Mathematic Slovaca

Ján Bán
 Martingale convergence theorem in quantum logic

Mathematica Slovaca, Vol. 37 (1987), No. 4, 313--322

Persistent URL: http://dml.cz/dmlcz/130485

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

MARTINGALE CONVERGENCE THEOREM IN QUANTUM LOGICS

JÁN BÁN

Introduction

It is clear that both martingales and quantum logics belong to the topical themes of today's probability theory. The central result of the martingale theory is the martingale convergence theorem. This theorem was generalized into quantum logics (by supposing the distributivity) by B. Harman and B. Riečan in [3].
O. Nánásiová and S. Pulmannová have shown in [5] the possibility of a further generalization of the conditional expectation, the construction of which is fundamentally used in the proof of the martingale convergence theorem.

This paper follows the mentioned works and shows the possibility of the generalization of the martingale convergence theorem into quantum logics without supposing the distributivity, which means the generalization in line with the main purpose of the quantum - logics - theory.

The terms in this paper are used according to [7]; som preliminaries are even verbatim quoted.

Preliminaries

In the mathematical description of quantum experiments, a generalization of the classical probability theory is needed. While in the classical probability theory the set of all "experimentally verifiable propositions" of the physical system (or, equivalently, the set of all random events) can be mathematically described as a Boolean σ-algebra, in the quantum case a more general algebraic structure is needed. The reason for this is the fact that there exist pairs of physical quantities (e.g. position and momentum of a particle) which cannot be measured simultaneously with an arbitrary accuracy - as it can be seen in the case of the well-known Heisenberg uncertainty principle. In quantum logics approach to quantum mechanics the basic concepts are the set L of all experimentally verifiable propositions of the physical system and the set M of the
physical states. L is usually supposed to be a partially ordered set with the greatest element 1 and the least element 0 , with the orthocomplementation $\perp: L \rightarrow L$ such that
(i) $\left(a^{\perp}\right)^{\perp}=a, a \in L$
(ii) $a \leqslant b$ if and only if $b^{\perp} \leqslant a^{\perp}, a, b \in L$
(iii) $a \vee a^{\perp}=1$ for all $a \in L$
(where we denote by $x \wedge y$, resp. $x \vee y$, the infimum, resp. supremum of x and y of L if they exist); and with the orthor nodular property
(iv) $a \leqslant b(a, b \in L)$ implies $\exists c \in L: c \leqslant a^{\perp}$ and $b=a \vee c$; and which is closed under the formation of the suprema $\vee a_{i}$ for any sequence $\left\{a_{i}\right\} \subset L$ such that $a_{i} \leqslant a_{j}^{\perp}, i \neq j$. A set L with the properties just described is called a logic.

The elements $a, b \in L$ are called orthogonal $(a \perp b)$ if $a \leqslant b^{\perp}$, and they are compatible ($a \leftrightarrow b$) if there exist elements a_{1}, b_{1}, c in L mutually orthogonal and such that $a=a_{1} \vee c$ and $b=b_{1} \vee c$. The sets $A \subset L, B \subset L$ are called compatible $(A \leftrightarrow B)$ if $a \leftrightarrow b$ for all $a \in A, b \in B ; A$ is ε comparible set $(A \leftrightarrow)$ if $a \leftrightarrow b$ for all $a, b \in A$.

If for any $0 \neq a \in L$ and a set $M \subset L$ there holds:
(i) $M \leftrightarrow a$
(ii) $(M \wedge a) \leftrightarrow$, we define M as partial compatible with a (M p.c. $[a]$).

A state on the $\operatorname{logic} L$ is a probability m asure on L, i.e. a map $m: L \rightarrow$ $\rightarrow[0,1]$ such that:
(i) $m(1)=1$
(ii) $m\left(\vee a_{i}\right)=\Sigma m\left(a_{i}\right)$
for any sequence $\left\{a_{i}\right\}$ of mutually orthogonal elements of L.
Let L_{1} and L_{2} be two logics. The mapping $h: L_{1} \rightarrow L_{2}$ is called a σ-homomorphism if
(i) $h\left(1_{1}\right)=1_{2}$ (where 1_{1} and 1_{2} are the greatest elements in L_{1} and L_{2}, (respectively),
(ii) $p \perp q, p, q \in L_{1}$ implies $h(p) \perp h(q)$,
(iii) $h\left(\vee p_{i}\right)=\vee h\left(p_{i}\right)$ for any sequence $\left\{p_{i}\right\}$ of mutually orthogonal elements of L_{1}.

With the help of the concept of σ-homomorphism we introduce observables (corresponding to physical quantities). If R is the real line and $B(R)$ is the σ-algebra of all Borel sets, then any σ-homomorphism of $B(R)$ into L is called observable on L.

If x is an observable and $f: R \rightarrow R$ is a Borel measurable function, then the map $x \circ f^{-1}: E \mapsto x\left(f^{-1}(E)\right)$ is also an observable, which is called the function f of the observable x.

Two observables x and y are called compatible if $x(E) \leftrightarrow y(E)$ for all $E, F \in$ $\in B(R)(x \leftrightarrow y) ; x$ is compatible with a if $x(E) \leftrightarrow a$ for all $E \in B(R)$.

If x is an observable and m is a state on L, then the map $m_{x}: E \mapsto m(x(E))$ is a probability measure on $B(R)$. It is called the probability distribution of the observable x. For $a \in L$ we define

$$
\int_{a} x \mathrm{~d} m=\int_{R} \operatorname{tm}(x(\mathrm{~d} t) \wedge a)=\int_{R} t \mathrm{~d} v
$$

where $v: E \mapsto m(x(E) \wedge a)$ if such an integral exists.
Remark: For the existence of this integral we need firstly to make sure that $m(x(E) \wedge a)$ is a measure; the sufficient condition for that is $x \leftrightarrow a$.

The expectation of the observable x in the state m can be defined by

$$
m(x)=\int_{R} t m_{x}(\mathrm{~d} t)
$$

if the integral exists. The subset L_{o} of a logic L is called a sublogic of L if
(i) $a \in L_{o}$ implies $a^{\perp} \in L_{o}$
(ii) $a_{1}, a_{2}, \ldots \in L_{o}$ with $a_{i} \perp a_{j}$ implies $\vee a_{i} \in L_{o}$.

It can be easily verified that a sublogic of a logic is a logic itself. A sublogic $L_{o} \subset L$ is called a lattice sublogic provided that $a, b \in L_{o}$ implies $a \vee b$ exists in L and is in L_{o}. In this case L_{o} is a lattice. If a lattice sublogic is distributive, then it is a Boolean σ-algebra and it is called a sub- σ-algebra of L. A logic L is called separable if for any Boolean sub- σ-algebra B_{o} of L there exists a countable subset D of L such that B_{o} is the smallest Boolean sub- σ-algebra of L containing D.

Some important statements

Let us mention some of the generally known statements, which we shall use further in a relevant way. Their proof is to be found in [9] or [5].

Theorem 1: Let x be an observable associated with a logic L. The range of the observable $x(R(x))$ is always a Boolean sub- σ-algebra of the logic L. If L_{o} is a sublogic of a logic L, then $x^{-1}\left(L_{o}\right)$ is a Boolean sub- σ-algebra $B(R)$ as well.

Theorem 2: Let L be a logic which is simultaneously a lattice. Then a necessary and sufficient condition for the existence a Boolean sub- σ-algebra B such that $A \subset B \subset L$ is that A is a compatible set (in L).

Theorem 3: Two observables are compatible if and only if such a Boolean sub- σ-algebra B exists that $R(x) \subset B$ and also $R(y) \subset B$.

Theorem 4: Let $x: B(R) \rightarrow L_{o}$ be an observable associated with L_{o}, where L_{o} is a countable generated Boolean sub- σ-algebra of the logic L. Then there exists
an observable $y: B(R) \rightarrow L$ and a Borel measurable function $f: R \rightarrow R$ so that $L_{o}=\{y(E): E \in B(R)\}$ and $x(E)=y \circ f^{-1}(E)$ for all $E \in B(R)$.

Theorem 5: Let $\left\{x_{n}\right\}$ be maximally a countable system of mutually compatible observables associated with a lattice-logic L. Then there exists an observable y, associated with L and a Borel measurable functions f_{n} so that $x_{n}=y f_{n}^{-1}$.

Theorem 6: Let L be a logic, $a \in L$. Then $L_{[0, a]}=\{b \in L: b \leqslant a\}$ is also a logic with the greatest element a and an ortho-complement $b^{\prime}=b^{\perp} \wedge a$.

Theorem 7: Let x be an observable associated with L and $x \leftrightarrow a, a \in L$. Then $x \wedge a(E \mapsto x(E) \wedge a)$ is also an observable associated with $L_{[0, c]}$.

Theorem 8: Let m be a state on L. Let $a \in L$ be such an element that $m(a)=1$. Then m is also a state on $L_{[0, a]}$.

Theorem 9: Let L be a $\operatorname{logic,~} M \subset L, M \leftrightarrow a . M \wedge a$ is a compatible set in L if and only if $M \wedge a$ is a compatible set in $L_{[0, a]}$.

Theorem 5 enables us to define the calcul of compatible observables. If x and y are compatible observables, then let us define $y-x=z \wedge\left(f_{1}-f_{2}\right)^{-1}$, where $y=z \circ f_{1}^{-1}, x=z \circ f_{2}^{-1}$.

In the same way we can define the sum and the product of compatible observables. Another way how to find the calcul is available in [2].

Let $\left\{x_{n}\right\}$ be a sequence of the observables associated with L, x be an observable associated with L, m be a state and $x_{n} \leftrightarrow x$. We can say that $\left\{x_{n}\right\}$ converges almost everywhere to x according to the state $m\left(x_{n} \rightarrow x\right.$ a.e. $\left.[m]\right)$ if

$$
m\left(\lim _{n} \sup \left(x_{n}-x\right)(-\varepsilon, \varepsilon)^{c}\right)=0 \text { for all } \varepsilon>0
$$

Conditional expectation of an observable

Before we state and prove the martingale convergence theorem, it is necessary to realize the construction of the conditional expectation of observable.

For $a, b \in L$ put $a \Delta b=\left(a^{\perp} \wedge b\right) \vee\left(a \wedge b^{\perp}\right)$. For the observables x and y associated with L we shall write $x \approx y(m)$ if

$$
m(x(E) \Delta y(E))=0 \quad \text { for any } \quad E \in B(R)
$$

In [5] is proved the following lemma:
Lemma 1: Let x, y, z be observables associated with the logic L such that $(R(x) \cup R(y) \cup R(z))$ p.c. $[a]$ for some $a \in L$; and let $m(a)=1$. Then $x \approx y(m)$, $y \approx z(m)$ implies $x \approx z(m)$.

Proof: First we prove the lemma in the special case $a=1$. If b, c, d are compatible elements of L, then $b \Delta d \leqslant(b \Delta c) \vee(c \Delta d)$, so that

$$
m(x(E) \Delta y(E))=m(z(E) \Delta y(E))=0 \quad \text { implies } \quad m(x(E) \Delta z(E))=0
$$

for all $E \in B(R)$.
Let $0<a<1$. Then $x \wedge a, y \wedge a, z \wedge a$ are mutually compatible observables associated with $L_{[0, a]}$ so that, by the above part of proof, $x \approx y(m), y \approx z(m)$ implies $m((x \wedge a)(E) \Delta(z \wedge a)(E))=0$ for all $E \in B(R)$. But

$$
m(x(E) \Delta z(E))=m((x(E) \Delta z(E)) \wedge a)=m((x \wedge a)(E) \Delta(z \wedge a)(E))=0
$$

Definition 1 : Let x be an observable associated with the logic L. Let L_{o} be a sublogic of the logic L, m be a state on L.

The conditional expectation of the observable x according to the sublogic L_{o} (we shall write $\left.E\left(x / L_{o}\right)\right)$ can be defined as such an observable u, for which there holds:
(i) $u(E) \in L_{o}$ for all $E \in B(R)$
(ii) $\int_{a} u \mathrm{~d} m=\int_{a} x \mathrm{~d} m$ for all $a \in L_{o}$ i.e. both sides exist and are equal.

In case when L_{1} is a Boolean sub- σ-algebra of the logic L and $x(B(R)) \cup$ $\cup L_{o} \subset L_{1}$, the existence and almost everywhere uniqueness (in accordance $\approx(m)$) of the conditional expectation of x is guaranteed by the following theorem.

Theorem 10: Let L_{1} be a countably generated Boolean sub- σ-algebra of the logic L, m be a state on L. Let L_{o} be a subalgebra of L_{1}. Let $x: B(R) \rightarrow L_{1}$ be an integrable observable. Then there exists an integrable observable $u: B(R) \rightarrow L_{1}$ such that there holds:
(i) $\int_{a} x \mathrm{~d} m=\int_{a} u \mathrm{~d} m$ for all $a \in L_{o}$
(ii) $u(E) \in L_{o}$ for all $E \in B(R)$.

Proof: see [2].
Definition 2: Let L be a logic, $\left\{L_{n}\right\}_{1}^{\infty}$ be a sequence of sublogics of the logic $L,\left\{x_{n}\right\}_{1}^{\infty}$ be a sequence of observables, m be a state on L. The sequence $\left(x_{n}, L_{n}\right)_{1}^{\infty}$ is called the martingale on the logic L if:
(i) $L_{n} \subset L_{n+1} \subset L, n=1,2, \ldots$
(ii) x_{n} is associated with $L_{n}, n=1,2, \ldots$
(iii) $E\left(x_{n+1} / L_{n}\right) \approx x_{n}(m), n=1,2, \ldots$

Theorem 5 and 10 allow to make the following statement:
Theorem 11: Let L be a logic and $\left\{L_{n}\right\}_{1}^{\infty}$ a sequence of a countable generated Boolean sub- σ-algebras of the logic L. Let $\left(x_{n}, L_{n}\right)_{1}^{\infty}$ be a martingale on L and $\sup _{n} m\left(\left|x_{n}\right|\right)<\infty, m$ is a state on L. Then there exists such an observable x
associated with $\mathscr{L}=\sigma_{B}\left(\bigcup_{n=1}^{\infty} L_{n}\right)$ (the smallest Boolean σ-algebra such that $\left.\mathscr{L} \supset \bigcup_{n=1}^{\infty} L_{n}\right)$ that $x_{n} \rightarrow x$ a.e. [m].

Proof: see [3].
But this understandig of the conditional expectation is not too generalized, because it supposes the distributivity of L. Our purpose is, however, to avoid this presumption. Another conditional expectation version of an observable can be found by the following construction. Let L be a separable lattice - logic, L_{o} its sublogic, x an integrable observable associated with L, m a state on L. Let us have an element $0 \neq a \in L$, so that
(i) $m(a)=1$
(ii) $\left(R(x) \cup L_{o}\right)$ p.c. $[a]$.

Because $\left(R(x) \cup L_{o}\right) \wedge a$ is the compatible set, there exists such a Boolean σ-algebra B that $\left(R(x) \cup L_{o}\right) \wedge a \subset B \subset L_{[0, a]}$, an observable $y: B(R) \rightarrow B$ and a Borel measurable function $f: R \rightarrow R$ so that $x \wedge a=y \circ f^{-1}$. To $L_{o} \wedge a$ there exists a Boolean σ-algebra B_{o} so that $L_{o} \wedge a \subset B_{o} \subset B$. Let us define $S_{o}=$ $=\left\{E \in B(R): y(E) \in B_{o}\right\}$. It is clear that S_{o} is a sub- σ-algebra of the σ-algebra $S=y^{-1}(B)$. Therefore there exists $g=E m_{y}\left(f / S_{o}\right)$ (the "classical" conditional expectation of the function f according to S_{o}). Now let us define $z^{+}=y \circ g^{-1}$.

It is clear that z^{+}is an observable associated with $L_{[0, a]}$ whereby $R\left(z^{+}\right) \subset B_{o}$ (because g is S_{o}-measurable). In order to "extend" z^{+}to the whole logic L, let us define

$$
z=y \circ g^{-1} \vee\left(w \wedge a^{\perp}\right) \text { where } \quad w(E)=\left\langle\begin{array}{cc}
0 & 0 \notin E \\
1 & 0 \in E
\end{array}\right.
$$

Now it is still valid that

$$
z(R)=z^{+}(R) \vee\left(w(R) \wedge a^{\perp}\right)=z^{+}(R) \vee a^{\perp}=a \vee a^{\perp}=1 .
$$

Let us show that z is a conditional expectation version of the observable x according to L_{o}. Let $b \in L_{o}$.

Because $m(a)=1$

$$
\begin{gathered}
\int_{b} x \mathrm{~d} m=\int \operatorname{tm}(x(\mathrm{~d} t) \wedge b)= \\
=\int t m(x \wedge a(\mathrm{~d} t) \wedge(b \wedge a))=\int t m\left(y \circ f^{-1}(\mathrm{~d} t) \wedge y(A)\right)= \\
=\int t m_{y}\left(f^{-1}(\mathrm{~d} t) \cap A\right)=\int_{A} f(\omega) m_{y}(\mathrm{~d} \omega)=\int_{A} g(\omega) m_{y}(\mathrm{~d} \omega)= \\
=\int t m_{y}\left(g^{-1}(\mathrm{~d} t) \cap A\right)=\int t m\left(y \circ g^{-1}(\mathrm{~d} t) \wedge y(A)\right)=
\end{gathered}
$$

$$
=\int \operatorname{tm}\left(y \circ g^{-1}(\mathrm{~d} t) \wedge(b \wedge a)\right)=\int_{b} z \mathrm{~d} m
$$

Let us prove yet the uniqueness (in accordance with $\approx(m)$) of this conditional expectation.

Let z_{1}, z_{2} be two versions of a conditional expectation $E\left(x / L_{o}\right)$ for the same required element $a \in L$. We have $z_{1} \leftrightarrow a, z_{2} \leftrightarrow a$ and $R\left(z_{1}\right) \wedge a \subset L_{o} \wedge a, R\left(z_{2}\right) \wedge$ $\wedge a \subset L_{o} \wedge a$.

As $L_{o} \wedge a \subset B_{o} \subset L_{[0, a]}$ and B_{o} is a Boolean sub- σ-algebra, then $z_{1} \wedge a \leftrightarrow$ $\leftrightarrow z_{2} \wedge a$. Let $g_{1}: \Omega \rightarrow R, g_{2}: \Omega \rightarrow R$ be S_{o}-measurable functions such that $z_{1}=y \circ g_{1}^{-1}$ and $z_{2}=y \circ g_{2}^{-1}$. Then, as $z_{1}(E) \Delta z_{2}(E) \leftrightarrow a$ for any $E \in B(R)$,

$$
\begin{gathered}
m\left(\left(z_{1} \wedge a\right)(E) \Delta\left(z_{2} \wedge a\right)(E)\right)=m\left(y \circ g_{1}^{-1}(E) \Delta y \circ g_{2}^{-1}(E)\right)= \\
=m\left(y \circ\left(g_{1}^{-1}(E) \Delta g_{2}^{-1}(E)\right)\right)=m_{y}\left(g_{1}^{-1}(E) \Delta g_{2}^{-1}(E)\right)
\end{gathered}
$$

From that there holds for g_{1} and $g_{2} \int_{F} g_{1} \mathrm{~d} m_{y}=\int_{F} g_{2} \mathrm{~d} m_{y}$, for all $F \in S_{o}$ we get $m_{y}\left(g_{1}^{-1}(E) \Delta g_{2}^{-1}(E)\right)=0$ for any $E \in B(R)$. Indeed, put

$$
\begin{array}{ll}
F_{1}=\{\omega \in \Omega ; & \left.g_{1}(\omega)>g_{2}(\omega)\right\}, \\
F_{2}=\{\omega \in \Omega ; & \left.g_{1}(\omega)<g_{2}(\omega)\right\} .
\end{array}
$$

As $F_{1} \cup F_{2} \in S_{o}, \int_{F_{o}}\left(g_{1}-g_{2}\right) \mathrm{d} m_{y}=0$ for any $F_{o} \subset F_{1} \cup F_{2}, F_{o} \in S_{o}$, hence

$$
m_{y}\left(F_{1} \cup F_{2}\right)=m_{y}\left\{\omega ; \quad g_{1}(\omega) \neq g_{2}(\omega)\right\}=0
$$

As $g_{1}^{-1}(E) \Delta g_{2}^{-1}(E) \subset F_{1} \cup F_{2}$, we obtain

$$
m_{y}\left(g_{1}^{-1}(E) \Delta g_{2}^{-1}(E)\right)=0
$$

for any $E \in B(R)$.
Now $0=m\left(\left(z_{1} \wedge a\right)(E) \Delta\left(z_{2} \wedge a\right)(E)\right)=m\left(z_{1}(E) \Delta z_{2}(E)\right)$ and this concludes the proof of uniqueness.

Let us notice the conditions we require for the element $0 \neq a \in L$. We have to recognize that if we have to use $1 \in L$ instead of this element, then the second condition actually says that L_{o} has to be a Boolean σ-algebra, which means that we get the same conditional expectation version as in theorem 10 . On the other hand, it is clear that the conditions for the required $a \in L$ are "strong enough". One of the possibilities, how to seek such an $a \in L$ is to use the set-comutator qualities (see [5]). Furthermore we shall require $a \in L_{o}$, which is a sufficient condition for the L_{o}-measurability of the conditional expectation.

In concluding this part of the paper let us make a generalization of the previously defined calculus of observables.

Let x, y be two observables associated with the logic L, m is a state. Let there exist $0=a \in L$ such that $(R(x) \cup R(y))$ p.c. [a] and $m(a)=1$. Then we can define $x-y=z \circ\left(f_{1}-f_{2}\right)^{-1} \vee\left(w \wedge a^{\perp}\right)$ where $x \wedge a=z \circ f_{1}^{-1}, y \wedge a=z \circ f_{2}^{-1}$ and w is the observable $\left(w=<\begin{array}{cc}0 & 0 \notin E \\ 1 & 0 \in E\end{array}\right)$.

The martingale convergence theorem

Theorem 12: Let $\left(x_{n}, L_{n}\right)_{1}^{\infty}$ be a martingale on the separable lattice-logic L. Let there exist such a $0 \neq a \in L$ that
(i) $m(a)=1$
(ii) $\left(R\left(x_{n+1}\right) \cup L_{n}\right)$ p.c. $[a], n=1,2, \ldots$

Let $\sup _{n} m\left(\left|x_{n}\right|\right)<\infty$.
Then there exists such an observable x that $x_{n} \rightarrow x$ a.e. $[m$].
Proof: For each $n=1,2, \ldots\left(R\left(x_{n+1}\right) \cup L_{n}\right) \wedge a$ are compatible sets and $\left(R\left(x_{n+1}\right) \cup L_{n}\right) \wedge a \subset L_{[0, a]}$, which means that there exists the Boolean sub- σ algebras B_{1}, B_{2}, \ldots such that

$$
\left.\left(R\left(x_{n+1}\right) \cup L_{n}\right)\right) \wedge a \subset B_{n}, B_{n} \subset B_{n+1} \subset L_{[0, a]}, \quad n=1,2, \ldots
$$

Because $\left\{B_{n}\right\}$ is an upper bounded sequence by $L_{[0, a]}$, there exists a Boolean sub- σ-algebra B of $L_{[0, a]}$ such that for each n there holds $\left(R\left(x_{n+1}\right) \cup L_{n}\right) \wedge a \subset$ $\subset B \subset L_{[0, a]}$. Therefore the observables $x_{n} \wedge a, n=1,2, \ldots$ are compatible (because $\left.R\left(x_{n} \wedge a\right) \subset R\left(x_{n}\right) \wedge a \subset B\right)$ and this means that there exists an observable $y: B(R) \rightarrow B$ and Borel measurable functions $f_{n}: R \rightarrow R$ that $x_{n} \wedge a=$ $=y \circ f_{n}^{-1}$. Similarly $L_{n} \wedge a, n=1,2, \ldots$ are compatible sets, too and therefore there exists a sequence $B_{1}^{+}, B_{2}^{+}, \ldots$ of the Boolean sub- σ-algebras of $L_{[0, a]}$ such that $L_{n} \wedge a \subset B_{n}^{+}$.

Let us take instead of $\left\{B_{n}^{+}\right\}$the smallest Boolean σ-algebras with this property.

Let us prove that $\left(x_{n} \wedge a, B_{n}^{+}\right)$is a martingale on $L_{[0, a]}$. Evidently:
(i) $B_{1}^{+} \subset B_{2}^{+} \subset \ldots \subset B$ because $L_{1} \subset L_{2} \subset \ldots$ and $L_{1} \wedge a \subset L_{2} \wedge a \subset \ldots$
(ii) because $x_{n}(E) \in L_{n}$, therefore also $x_{n}(E) \wedge a \in L_{n} \wedge a \subset B_{n}^{+}$as well
(iii) it is also necessary the prove that $E\left(x_{n+1} \wedge a / B_{n}^{+}\right) \approx x_{n} \wedge a(m)$.

Let us define:

$$
S_{n}=\left\{A \in B(R): y(A) \in B_{n}^{+}\right\}=y^{-1}\left(B_{n}^{+}\right) \quad \text { and } \quad g_{n}=E m_{y}\left(f_{n+1} / S_{n}\right) .
$$

From the assumption that $\left(x_{n}, L_{n}\right)_{1}^{\infty}$ is a martingale and from the condition-al-expectation - construction of an observable we know that $E\left(x_{n+1} / L_{n}\right)=$ $=y \circ g_{n}^{-1} \vee\left(w \wedge a^{\perp}\right) \approx x_{n}$, therefore $x_{n} \wedge a \approx y \circ g_{n}^{-1} \vee\left(w \wedge a^{\perp}\right) \wedge a=y \circ g_{n}^{-1}$ (since $m(a)=1$). Because $x_{n+1} \wedge a=y \circ f_{n+1}^{-1}$, from the construction g_{n} it is clear that $E\left(x_{n+1} \wedge a / B_{n}^{+}\right) \approx x_{n} \wedge a$ (with respect to lemma 1 , too).

Now we can finally use theorem 11 , according to which $x_{n} \wedge a \rightarrow h=y \circ$ $\circ g^{-1}$ a.e. $\left[m\right.$], where g is such a Borel measurable function that $g_{n} \rightarrow g$ a.e. $\left[m_{y}\right]$. Let us define $x=y \circ g^{-1} \vee\left(w \wedge a^{\perp}\right)$.
It is also necessary to prove that

$$
m\left(\lim _{n} \sup \left(x-x_{n}\right)(-\varepsilon, \varepsilon)^{c}\right)=0
$$

Indeed,

$$
\begin{aligned}
& m\left(\lim _{n} \sup \left(y \circ\left(g-g_{n}\right)^{-1}(-\varepsilon, \varepsilon)^{c}\right) \vee\left(w(-\varepsilon, \varepsilon)^{c} \wedge a^{\perp}\right)\right)= \\
= & m\left(\bigwedge_{i=1}^{\infty} \bigvee_{n=1}^{\infty}\left[\left(y \circ\left(g-g_{n}^{-1}(-\varepsilon, \varepsilon)^{c}\right) \vee\left(w(-\varepsilon, \varepsilon)^{c} \wedge a^{\perp}\right)\right]\right)=\right. \\
= & \lim _{i} m\left(\bigvee_{n=1}^{\infty}\left[\left(y \circ\left(g-g_{n}\right)^{-1}(-\varepsilon, \varepsilon)^{c}\right) \vee\left(w(-\varepsilon, \varepsilon)^{c} \wedge a^{\perp}\right)\right]\right)= \\
= & \lim _{i} m\left(\bigvee_{n=1}^{\infty}\left[y \circ\left(g-g_{n}\right)^{-1}(-\varepsilon, \varepsilon)^{c}\right]\right)+\left[m\left(w(-\varepsilon, \varepsilon)^{c} \wedge a^{\perp}\right)\right]= \\
= & m\left(\lim _{n} \sup y \circ\left(g-g_{n}\right)^{-1}(-\varepsilon, \varepsilon)^{c}\right)+m\left(w(-\varepsilon, \varepsilon)^{c} \wedge a^{\perp}\right)=0
\end{aligned}
$$

because $g_{n} \rightarrow g$ a.e. $\left[m_{y}\right]$ and $m(0)=0, m\left(a^{\perp}\right)=0$ (from the condition $m(a)=$ $=1$), too.

This concludes the proof of the theorem.

REFERENCES

[1] DVUREČENSKIJ, A.-PULMANNOVÁ, S.: On the sum of observables in a logic. Math. Slovaca 30, 1980, 393-399.
[2] HARMAN, B.: Niektoré otázky ergodickej teórie. Kandidátska dizertačná práca, Liptovský Mikuláš, 1982.
[3] HARMAN, B.-RIEČAN, B.: Martingale convergence theorem in quantum mechanics. Trans. of the Ninth Prague Conf., 1982, Praha.
[4] MULLIKIN, H.-GUDDER, S. P.: Measure theoretic convergences of observables and operators. J. Math. Phys. 14, 1973, 234-242.
[5] NÁNÁSIOVÁ, O.-PULMANNOVÁ, S.: Relative conditional expectation on a logic. Apl. Mat. 30, 1985, 332-350.
[6] NEUBRUNN, T.-RIEČAN, B.: Miera a integral. Veda, Bratislava 1981.
[7] NEUBRUNN, T.-PULMANNOVÁ, S.: On compatibility in quantum logics. Acta. Math. Univ. Com., 1983, 153-167.
[8] PULMANNOVÁ, S.: Compatibility and partial compatibility in quantum logics. Ann. Inst. H. Poincaré, 34, 1981, 391-403.
[9] VARADARAJAN, V. S.: Geometry of Quantum Theory. vol. 1, New Jersey, Princeton 1968.
[10] VARADARAJAN, V. S.: Probability in physics and a theorem on simultaneous observability. Commun. Pure and Appl. Math. 15, 1962, 189-217.

Received October 8, 1984
Katedra teórie pravdepodob.
a matematickej štatistiky
MFF UK, Mlynská dolina
84215 Bratislava

МАРТИНГАЛЬНАЯ СХОДИМОСТНАЯ ТЕОРЕМА В КВАНТОВЫХ ЛОГИКАХ
Ján Bán
Резюме
В работе приведено обобщение так называемой мартингальной сходимостной теоремы для квантовых логик.

