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A NOTE ON PSEUDOPRIMES WITH RESPECT 
TO ABELIAN LINEAR RECURRING SEQUENCE 

FRANTISEK M A R K O 

(Communicated by Stanislav Jakubec ) 

A B S T R A C T . It is proved tha t for any finite system of simple abelian linear 
recurring sequences { a ^ } , i G I, and arbi trary integer I > 3 Schinzel's conjecture 
H implies the existence of infinitely many composite numbers n which are a 
product of l different primes and satisfy al

ns = al
s (mod n) for every natura l 

number 5 . 

We start with the following question of P e r r i n (see [6]): 
Does there exist a composite index n with an = 0 (mod n) in the linear 

recurring sequence {an} of integers defined by an . 3 = an+l +an and the initial 
conditions a0 = 3, ax = 0, a2 = 2? 

The answer is affirmative, and concrete values of n are given in [5], [1] and 
[2]. In [1], P e r r i n ' s question was generalized to certain congruences among 
the members of some third order linear recurring sequences. Authors of [1] also 
consider other properties of terms of linear recurring sequences in order to use 
them in primality testing. 

In [3], one can find the following definition which is based on the above 
mentioned congruences: 

DEFINITION 1. Let {an} be a linear recurring sequence. An integer n is 
called pseudoprime with respect to {an} if ans = as (mod n) for every natural 
number s. 

The fact that Schinzel's conjecture H implies the existence of infinitely many 
pseudoprimes with respect to simple abelian linear recurrent sequences was 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11A99, 11B37. 
K e y w o r d s : linear recurrence, pseudoprime, Carmichael number. 
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proved in [3]. Moreover, all pseudoprimes considered there are a product of two 
different primes. 

The aim of this note is to prove that for any finite system of simple abelian 
linear recurring sequences {a^} , i G l , and arbitrary integer I > 3 Schinzel's 
conjecture H implies the existence of infinitely many common pseudoprimes 
with respect to {al

n} which are a product of I different primes. 

Let {an} be a r th order linear recurring sequence of integers satisfying the 
recurrence relation 

an+r = b^a^^ + • • • + b0an , 

where b0,..., br_1 are integers. 

The sequence {an} is called simple if its characteristic polynomial g(x) = 
xr — br_1x

r~1 — • • • — b0 has only simple roots and is called abelian if the splitting 
field of g(x) over the field Q of rational numbers is abelian over Q . 

The Schinzel's conjecture H states the following: 

If /-_(#), • • •, fk(x) are irreducible polynomials with integral coefficients and 
positive leading coefficient such that the product fx(x)... fk(x) has no constant 
factor greater than 1, then there exist infinitely many positive integers x for 
which / T ( X ) , . . . , fk(x) are primes. 

THEOREM. Let {an}, i € / , be a finite system of simple abelian linear recur­
ring sequences. Then for any natural I > 3 Schinzel's conjecture H implies the 
existence of infinitely many pseudoprimes with respect to every {al

n}, which are 
Carmichael numbers and are a product of I different primes. 

P r o o f . Put 

Ct = p(2p - l)(3p - 2)(6p - 5)(12p - 1 1 ) . . . (6 • 2 ^ 4 ( p - 1) + l) 

and suppose that each factor in this product is a prime. 

First we will show that C{ is a Carmichael number whenever 
p = 1 (mod 6-2 ~ 3 ) . It suffices to prove that, under this assumption, the number 
C z - 1 is divisible by numbers ( p - 1 ) , 2 ( p - l ) , 3 ( p - l ) , 6 ( p - l ) , . . . , 6 - 2 / ~ 4 ( p - l ) . 

If / = 3 , then C3 - 1 = ( p - l)(6p2 - p + 1), and p = 1 (mod 6) implies that 
6p2 — p + 1 is divisible by 6. 

C — 1 
Denote by ht(x) the integral polynomial given by the formal equality —-—— 

= hl(P). 
We proceed by induction. For / = 3 we have h3(l) = 6, and C3 — 1 is divisible 

by 6 ( p - l ) . 

Next suppose that ht(l) = 6 • 2 / _ 3 , and C{ - 1 is divisible by 6 • 2 /~3(p - 1) 
for some / > 3. 
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Then 

Cl+1 - 1 = (G. - 1) (6 • 2l-\p - 1) + 1) + 6 • 2l~\p - 1) 

( P - I ) (C. - 1)6 • 2 /-з C 
p - 1 

+ 6-2' 

and we infer that C 
/ + 1 - 1 is divisible by p - 1, and li/+1(l) = 6 • 2 ( ~ 2 . This 

is divisible 
p - i 

means that the condition p = 1 (mod 6-2z 2 ) implies that 

by 6 - 2 ' " 2 . 

Therefore, Cl are Carmichael numbers provided p = 1 (mod 6 • 2*~3). 

Now denote by F an arbitrary natural number divisible by 6 • 2 / _ 3 and all 
conductors of abelian fields Ki which are the splitting fields of characteristic 
polynomials gt(x) of {an} over Q. 

We define the polynomials f^x) in the following way: 

/ x ( x ) = F x + 1 

/ 2 (x) = 2Fx + l 

/ 3 (x) = 3Fx + l 

/ 4 (x) = 6Fx + l 

/,(x) = 6 - 2 ' " 4 F x + l . 

Clearly, these polynomials satisfy the assumptions of Schinzel's conjecture H, 
and therefore this conjecture implies the existence of infinitely man}' natural x 0 

such that all numbers 

V = Л(жo) = ÍV, 
2p- 1 = f2(

xo) = p 2 ; 
З p - 2 = fз(xo) = p 3 ; 

6p — 5 = fЛxo) = pĄ; 

V - 4 6 - 2 ' - 4 ( p - l ) + l = /,(x IЛ-^O) Pl 

are primes. 
Moreover, it can be assumed that the numbers C = Ct = p1 .. .pt do not 

ramify in any field A"?. 

Every such C is a Carmichael number because F is divisible by 6 • 2*~3 . 

Each prime p- splits completely in each field A^ because p • = 1 (mod F), 
and F is divisible by the conductor of the field Kj over Q. 
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Let p- be a prime divisor of the field Ki which divides p.. Using the gener­
alized Euler criterion and the well-known expression for the terms an = al

n of a 
simple linear recurring sequence as a linear combination over Ki of the powers 
of the roots a x , . . . , ar of its characteristic polynomial g^x) we obtain 

cлa 
Cs Cs 

Н г- стат 
1Сз — ° 1 " 1 

= ^ 1 ) 
= сха{ + • • • + сга

8

г = а3 (тос! р^ . 

+ c r « ) ( p - 1 ) ^ + 1 

Since each p. divides p. exactly in the first degree, and numbers a r < 5 and av 

are rational integers, we obtain the congruence 

for every j = 1 , . . . , / . 

Therefore 

for each i £ I. 

aCs = as ( m o d Pj) 

ahS = aí ( m o d C) 
D 
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