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ON A USEFUL ECONOMY 
IN THE FORMATION OF RIEMANN SUMS 

ALEXANDER ABIAN* 

In this paper it is shown that in order to ascertain that a function / is Reimann 
integrable it is sufficient to follow Riemann's procedure, however, by restricting the 
formation of Riemann sums to the sums of the product of the length of a typical 
subdivision [jcfc, JC*+I] by the value of / evaluated only at zke[xk,xk+l] where zk is 
selected from [JC*, JC*+I] by a function S belonging to a class of functions called 
^selection functions". A function S from the set of all nonempty real closed 
intervals [JC, y] is called a selection function if S([JC, y]) = z with x^z ^y where JC 

is a function of y — JC and z, continous in z. Functions picking up the left endpoint 
or the right endpoint or the middle point of a clased interval are examples of 
selection functions. Other examples of selection functions are S([JC, y]) = 
= JC + (y -jc)sin2 (y - JC) and S([JC, y]) = (y+xy - JC 2 ) / (1 +y-x). Some other 
examples are given below. Related results have been expounden in [2]. 

Definition. Let I be the set of all the closed nonempty intervals [JC, y ] of the set 
of all real numbers JR. A function S from Unto R is called a selection function if and 
only if 

(1) S([jc,y]) = z with x^z^y 

where 

(2) x=h(y-x,z) 

is such that h is a function of two variables y — JC and z, continuous in z. 
If S is a selection function* then, in view of the above Definition, we say that 

„S picks up the point z from the closed interval [JC, y]". 
Examples. Let q be a real number such that O^q -̂  1. Consider the function S 

given by: 

(3) S([x,y]) = x + q(y-x) 
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It is readily verified that S is a selection function. Indeed 5 picks up the point z 
from the closed interval [x, y] such that z is located at the ratio q with respect to 
the endpoints x and y of the interval. For the case of (3), the corresponding 
function h required by (2) is given as: 

x=h(y-x,z) = -q(y-x) + z 

The three special cases of (3) corresponding to q = 0, q = 1 and q = 0.5 yield 
selection functions which pick up respectively the left endpoint, the right endpoint 
and the middle point of a closed interval. 

From arithmetic-mean-geometriac-mean inequality if follows that 

n(v-xYn+l)/n 

S([x>y]) = x+y_x+
)
n_l for n=2,3,... 

is a selection function. 
From Cauchy and Triangle inequalities it follows that (4) and (5) respectively are 

examples of selection functions, where: 

(4) S([J,y])=J + -̂f + ^ 7 ; < " - " for „=2,3,... 
Vn(y-x)2 + n(n-l) 

and 

S([x,y]) = x + ( y - x y ^ ^ ^ - for n = l,2,... 

y-x+Vn 

Let / be a bounded real-valued function defined on a nonempty closed interval 

[a, b] oi real numbers. We recall that / is Riemenn integrable with J / = r if and 
only if 

(6) lim Z(xk+l-xk)-f(zk) = r 
mesh P - 0 

where P stands for a partition of [a, b] into finitely many contiguous closed 
intervals [xk , jc*+t] and for every selection of the point zk from the closed interval 
[xk, A:*+I]. 

Let / be as in the above and let D(JC) denote the discontinuity (or saltus 
[1, p. 95]) of / at JC. We recall [1, p. 209] that / is not Riemann integrable if and 
only if there exists a positive real number d such that 

(7) measure {JC |jce[a, b] and D(x)^d}=m>0 

As mentioned earlier, we prove below that / is Riemann integrable if (6) holds 
even if the choice of zk from [xk, xk+l] is restricted only to the value of a fixed 
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selection function S at [xk, Xk+i]. In other words, / is Riemann integrable if (6) 
holds provided "zk is picked up from [xk,xk+l] by a fixed selection functions". 
This is a rather significant result since it implies that to ascertain the Reimann 
integrability of / it is enough to verify the validity of (6) not necessarily for all the 
possible selections of zk from [xk, xk+l] but only for one particular selection of zk 

from [xk, xk+i] given by a fixed selection function S. 

Theorem. Let fbea bounded real valued function defined on a nonempty closed 
interval [a, b] of real numbers. Let S be a selection function such that 

(8) lim Z(xk+l-xk)f(S([xk,xk+l])) = r 
mesh P-*0 P 

where P stands for a partition of [a, b] into finitely many contiguous closed intervals 
[xk, Xk+i]. 

Then f is Riemann integrable. Moreover, 

rb 

(9) JJ = r 

Proof. We prove the Theorem by showing that the assumption that / is not 
Riemann integrable implies the negation of (8). To this end we prove that if / is not 
Riemann integrable then there exists an e > 0 such that for every e > 0 there exist 
two partitions Px and P2 of [a, b] into finitely many contiguous closed intervals such 
that 

(10) mesh Pi = mesh P2 = e 

whereas 

( П ) 2 (xk+l -xk)f(S([xk, xk+l])) - X (xk+í-xk)f(S([xk, xk+í])) 
p , p 2 

Since we assume that / is not Riemann integrable, in view of (7), there exists 
a real number d>0 such that the measure of the set K of the points of [a, b] at 
each of which the discontinuity of / is greter than or equal to d, is a positive real 
number m, i.e., 

(12) measure K = m with m > 0 

where K is the set appearing in (7). 
We choose e as 

(13) e=md /6 

Let e > 0 be given. For the sake of simplicity, we extend the closed interval [a, b] 
from the left by the segment a 'a of length e and from the right by a segment bb1 of 
length at least e such that the length of the newly obtained closed interval [a', b'] is 
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an integral multiple of 3e. Again, without loss of generality and for the sake of 
simplicity we extend the function / to [a', b'] by defining it to be identically zero on 
[a', a) and on (b9 b']. 

Next, we partition [a', b'] into 3n equal segments each of length e as follows: 

(14) a' a ti t2t3 t4 ... t3„_i = b' 

The closed interval [a',bf] is evidently the union of three pairwise disjoint 
subsets Ei , E29 E3 where 

Ex = [a\a) u [t2,t3) u [t5,t6) u ... u [t3„-4, t3n-3) 
(15) E2 = [a, ti) U [t3, t4) U [t6, t7) U ... U [t3„-3, t3n-2) 

E 3 = [tl, t2) U [t4, t5) U [t7, t8) U ... U [t3„-2, t3M-l] 

i.e., Ei is the union of every fourth interval in partition (14). 
Since K<=[a'9 b']=EiuE2uE3, obviously, 

measure (KnEt) ^ m/3 for some i = 1, 2, 3 

Without loss of generality, let 

(16) measure (KnE3)^m/3 

For the sake of simplicity, and without loss of generality, we assume that there 
are two intervals of the form [t3*-2, t3k-{), say, [tl912) and [t4, t5) such that: 

(17) mi = measure (Kn(ti, t2)) > 0 andm4 = measure (Kn(t49 t5))>0 

with 

(18) (mi + m4)^m/3 
Let 

(19) gi=glb(Xn( t i , t2)) and g4 = gib (Kn(t4, t5)) 

But then, in view of (12) and (17), for every real number pi > 0 there exist (even 
to the right of gi) two distict points Zi and z i in the oper interval (tx, t2) such that: 
(20) l / ( z i ) - / ( z i ) l ^ ™* | z i - z I |<P i 

Also, for every p4>0 there exist (even to the right of g4) two distinct points z4 and 
zi in the open interval (t4, t5) such that: 

(21) \f(z4)-f(z'4)\^d with | z 4 - z i |<p 4 

Let 

(22) M = lub|/(*)| for a^x^b 

Consider the real number (without loss of generality nM>0) 

(23) md/36nM 
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where d is mentioned in (7) and ra in (7) and (12), and where [a', b'] is partitioned 
into 3n equal segments each of length e as mentioned in (10) and (14). 

Since S is a selection function, in view of (2), we can assert that 

(24) |/z(e ,Zi)-h(e ,z;) |<rad/36nM with Zi, z[e(tA, t2) 

and 

(25) |/z(e ,z4)-/l(e ,z4)|<rad/36nM with z4, z4e(t4 , t5) 

hold together with the first parts of (20) and (21). 
Let 

(26) jc, = h(e,Zi) and jc2 = jCi + e 

Moreover, let 

(27) jc4 = h(e,z4) and x5=jc4 + e 

In partition Px of [a\ b'] we include the segments 

JCI x2 and x4 x5 

each of length e, as (26) and (27) show. 
Clearly, in view of (1), (26), (27), we have 

(28) S([xi, *2]) = Zi and S([x4, x5]) = z4 

i.e., selection function S picks up Zi from [xj5 x2] and picks up z4 from [JC4, JC5]. 
Similarly, let 

(29) x[ = h(e,z[) and jc2 = *; + e 

and 

(30) jc4 = h(e,z4) and x'5=x4 + e 

In partition P2 of [a'9 b'] we include the segments 

JCJJC2 and x4x5 

each of length e, as (29) and (30) show. 
Again, clearly, in view of (1), (29), (30), we have 

(31) S([JCI,JC2]) = Z; and S([JC4, JC5]) = Z4 

i.e., selection function S picks up z[ from [x[, JC2] and picks up z4 from [JC4 , JC5]. 
Let us observe that from (10), (14), (17), (18) it follows that 

(32) 2e^ra/3 

But then, in view of (26), (27), (29), (30), (20), (21) and (32), we have: 
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S ( * - + i - * * ) - Я z * ) - 2 . (x'k+í-x'k)-f(z'k) = 

(33) 

fc=l fc=l 
fc=4 * - = 4 

= (S2e/(z*-/(г i ) )^md/3 

Consequently, from (33), (28), (31) we derive: 

X (**+I -xk)f(S([xk, xk+l]))-
k 
* = 4 

(34) 

- 2 (**•. -x'k)f(S([x'k, x'k+l]))^md/3 
k = 
fc=4 

It can be readily verified that there is a partition Pxof[a\b'] into finitely many 
contigous closed intervals including [xl9X2] and [JC4,JC5] represented as: 

a' a tx xxx213 t4x4x5 t6t7 ... t3n-x = b' 

and there is a partition P2 of [a', b'} into finitely many contigous closed intervals 
including [JC'I,JC2] and [JC4,JC5] represented as: 

a' a ti x[ JC2 t3 t4JC4 JC5 t6 t7 ... t3n-l=b' 

such that both partitions Px and P2 satisfy (10) and where Px and F2 are identically 
partitioned on 

[a\ b']-([xx, x 2)u[* 4, x5)) and [a', b']-([x[, x'2)u[x'4, x'5)) 

perhaps with the exception of a set of pairwise disjoint intervals whose length, in 
view of (23), is at most 

2(3n)md/36nM = md/6M 

But then, in view of (34), (22), (23) and (24), the difference of the sums in (11) is 
greater than or equal to 

md/3 - M(md/6M) = md/6 

which, in view of (13), establishes (11), as desired. Hence / is Riemann integrable. 
But then (8) implies (9) trivially since the sum appearing in (8) is a Riemann sum. 
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