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ABSTRACT. It is proved that for any finite system of simple abelian linear
recurring sequences {ain}, ¢ € I, and arbitrary integer I > 3 Schinzel’s conjecture
H implies the existence of infinitely many composite numbers n which are a
product of ! different primes and satisfy a, = a’ (mod n) for every natural
number s.

We start with the following question of Perrin (see [6]):

Does there exist a composite index n with a, = 0 (mod n) in the linear
recurring sequence {a, } of integers defined by a, ,; = a, ., +a, and the initial
conditions ay = 3, a; =0, a, =27

The answer is affirmative, and concrete values of n are given in [5], [1] and
[2]. In [1], Perrin’s question was generalized to certain congruences among
the members of some third order linear recurring sequences. Authors of [1] also
consider other properties of terms of linear recurring sequences in order to use
them in primality testing.

In [3], one can find the following definition which is based on the above
mentioned congruences:

DEFINITION 1. Let {a,} be a linear recurring sequence. An integer n is
called pseudoprime with respect to {a,} if a,, = a, (mod n) for every natural
number s.

The fact that Schinzel’s conjecture H implies the existence of infinitely many
pseudoprimes with respect to simple abelian linear recurrent sequences was
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proved in [3]. Moreover, all pseudoprimes considered there are a product of two
different primes.

The aim of this note is to prove that for any finite system of simple abelian
linear recurring sequences {a;}, 1 € I, and arbitrary integer [ > 3 Schinzel’s
conjecture H implies the existence of infinitely many common pseudoprimes
with respect to {a’} which are a product of ! different primes.

Let {a,} be a rth order linear recurring sequence of integers satisfying the
recurrence relation

an+r = br—lan+r—1 +oet boa‘n )

where b, ...,b,._; are integers.

The sequence {a,} is called simple if its characteristic polynomial g(z) =
" — bT_le"l —---—b, has only simple roots and is called abelian if the splitting
field of g(z) over the field Q of rational numbers is abelian over Q.

The Schinzel’s conjecture H states the following:

If f,(x),..., fi(x) are irreducible polynomials with integral coefficients and
positive leading coefficient such that the product f;(z)... f,(z) has no constant
factor greater than 1, then there exist infinitely many positive integers = for
which f,(z),..., fi(z) are primes.

THEOREM. Let {a'}, i € I, be a finite system of simple abelian linear recur-
ring sequences. Then for any natural | > 3 Schinzel’s conjecture H tmplies the
ezistence of infinitely many pseudoprimes with respect to every {a’}, which are
Carmichael numbers and are a product of | different primes.

Proof. Put
C,=p(2p—1)(3p—2)(6p—5)(12p — 11)... (6-2""*(p— 1) + 1)

and suppose that each factor in this product is a prime.

First we will show that C; is a Carmichael number whenever
p =1 (mod 6-2'73) . It suffices to prove that, under this assumption, the number
C,—1 is divisible by numbers (p—1), 2(p—1), 3(p—1), 6(p—1),...,6-2"4(p—1).

If l=3,then C;—1=(p—1)(6p>—p+1),and p=1 (mod 6) implies that
6p% — p+ 1 is divisible by 6.
Denote by h,(z) the integral polynomial given by the formal equality pl 11
= h[ (p)

We proceed by induction. For [ = 3 we have h,(1) = 6, and C;—1 is divisible
by 6(p —1).

Next suppose that h/(1) =6-2!72 and C, — 1 is divisible by 6-2'73(p — 1)
for some [ > 3.
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Then
Cryy —1=(C,—1)(6- 2B (p-1)+1)+6-23(p—1)
C, -1
=(p-1|(C,—1)6-2""% + ﬁﬂ;.z’—?’ ,

and we infer that C;, , — 1 is divisible by p — 1, and h; (1) = 6- 2!=2 This

L. 1—21 - . Cl-q-]'—l.
means that the condition p =1 (mod 6-2'~%) implies that — 1 s divisible
by 6272,

Therefore, C, are Carmichael numbers provided p =1 (mod 6 -2!73).

Now denote by F an arbitrary natural number divisible by 6 - 2!=3 and all
conductors of abelian fields K, which are the splitting fields of characteristic
polynomials g,(z) of {a’} over Q.

We define the polynomials f,(z) in the following way:

filz) = Fz+1;
folz) =2Fx 4+ 1;
fy(x) =3Fx +1;
filx) =6Fz +1;

filz)=6-2"""Fz +1.

Clearly, these polynomials satisfy the assumptions of Schinzel’s conjecture H,
and therefore this conjecture implies the existence of infinitely many natural z
such that all numbers

= fl(x()) =Py
2p = 1= fy(zg) = py;
3p— 2= fy(zy) = py;
6p —5 = fy(xy) =pys

v ol—4
6-27(p—1)+1= f(z,) =p
are primes.
Moreover, it can be assumed that the numbers " = ¢, = p,...p, do not
ramify in any field K.
Every such C is a Carmichael number because F is divisible by 6 -2/=3

Each prime p; splits completely in each field K; because p; =1 (mod F),
and F' is divisible by the conductor of the field K, over Q.
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Let p; be a prime divisor of the field K; which divides p ;- Using the gener-

alized Euler criterion and the well-known expression for the terms a, = a; of a
simple linear recurring sequence as a linear combination over K, of the powers
of the roots «,...,a, of its characteristic polynomial g;(z) we obtain

_ Cs Cs
Aoy = C 0y +ot CrQy

_ )(Pj—l)%%-l

1) L=
= e (o o Da =

+ote(af

=co0)+ - +ca) =a; (mod ;).

Since each p; divides p; exactly in the first degree, and numbers a., and a;
are rational integers, we obtain the congruence

acs =ag, (mod p;)

for every j=1,...,1.

for each 1 € I.

Therefore . '
ag, =a;  (mod C)
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