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ON THE PRODUCT TOPOLOGY ASSOCIATED 
WITH SEMI-CLOSED SETS 

NANDA DULAL BENERJEE—CHHANDA BANDYOPADHYAY 

Introduction 

In 1963 N. Levine introduced the idea of semi-open sets in a topological space. 
Later S. G. Crossley and S. K. Hildebrand in their paper [3] introduced the 
idea of semiclosed sets and semi-closure of a set in a topological space (X, T). In 
the same pape r they proved the existence of a minimal set DA (with respect to set 
inclusion) for each set A c X such that scl (AuD A uB) = AuDAuscl B for all 
subsets B c X. Also by defining c: &(X)-*2P(X) by the rule: cA = AuDA for all 
A e @*(X) where ?P(X) denotes the class of all subsets of X, it has been shown that 
c is a Kuratowski closure operator on X. The topology induced by the Kuratowski 
closure operator c on X is denoted byT(T). In [3] it has been shown that :T(T) is 
finer than T on X. The characterization of the set DA for any set A c R, where R 
denotes the set of reals with usual topology can be found in [4]. This characteriza
tion has also been extended to a first countable topological space by C. 
Bandyapadhyay in her Ph. D. Thesis [1]. 

In this paper we consider the spaces (X,3) to be first countable. In [2] we have 
proved that the class of realvalued continuous functions on (X, T) and the class of 
real-valued continuous functions on (X, $(T)) are identical. In this paper, taking 
(Y, °U) to be a regular space, we have proved that the classes of continuous 
functions from (X, 3) to ( Y, °U) and from (X, 3{3')) to ( Y, °U) are identical. Now 
we consider a finite number of spaces {(Xiy 3'i): / = 1, 2, ..., n}. Hence there are 

n 

associated the two product topologies for the Cartesian product f |^ : ^ n e *s 

:T(TxX T 2 x . . . x Tn) and the other is ^(Tx)x ^(T 2 )x ... x T(T„). Questions 
naturally arise about the usual /partial order relation viz, the relation of inclusion, 
between these two topologies. It has been shown that :T(Ti)x :T(T2)x ...x 
T(Tn)cz 3^(3'! x T2 x ... x T„). An example has been cited to show that there are 
spaces where the inclusion is proper. As regards the classes of continuous functions, 

it has been shown that<g (( f\ Xi9 ^ V ( Y, <tt)\ for / = 1, 2, 3 are identical, where 
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% = f\ &» %=fl &(&') a n d % = &(f[ ?) and where <£ ((X, J), (Y, <U)) 

denotes the class of continuous functions from (X, T) to (Y, °U). 

Definition 1. Let (X, ST) be a space and AczX. Then A is said to be semi-open 

if there exists an open set O in X such that OczAczO, where ( ) denotes the ST 
— closure [5]. 

Definition 2. Let (X, ST) be a space and A, BczX. Then A is semi-closed iff 
X — A is semi-open and the semi-closure of B denoted by scl B is the intersection 
of all semi-closed sets of X containing B [3]. 

Theorem 1. For a topological space (X, ST) a subset GczX belongs to SF(Sf) iff 

for each x e Gr there is an ST — open neighbourhood Nx of x such that (G°) ZD NX 

where ( )° denotes the ST — interior [2]. 

Theorem 2. Every real-valued continuous function on (X, SF(ST)) is continuous 
on (X, T ) [2]. 

Theorem 2. Every real-valued continuous function on (X, SF(ST)) is continuous 
on (X, ST) [2]. 

Theorem 3. Let (Y, °U) be a regular space, f: (X, SF(ST))—>(Y, °U) is continuous 
iff f: (X, ST)->(Y, °lt) is continuous. 

Proof. Sufficiency. Since STcz &(ST) it follows immediately that /: (X, T(T))-> 
(Y, °U) is continuous whenever /: (X, Sf)-+(Y, °U) is continuous. 

Necessity. The proof follows by using the lines of proof of Theorem 1.2 [2] where 
we have only utilized the regularity property of the set of reals with the usual 
topology. 

Examp le 1. Let X={a,b,c}, T = { 0 , X , { a } } . By Theorem 1, T(T) = 
{ 0 , X , { a } , {a,c},{a,b}}. 

Let Y = {JC, y, z}, °U= {0, Y, {x}} Clearly (Y, W) is not regular. Let us define 
/: (X, :T(T))-*(Y, % By the rule f(a) = f(b) = x, f(c) = y. We see that 
/: (X, :T(T))->(Y, discontinuous but/: (X, ST)->(Y, °U) is not continuous. 

Remark 1. By virtue of the above example 1 we see that the condition (Y, °U) 
to be regular in Theorem 3 is not redundant. Now we extend our discussion to 
product spaces. 

Theorem 4. Let {(Xt, T)): i = l, 2} be two spaces. Then &(Srx)x &(ST2)cz 
&(STiXSr2). 

Proof. Take G e :T(Ti) x T(T2). Let (x, y) e G. Thus there are T(T0-open U 
of x and ^(T2)-open V of y such that (x, y)e Ux Vcz G. Since 17€ ^(TO and 
Ve :T(T2) it follows from Theorem 1 that there are a Ti-open neighbourhood Nx 

of x and a T2-open neighbourhood Ny of y such that Ti — Int U is Ti-everywhere 

230 



dense in Nx and T2 — Int Vis T2-everywhere dense in Ny. Clearly (x, y)eNxxNy. 
We claim that (Ti x T2) - Int G is (Tx x T2)-everywhere dense in NxxNy. Choose 
W to be any non-empty open subset in NxxNy. So there are non-empty Re :J , 
and S e T2 such that 1? X S cz Wcz Nx x Ny. By Theorem 1 it follows that Rn(STt 

- Int U)±0 and S n (T2 - Int V) * 0. Choose g e i?n(Ti - Int C7) and 
r/e Sn (T 2 - In t V). Thus, (£, rj)e( T j - I n t I7)x (T 2- Int V) = ( T i X T 2 ) -
Int(LTxV) c (T iXSQ- In tG . Hence (g, r?)eW and Wn(Ti x T2) 
- In t G=/=0. Thus according to Theorem 1 it follows that Ge:T(Ti x T2). 

n 

Corollary 1. For a family of spaces {(Xi9 %): i = 1, 2, ..., n} we have J~[ ST{-cz 
i = l 

Y\ ^(STi)cz SF ( \ \ Ti). The converse of the Theorem 4 is not necessarily true. 
i - l \ i - l / 

Example 2. Let Xt = {a, b}, Ti = {0, Xlf {a}} and X2 = {x, y}, T2 = 
{0, X2, {*}}. Now TiX T2 = [0, {(a, *), (&, x), (a, y), (b, y)}, {(a, x), (a, y)}, 
{(a, x), (b, x)}, {(a, x)}, {(a, x), (a, y), (b, x)}]. 

By Theorem 1, wehave^(Ti) = {0, Xu {a}} and :T(T2) = {0, X2, {*}}. Clearly 
TiXT2 = :T(Ti)x^(T2). Now, 9(?x x T2) = [0, {(a, x), (b,x), (a, y), (b,y)}, 
{(a, x), (a, y), (b, x)}, {(a, x), (a, y)}, {(a, x), (b, x)}, {(a, x), (b, y)}, {a, x)}, 
{(a, x), (a, y), (b, y)}, {(a, x), (b, x), (b, y)}]. 

Hence, :T(Ti) x ^ (T 2 )£ &(Ji x T2) 

Theorem 5. Let {(Xt, 3~{): i = 1, 2, ..., n} be a family of spaces and (Y, °U) be 
a regular space. Then the following statements are equivalent. 

(i) / : (f] Xh f\ &\-+(Y, # ) is continuous. 
\ , « i i« i / 

(ii) F: ( i l Xi, J7 ^(^))—r-(V, % is continuous. 

(iii) / : (f\ X, & (f\ Sr)^>(Y, %) is continuous. 

Proof, (i) implies (ii) and (ii) implies (iii) from Corollary 1. Since (FJ X{, FJ T)) 
\ , - i i=-i / 

satisfies the first axiom of countability, it follows from Theorem 3 that (iii) implies 
(i). This completes the proof of the theorem. 

We state below the well-known result. 

Lemma 1. A topological space X is disconnected iff there exists a continuous 
mapping of X onto the discrete two-point space {0, 1} [6 p. 144]. 

The following theorem is an easy consequence of Lemma 1 and Theorem 5. 
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Theorem 6. Let {(.X), :J)): /= 1, 2, ..., ri} be a family of spaces. Then the 
following statements are equivalent. 

(i) (f[Xt, f\Sr) is connected. 
\ , » i ,-«i / 

(ii) (f\Xi, fl&iSTi)) is connected. 
\ i - i i - i / 

(iii) (f[ Xh & (f\3\\\ is connected. 
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О ТОПОЛОГИИ ПРОИЗВЕДЕНИЯ СВЯЗАННОЙ С ПОЛУЗАМКНУТЫМИ 
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№по!аОи1а1 Вапепее—СЬЬапс1а Вапа'уораа'пуау 

Резюме 

В работе рассматривается конечное семейство топологических пространств удовлетворяющих 
первой аксиоме счетности. Кроме топологии произведения на декартовом произведении этих 
пространств тоже изучаются две других топологий соответствующих полузамкнутым множес
твам. Показано, что эти три топологии различные, но семейства всех непрерывных отображений 
из каждого с этих пространств в любое регулярное пространство, совпадают. Даны также 
соотношения между связностью этих пространств. 

232 


		webmaster@dml.cz
	2012-08-01T03:03:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




