(AB) = d(A)B + Ad(B), A,B eA, 

and such that every element of M can be expressed as a finite sum ^ A- d(B-) 
3 

with the A• , 5 G A. The latter condition is equivalent to every element of M 
being of the form Y^d(Cj)Dk since, by the Leibniz formula, 

k 

E AJ d(Bi) = E W i > - E Wi = E d(^)-.-. - E d( W • 
i i i i i 
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If A is a Hopf algebra with coproduct A, then the first order differential 
calculus defined by the map d is said to be left (right) covariant if, when
ever J2Aj&(Bj) = 0, it follows that ~~]A(Aj)(idA®d)(A(Bj)) = 0 (resp. 

3 3 

~~]A(A,)(d®idA)(A(B,)) = 0). A bicovariant first order differential calculus 
3 

can be lifted uniquely to give a noncommutative generalization of the exterior 
algebra of differential forms ([9]). 

Let us return to the Ito Hopf algebra over C. We consider first the case when 
the multiplication in the algebra C is the trivial one in which all products are 
zero. Then the Ito shuffle product (1) reduces to the ordinary shuffle product. 
The Leibniz-Ito formulas for the right and left differential maps in T(C) reduce 
to the Leibniz formulas 

~t(a/3) = ~t(a)(3 + a~t(P), *d(a/3) = *d(a)/3 + a*d(0). 
Since, from the definitions of d and d , d (L) = l r(£) ® L and d (L) = 
L ® l r(£) for arbitrary L £ C C T(C), arbitrary elements of the bimodules 
T(C)®C and C®T(C) can be expressed as sums ~~) a^ d (/3j) and ~~)aj d (Pj) 

3 3 

respectively by taking the /?. to be basis elements of C. Thus d and d each 
determine a first-order differential calculus in the Woronowicz sense. Using the 
relations which follow from the definitions of the actions of A and d on product 
vectors, 

(idr(jC) ®~t)A = (A ® id£)~f, (~t® id r ( £ ) )A = r (1 |3 |2 )(A ® id£) d* (11) 
where T^IZ2) -s the permutation map corresponding to the permutation (1, 3,2) 
from T(C) ® T(C) ® C to T(C) ® C ® T(C) which appropriately permutes the 
components of product vectors, together with corresponding relations for d it 
can be verified that these first order calculi are bicovariant (see the proof of 
Theorem 4 below). But since the underlying algebra T(C) is commutative they 
are essentially classical and the corresponding higher order calculus is the usual 
one of exterior differential forms. 

Now consider the case when the multiplication in C is nontrivial so that the 
third term is present in the Leibniz-Ito formula. Using Theorems 1 and 2 of the 
previous section we can absorb this term in either the left or the right action 
and write the Leibniz-Ito formula for d in the alternative forms 

~t(a/3) = ~t(a)-*P + a~t(P), (12) 

~t(ap) = it (a)/3 + a<--~t(P). (13) 
The argument above that every element T(C) ® C can be expressed as a sum 
^ cY7- d (/?.) or equivalently as J2 d (7^)^ shows that either of these equations 
j k 

defines a first order differential calculus in the Woronowicz sense. 
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THEOREM 4. The first order differential calculus defined by (12) (resp. (13)) 
is left (resp. right) covariant. 

P r o o f . We use (11). To prove that (12) defines a left covariant calculus, 
suppose that ]£)a. d (/?.) = 0. Then, using (11), 

3 

Y, A(a.)(idr(jC) ® d) (A(^.)) = E A(a.)(A ® id£) t(/?.) 
j j 

= (A®id£)V2a.t(^.) 
j 

= 0 

where we use the multiplicativity of A and the form of the tensorial left action. 
That (13) defines a right covariant calculus is proved similarly. • 

Analogous results hold for the left differential map d . 
Clearly if the multiplication in C is nontrivial neither first order calculus 

defined by (12) and (13) is bicovariant and higher order differential forms cannot 
be constructed in the manner of [91. However [71 shows the usefulness of the ltd 
type calculus defined by d and d . 
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