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ON TESTING HYPOTHESES APPROXIMABLE
BY CONES

FRANTISEK RUBLIK
1. Introduction

Let (X, &) be a sample space, ® c R™ be an open set and a family 2 =
= {P,; 0€ O} of probability measures be defined by means of density functions

\ dp,
flx, ) =—° ( x),
where pis a o-finite measure on & . We assume that the distribution of x belongs
to the family 2. For every n let x" = (x,, ..., x,) denote n independent observa-
tions,
x ™, 6) = ﬂf( (1.1)

Jj=1
be the corresponding density function and for H = @ let
L(x"™, H) = supy. y L(x"™, 0). (1.2)

Let us consider testing the hypothesis H against the alternative @ — H by means
of the statistic
(n)
—2log Lx™, H) , (1.3)
L(x", ©)
where log denotes the logarithm to the base e. This statistic can be difficult to
compute, partly because the function

Y(6*) = log L(x", 6%)
may have several maxima on H. However, in some situations the set H is
convex, and if 6, denotes the maximum likelihood estimator MLE, then the

Fisher information matrix J(6,) is of full rank almost everywhere. Hence almost
everywhere the quadratic form

Q(6*) = (8, - 6*)J(9) (4, — 6
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attains its minimum on the closure A in a unique point 77(8,). We show in
Theorem 2.1 that 7/(8,) is an estimator asymptotically equivalent to the restric-
ted MLE. A statistic based on this projection estimator is used in Section 3 for
the statistical quality control in the case of two normally distributed com-

ponents with unknown correlation coefficient.

2. Main result

First we impose regularity conditions on the density functions and introduce
several notations and notions.

Let 0 be an arbitrary point in 6.

(R1) The function f(x, 0) is positive on X and has all partial derivatives of the
third order, and they are continuous in 6.

(R2) There are a neighbourhood Uy < O of the point 0 and a P, integrable
Sfunction Q, such that ;

a}
ryreved ,0)| <
‘aa,.agjaek og f(x )‘ = Qy(x)

for each xe X, O*eUyand i, j, k=1, ..., m.
(R3) The vector

dlog f(x, 0) _ (a log f(x, 6) dlogf(x, 0)>,

00 00, 7 06,

where the prime denotes the transpose of the vector, belongs to L,(P,), and its
covariance matrix J(0) is strictly positive definite.
(R4) The equalities

2

2 3
9 ftx, O)du(x) = o,
Jao,.f(x Yau(x) Jaoaa

J i

Sx, 0)du(x) =0

hold for i,j=1, ..., m.

The main assertion of this section concerns the testing of a hypothesis H. In
accordance with [2] a set H < @ is said to be approximable at e H by a cone
C if for every sequence {a,} of positive numbers tending to zero

sup{v(y, c + 0); yeH, |ly — 0|l < a,} = o(a,) @

sup{v(y, H— 0); ye C, |yl < a,} = o(a,). '
Here v(y, A) = inf{||y — z||; ze A}, || || is the usual Euclidean norm on R™ and
by the cone we mean any non-empty closed convex subset C of R™ such that
aye C whenever ¢ = 0 and yeC.
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We shall write in most cases J instead of J(6) and P(A) instead of P,(A).
Similarly, the symbols Op, o, relate to the measure P = P,. Throughout this
section @ will be an arbitrary point, fixed and belonging to @. It is shown in [6]
that under the conditions (R1)—(R4) one can construct measurable mappings

9” X" 0O (2.2)
and measurable sets 4, < X" such that

Olog L(x™, 6)

0,=0+J"'n"! + 0p(n~"7? 2.3
0 p(n=") (2.3)
™ g
Olog L(x™, 6) _ 0 whenever x"e 4, 2.4
Gl
P(4,)—-1 if n- oo. (2.5)
If we denote for ye R™ '
Iyl = IO »'™>, NIyll = ' I6) »'™, (2.6)
then |||-||| and ||}-|T| are norms on R” and the following assertion holds.

Theorem 2.1. Let 0e H. Let us assume that all the elements of the matrix J(6)
possess partial derivatives of the first order continuous in 6. Let the set H be
approximable at 0 by a cone C, and measurable mappings G : X" — H satisfv the
conditions (cf. (1.2))

PIL(x®™, ") = L(x", H)] > 1 if n—>o

@.7)
8% > 0 in P, measure.

(I) Let H be the closure of the set H. If #H(0): X" > H are measurable
mappings such that (cf. (2.6))

N, — ﬁf'(é..)li!z = inf{|||, — H*ﬁlz ; 0*e Hy + 0p(n "), (2.8)
then
G = #14(8,) + op(n~"7). (2.9)

(n If P[L(x™, §) = L(x™, ®)] - 1, then

ZLIn(d, — #7(6)yI(8) (8, — #7(6))| P] > ZLlg(z, C)I N0, J7N)],
(2.10)

where — denotes the weak convergence of probability measures and the func-
tion g is defined by the formula

g(z, C) = infp c(z — O*YJ(z — 6%). @2.11)
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Let us denote for any closed convex set V< R™ by ¥ the projection on V in
the norm |||-]|| (cf. (2.6)). Before proceeding to the proof of Theorem 2.1, we
introduce the following assertion.

Lemma 2.1. If the assumptions of the preceding theorem are fulfilled, then

G = n€+%(8,) + op(n="?). (2.12)
Proof. First we prove that
log L(x™, ") = log L(x™, #€*°(8))) + 0,(1). (2.13)
According to the regularity conditions, (2.3) and the central limit theorem
0,= 0+ 0p(n~". (2.14)
According to Lemma 4.1 in Appendix [[|zS(D)I|| < lllylll, which together with
PN =n(p-0+86 (2.15)
and with (2.14) implies the relation
x<t00) = 0+ 0,(n~'?). (2.16)

Making use of (2.14), (2.16), Taylor’s theorem, (2.4), (2.5) and the equality
d’log /]
E [ = —J, we get
06>

log L(x™, 7€*+°(8,) = log L(x"™, 6,) — g g@, C+0) +o,(1). (217

According to Lemma 1 in [2] under the validity of (2.7)
G = 0+ 0,(n"""). (2.18)

Hence given ¢ positive one can choose a positive constant M, such that the sets
H, = {0*ecH; |0* — 0] < n~"?M} satisfy

limsup P[0 ¢ H)] < «. (2.19)

Combining (2.14), Taylor’s theorem, (2.4), (R2) and the law of large numbers
we obtain

log L(x™, H,) = log L(x™, §,) — g g(@,, H) + 0,(1). (2.20)

Since the sequence {n'%(g, — )} is bounded in probability, from (2.1) and

(z—0)dz—0%)—(z— Iz — B <2(z — 6*)I(0— 6%) (2.21)
we get
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8, C+0)—g(@, H)=<o0p(n7"). (2.22)

On the other hand, the inequality |||[z()Ill < llylll and the equivalence of the
norms || - ||, ||| ||l imply the existence of a positive constant K such that

gy, ) =inf{ly — 91*; 1161l £ Kllyl, e C}.
Therefore denoting
B,={x";6,— 0]l <27'K"'n"""M}
and taking into account (2.21) and (2.1) we see that
(2(6,, H,) — (8, C+ ) x5, < 0p(n7"), (2.23)
where ¥, is the indicator function of the set B,. Since we can assume without
loss of generality that the constant M, is chosen so that ]im"inf PB)>1—¢

the relations (2.23), (2.22), (2.20), (2.17) and (2.19) lead to (2.13).
Further, making use of (2.14), (2.16), (2.18), Taylor’s theorem, (R2), the law
of large numbers, (2.4) and (2.5) we obtain

log L(x™, 7€+°(8,) =

(n) C+0rh
— log L(x, @) + (< +(g) — gy 108 LLx o @)

+§ 17+ () — I+ 0p(1) =
= log L(x®, ") — n(z°+°(8,) — Gy I(x* () — ) +
+§ 7S+ 9(G) — GNP + 0p(1). (2.24)
Since §¥ e H, taking into account both (2.1) and (2.18) we get

G = 708"y + 0p(n"?), (2.25)
which together with (2.24), (2.16), (2.14) and (2.13) yields

—n(7°*%(9) — 2+ (G Iz *°(G) — §) +§ 7+ °(6,) — GFIIE = 0p(1).

But (2.15) holds, and according to Lemma 4.1 in the Appendix the first term of
this equality is non-negative, which implies (2.12.)
Now we prove (2.9). It is clear from (2.12) that the relation

z°*%(8,) = #"(6,) + 0p(n~'?) (2.26)
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implies (2.9). We shall prove this equality in two steps. The first one is to proyé
that

¢+ 0(9,,) = fC+ 0(9") + Op(n —I/Z)’ (227)

where 7#¢*? is the projection on C + 6 in the norm HI-I?I, described in (2.6)-
Taking into account (2.15) and Lemma 4.1 from the Appendix we get

1€ +2(8,) — 2+ (G £ N7°(G, — 6) — (B, — O +
+2(z°(8, — 6) — (9, — 0))I(6, — 6 — 78, - 0)).

Hence the equivalence of the norms ||- |, |||l means that the validity of (2.27)
will be stablished by proving

16, — 6 — 78, — O)IIF — 116, — 6 — (G, — NI’ = 0p(n ™). (2.28)

To do this, let us choose a positi\?e constant Z, such that the sets D, = {x®;
n'?| 6, — || £ Z,} satisfy the inequality

liminf P(D,) > 1 — &. (2.29)

Since the derivatives of the information matrix J are continuous,
Supmep, [(6) — I = O(n='"7). (2.30)

Therefore if we denote for a positive define matrix J by s(J) its smallest and by
G(J) its greatest characteristic root, then making use of the fact that

1ZAn = llzIl Al Iyl (2.31)

implies |s(J) — s(d)] £ |J — J| and |GW) — GQ)| £ |J — I, we get the exis-
tence of an integer n, such that

§= infn 2n, infx(")eDns(J(én)) G= sup, > ny SUPxmep, G(J(gn))

are finite positive numbers. Hence from (2.30), (2.31) and from the inequalities

NASO Z vl DI I (2.32)
we obtain

sup,wen, |16, — 0 — (G, — O)IIF — 16, — 6 — 76, — OlIYl = o(n ™).
(2.33)
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A similar process, applied to the metrics g, ¢ induced by the norms |l Il and Il - I
respectively, leads to

Sup,mep,|6°(6, — 6, C) — 0*(4, — 6, O) = o(n ™),

which together with (2.33) and (2.29) yields (2.28).
Now when we know that (2.27) holds, we prove

298, = #7(8) + 0p(n='"). (2.34)
Taking into account both (2.15) and Lemma 4.1, we get
17+ 9(8) — APOII < A +0(E) — A7 +
+ 2[ﬁ.C+ H(én) - ’?C+ G(ﬁrf’(én))],‘j(én) [én - 7’1‘.C+ e(én)] (235)

However, (2.1) and (2.8) imply the relation
12+ (2 () — A G 2, = 0p(n™")

and substituting into (2.35) we see that the validity of (2.34) will be established
by proving

Sup,mep,10°(0,, H) — 6*(6,, C+ 0)| = o(n™"). (2.36)
Obviously, 4(8,, H) < 6(8,, 6) implies the existence of a O* = O*(n~'?) such
that for all x™e D, and n 2 n,

. 6(6,, H) = 6(6,, H*),
where H* = {#*e H; | 0* — 0|| < O*}. Further, given O(n~'?) one can find a
sequence O* = O*(n~'?) such that fe C and | 4| £ O(n~'"?) imply
o0+ 6, H) = oG+ 6, H*).

Hence making use of (2.32), (2.21), (2.30), (2.31) and (2.1) we obtain (2.36),
which completes the proof of the assertion (I).
Taking into account (2.36) and (2.16) we get

nlllf, — 22O = ng(B,, C + 6) + 0,(1), 2.37)

which together with (2.3), the central limit theorem and the continuity of
g(-, C) yields (2.10).

We remark that if the mappings 77(8,) from Theorem 2.1 take their values
in H, then by means of (2.9) one can prove
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log L(x", #(6,)) = log L(x*, G/") + 0,(1). (2.38)
But (2.13) and (2.17) imply that
L(x", g% A
—2log —/————2==ng(6,, C+ 0) + op(1).
8o gy ) + 0p(1)
Combining this with (2.38), (2.37) and (2.10) we obtain the relation
n)y AH(H
g[‘—zlogL('¥ b ﬂn’.(gn)
L(x™, 0,

P{I - Zlg(z, C)|N(0, J7 )] (2.39)

which can also serve as a basis for the construction of a test of the hypothesis H.

3. Applications

Let us denote
O = {(uy, 4y, 0y, 05, 0)'; 6,>0, 6, >0, |o| < 1}, (3.1)

where @ denotes the transpose of the column vector 6. For each parameter
0= (u,, 1, 0y, 0y, 0) let f(-, 6) be the density of the 2-dimensional normally
distributed random variable X = (X;, X,)’, possessing the means u,, y4,, the
variances o7, o7 and the correlation coefficient o. After some computation
we obtain that the densities {f(-, 6); 6 O} satisfy the regularity conditions
(R1)—(R4) from Section 2 and the information matrix

—_ J19 0
)
where
_(o71 =0 , —eloay(l - 92)1-')
= (—g[a, (1l — ) o7 (1 — g} G-3)
QC-0)ai(l — )", —0loo(l —e)]" , —oloy(l -0
b= —oloi0,(1 =)', C=0)am(1-0)]"', —ole;(1 =0 |,
—olo(1 =)', —ole(1=0)" , A+0)(1-0)"
(3.9
Let ¢ be a positive constant, M,, M, real numbers and
H={0e@; y +co, =M, i, + co, £ M,}. 3.5)

Since according to [7] the probability P,(X, = M,, X, £ M,) is a non-decreasing
function of the correlation coefficient, one can easily prove the following state-
ment.
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Lemma 3.1. (1) If ¢ is the (1 — A/2)-quantile of the one-dimensional standard
normal distribution, then for each 6e H

P(X, =M, X, =M)z1-A (3.6)

(II) The condition from (I) cannot be relaxed, i.e. if ¢ is smaller than the (1 — A[2)-
quantile, then there is a parameter 6e H for which (3.6) does not hold.

Thus (3.5) implies (3.6) and it is of statistical interest to test the hypothesis
H under normality assumptions. To do this by means of (2.10), let for n

independently observed values x,, ..., x, of the vector X the symbol §, denote
the MLE of 6, i.e.

9}1 = ()z(l)’ f(2)9 SI9 SZ’ é),’ (37)

where x(1), ¥(2) are sample means and s,, s, are sample standard deviations of
the corresponding coordinates, and g is the sample correlation coefficient. Since
according to [1] the equality (2.4) holds, {8} satisfy the conditions (2.2)—(2.5).
If J(0) is the matrix (3.2) and z"(z, ) is the projection of z on the closure H in
the norm |||z||| = (z’J(0) 2)'*, computed by means of the algorithm described by
Lemma 4.2 from the Appendix, then the mapping 7" is continuous. Hence the
mappings 77(0,) = n"(8,, §,) satisfy the assumptions of Theorem 2.1 and the
following assertion holds.
Theorem 3.1. Let the constant c in (3.5) be greater than 1. If t > 0, then

SUPge i "lirr; P(T, >1t) =
=1—[n"arctg(y™") + 27'F(t) + n'arctg(y) E(1)). (3.8)
In this notation
T, = n(6, — 7(8)3(0,) (6, — 7(8,)),

E is the chi-square distribution with j degrees of freedom, the function arctg takes
its values in the interval (—n/2, nt/2) and

y=[142((c*+ 1) =2)""1" (3.9
Moreover, if 0e ©® — H, then

lim P[T, > M] = 1 (3.10)

for every real number M.

The meaning of this theorem is obvious. If 1 = t(a, ¢) is the number for which
(3.8) equals a and if ¥ is the test rejecting (3.5) if 7, >t and accepting H
otherwise, then {¥} are consistent tests of H of the asymptotic size a.

The proof of the theorem is an application of Theorem 2.1. To verify its
assumptions, we use the following lemma, where 4,(6*) stands for the greater
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and A,(6%*) stands for the smaller characteristic root of the covariance matrix,
corresponding to the parameter 6*. We remark that the following lemma is
formulated generally, not especially for the case (3.5). It will be clear from the
proof that the assertions of the lemma remain valid if @ is replaced with the
parameter set of the regular m-dimensional normal distributions and m is any
positive integer.

Lemma 3.2. Let 0 @ and H = @ S, where S is a closed set.

(I) There exist positive numbers d, > d, and a positive number d such that if

W ={0*€O; 4,(6*) > d, or 1,(6*) < dy}

(3.11
W,={0*e®— W; ||u* — pu| > d}, )

where p* is the vector of means corresponding t0 the parameter 0%, then the
random variables L(-, W)/L(-, 0) tend to zero in probability P, for j =1, 2.

(II) If Oc H, then there exist méasurable mappings 0¥ : X" — H such that (2.7)
holds.

Proof. (I) Making use of the law of large numbers one obtains
! log L(x™, 0) = —log2n — 27 'log|X] — 1 + 0,(1), (3.12)
n

where X is the covariance matrix corresponding to 6. If A,(4) = 4,(A4) denote
characteristic roots of the positive definite matrix A4, then according to Theorem
1.10.2 in [8]

0 2 A(4)
AX* > - 3.13
tr( )2}_; 25" (3.13)

Hence if we put s = 4,(60) and denote 1(z) = log z + s(2z)~', then making use of
the law of large numbers we get that with probability tending to 1

J

2

llog L(x®, 6*) < —log2n — 27" Y n(4,(6%)). (3.14)
n =1

But 77(z) attains its minimum atz z = s/2 and 7(z) - o if z - 0 or z —» o0, and
for this reason (3.12) and (3.14) imply the existence of d, and d,. The assertion
on W, can be proved similarly by means of 7(z) = n(s/2).

-(I) If we denote K = H — W, — W,, then the assertion (I) implies that
lim P[L(x"”, K) = L(x®, H)] = 1.

Since 4,(6*) Z max {o*?, 0%}, 4,(6*) < min{o7, 07} and |2¥ = o’ 6}*(1 — 0*?),
it is obvious that the set K is compact. This according to Lemma 3.3 in Section
5.3 of [6] means that there exist measurable mappings 7 : X" — K such that
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L(x™, ") = L(x™, K). Taking into account results of [9] we see that " — §in
probability, hence (2.7) holds.
Now we may apply Theorem 2.1. Since J = DND, where

_Nh 0 _ 17 -
V(o) e )

2-¢ -0 -0

N2=< -0, 2-0% -0 ) (.15
-oo -0 (1+0)(1-0)

and D is a diagonal matrix with the diagonal o,"'(1 — 0%)~'?, o, '(1 — 0?)~'?,

o7'(1— 097" o57'(1 — 097", (1 — %)~ we obtain from (2.10) that for
every ! positive

lim P(T, > t) = P(v’(z, N'’DC) > t| N(O, I)). (3.16)
In this notation v is the distance from a set in the usual Euclidean norm and C
is the the cone by means of which the set H is approximable at 6. But H is
approximable by R’ if 6 is an inner point of H, by the cone {xe R®; x, +

+cx; S0} if yy+ coy,=M,, y,+ co, <M, and in the case y; + co, = M,,
i =1, 2, the set H is approximable at 6 by the cone

C={xeR’; x,+¢cx;£0, x, + cx, £ 0}.

Thus using this notation, denoting the left-hand side of (3.8) by P and taking
into account the equality DC = C we see that

P = sup,, ., P[v’(z, N'?C) > 1| N(O, I,)]. (3.17)

One can easily find out that

1 _ 1+ 0)", 0 )<s;)
Nl (S|, 32)< 0, (1 _ Q)]/Z sé )

2—]/2 2—I/2
S = (_2—1/2>, S, = (2—1/2)- (3.18)

Solving the equations |[N, — Al;] = 0 we get
M=2 L=R0-0"C+a AL=201-0)"(-0a
e=3(1—0)+20* a=[1—20%+ 130* — 120° + 40%]'.

Since @ = & — 8(1 — 0%)? > 0if |g| < 1, these expressions are well-defined. Let
us denote

2~ ~[(40)"! (@ — 7))
p=(-2") p=|-lda" @-n"
0 [2a)~' (a + y)]'"*signe
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[(4a)~" (@ + '
p;=| [(4a)" (@ + M (3.19)
[2a)~'(a — )]"signo

y=—1+50*— 20",
where sign g equals 1 or —1 for o = 0 or o < 0, respectively. Since a2 — > > 0

if 0 <ol <1, these vectors are well-defined. But N, p, = 4,p; and the vectors
P:, P>, P; are orthonormal, from which

2’1/2, 0’ O p;
N =(p. P )| 0, A2 0o || ps). (3.20)
0, 0, A2/ \p;

Substituting (3.20) and (3.18) into (3.17) and utilizing the fact that the or-
thogonal transformation

si 0
S,
y= p, |z (3.21)
0 p;
p;

preserves N(0, |5), we get
P = sup, ., P[v’(y, C)) > t| N(O, I;)]. (3.22)
In this notation C, = {xe R’ ; wix £ —|w5x|} and
wi (1) =w(3)=0, w(2)=[2(1-0)] "
w(4) = —cl(a—y)(1 — o))" [2a(e + a)]'*
wi(5) = cl(a+ ») (1 — )] [2a(e — a)) "
wi = ([2(1 + 0)]7'% 0, ¢/2, 0, 0).

Applying to these vectors the Gram — Schmidt orthogonalization procedure one

can find an orthonormal basis W,, ..., ws of R® such that w; = |lw;|~'w;, for
j =1, 2. Therefore if W is the matrix whose jth row is the transpose of W, for
j=1, ..., 5, then making use of the transformation u = Wy we see that (3 22)

holds Wlth C,={zeR’; |wllz;, £ —|lw,| |z,]}. But

w2 w2 =2+ 2+ c*0)(1 — @) 2+ ¢* + 20 + o) ™!

and since ¢ > 1, this function attains its maximum for o = —c¢ 2. This means
that ,

- P = P[v*(y, D) > t| N(O, 1,)], (3.23)
where D = {xe R?; x, £ —y|x,|} and ¥ is the number (3.9). But according to
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Lemma 1 in [4]
Plv*(y, D) S t|N(O, 1,)] =
=[27" —n'arctan ()] + 27'F(1) + [27' — 7' arctan (Y~ )] E(2)

and taking into account both (3.23) and the formula arctan () + arctan (y~') =
= 1/2 we obtain (3.8).
If 0 ® — H, then making use of §, —» 6, 8¢ H one can easily prove (3.10).

We remark that if 0 < ¢ <1, then the function |w,|?|lw,||~? attains its
maximum for ¢ = — 1. Thus in this case (3.23) and (3.9) hold with y = 220!,
and (3.10) also remains valid.

Theorem 3.1 of this section deals with the quality control of two possibly
correlated normally distributed components. We remark that quality control of
finitely many independent normally distributed components was investigated in
[4] and [5]. In these papers formulas for the MLE of the parameter under the
constraints y; + co; < M, y; — co; = m; and the asymptotic distribution of the
maximum likelihood ratio test statistic are presented.

4. Appendix.

The topic of this section are some basic properties of projections on convex
sets and on finite intersection of half-spaces.

Lemma 4.1. Let C be a closed convex subset of a Hilbert space L, and n© be
the projection on the set C.

() If zeC, then (y — n°(y), z — n°(»)) £ 0 and the distance v(y, n(y) +
+ a(z — n€(y))) is increasing on the segment z, n<(y) towards z.

(I If C is a cone, then the vectors y — n(y), n(y) are orthogonal,
Iz < llyll and (y — 7°(y), 2) < 0 for each ze C.

Proof. Assertion (I) can be found in [3, p. 69]. If C is a cone, then the
function g(@) = |y — an®(y)||* attains its minimum in @ = 1, and therefore
g’(1) = 0. Hence (y, 7°(»)) = |7z°(»)|?, the vectors y — x€(y), () are or-
thogonal and the lemma is proved.

Let J be a symmetric positive definite m x m matrix and R™ be the Hilbert
space with the inner product [x, y] = x'Jy. If ae R" is a non-zero vector and b
is a real number, then C = {xe R"; a’x + b < 0} is a convex set. It is easy to
verify that the mapping

”c(x)={z—(a'J"a)"(a'x+b)J_'a iig @1

is the projection of x on C in the norm

lixlll = (x"dx)"". (4.2)
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The formula (4.1) obviously remains valid if the inequality in C is replaced with
equality to zero. If ay, ..., a, are non-zero vectors, b,, ..., b, are real numbers and

C(j)={xeR";ax+ b =0} C(, AR ﬂl C@)),
then the following assertion holds.
Lemma 4.2. If n€ denotes the projection of x on the set C = C(12...n) in the
norm (4.2), then

€3 ) if 7€@-"(x)e C(1)
203 () if 7C®Bm(x)¢ C(1), 79 (x) e C(2)
n(x) = ;rc"z"'"_')(x) if ACOi=U+ (e C(G) j=1, ....on—1,
201 D(x) € C(n)

7t (x) if 7€) ECG) j=1, ..., n,

where H={xeR";cjx+ b;=0j=1, ..., n}.

Proof. Let us assume that 7€' ~/=Y*""(x)¢ C(j). Then the segment S
with the end-points 7€(x), 7€/~ Y+!-"(x) is a subset of C(1...j — 1j+ 1...n)
and the distance v(z, x) increases on S towards 7¢(x). If a; 7°(x) + b; < 0, then
the function g(z) = a;z + b; attains different signs at the end-points of S. This
implies the existence of an internal point ze S such that g(z) = 0. Hence
zeC(l...j— 1+ 1...n)n C(j) and since v(z, x) < v(7(x), x), we obtain a
contradiction. Hence g(7(x)) = 0 and the lemma is proved.

Since the closure of the set (3.5) is determined by the inequalities

-

w+co,—M 20, u+co,— M, <0,
_O-l_g_oa _O—Zéo, Q_lé()’ _Q_léo

and the projection on the intersection of the hyperplanes determined by some
of these inequalities can be computed by a derivation, the previous lemma yields
a recurrent algorithm for the computation of the projection of the estimate 6,
on the set H in the metric, induced by the Fisher information matrix J(4,).
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O NMPOBEPKE I'MITOTE3 AIINPOKCUMOBATEJILHBIX KOHYCAMHU
Frantisek Rublik
Pe3omMme

IMycrsb J(6) 0603nauaer nHpopmanuonnyro Matpuny Gumepa. Ecnu G-oneHka MakCHMaNbHOTO
npasaonoaobus HeuzsecTHOro mapamerpa 6, toraa BbIGOpoYHOI HHPOPMALMOHHOM MaTpuueit
MBI HasbiBaeM MaTpuiy J = J(6). B cTaThe MoKa3aHO, YTO TIPH YCJOBHMAX PEryJSPHOCTH, obecre-
YUBAIOLIMX ACUMIITOTHYECKYIO HOPMAaJlbHOCTh OLEHKH MaKCHMaJIbHOIO TNpaBaononodus, U mnpu
MPENOJIOXEHHN aNNPOKCHMOBATEILHOCTH rHNoTe3bl H KOHYCOM, OLiEHKa MaKCHMAaJIbHOTO NMpaB-
nononobus napamerpa npu ycnosun H sBJsieTCS aCMMNTOTHYECKM SKBUBAJNIEHTHO C MpOEKLMei
OMIT Ha H, BBbIYMCIEHHON MO HOPME, OPOXAEHHOH! BbIGOPOYHON HHGOPMAIIMOHHONW MaTpHLEH.
ITO No3BONSET HAUTH ACHMNTOTHYECKOE pacnpenenenne pacctosHus OMIT ot runortessl H B 3T0M
METpHUKE. ITO PaCCTOSHNE UCMOJIL30BAHO ISt CTATUCTHYECKOTO KOHTPOJIS Ka4eCTBa ABYXMEPHBIX
HOPMaJIbHbIX BEJIMYHH C PETyJISpPHOH AUCNIEPCHOHHON MaTpHLEH.
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