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Math. Slovoca 32,1982, No. 3,243—253 

DIGRAPHS MAXIMAL WITH RESPECT 
TO ARC CONNECnvrTY 

PETER HORAK 

1. Introduction 

One of the most important goals of the theory of connectivity of digraphs is to 
compile a list of all Ar-connected digraphs. But this problem seems to be very 
difficult. Thus there were investigated (by Kameda [6] for strong connectivity, by 
Mader [7] for strong arc connectivity) minimally Ar-connected digraphs, which are 
"lower bound" for the class of Ar-connected digraphs. The dual question, maximally 
Ar-connected digraphs which are "upper bound" for the class of digraphs with 
connectivity A:, have been studied by the author of [5] for all three invariants of 
point connectivity. 

In this paper we shall describe constructively and determine the number of 
digraphs maximal with respect to the strong or weak arc connectivity, respectively. 
A sufficient and a necessary condition for a digraph to be maximal with respect to 
the unilateral arc connectivity is given. 

2 . Notation and terminology 

The notions not defined here will be used in the sense of [4]. 
The strong (unilateral, weak) connectivity x3 = x3(G) (x2 = x2(G), x1 = * '(G)) of 

a digraph G is the minimum number of points whose removal results in a not strong 
(unilateral, weak) or trivial digraph. 

Analogously, the strong (unilateral, weak) arc connectivity A3 = A3(G) 
(A2 = A2(G), A' = A'(G)) of a digraph G is the minimum number of arcs whose 
removal results in a not strong (unilateral, weak) digraph. 

Let digraphs Gi and G2 have disjoint sets Vi and V2 of points and disjoint arc 
sets Ei and Ea, respectively. 

Their union is the digraph G = GiuG 2 , which has the point set V = V u V2 and 
the arc set E = EtuE2. 
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Their join G + G2 consists of G i u G and all arcs joining V with V2. 
Their directional join d ® Go consists of G iuG 2 and all arcs going from Vi to 

V . It is clear that the directional join is not a commutative operation. 
We shall denote by D the complement of a digraph D, by Kp the complete graph 

on p vertices, by K , the graph K + K, by Dp the complete digraph on p points, 
by D, , the digraph D +D,. 

Let v be a point of a digraph G. Then id(t>) is the indegree of v and od(t>) is the 
outdegree of v. Let deg(u) be the sum of id(i>) and od(t>) and let 6(G)-

min deg(i ). 
i e G 

The symbol T(G) denotes the vertex(point) group of a graph (digraph) G and 
Ti(G) denotes the edge (arc) group of G. 

Further, let the symbol A(G; n) denote the class of digraphs that arose from 
a digraph G by adding n new arcs. 

We sha 1 say that G,, G2 e A(G; n) are similar if there is <peT(G) such that (p: 
G\ —* G2 is an isomorphism. If G,, G are not similar, they are called dissimilar. 

Let, as usual, the symbol Z(H) be the cycle index of a permutation group H. The 
polynomial Z(H, 1 + x) is determined by substituting 1 + xk for each variable Si in 
Z(H). 

3. Maximal digraphs 

Let n be a nonnegative integer and let G be a non-complete digraph. Then G is 
called A', (x',)-maximal if X'(G)~n and X'(G + x)>n (x'(G) = n and 
x (G + x)> n) for every arc x e E(G), / = 1, 2, 3. 

In this part of our paper we shall describe Ai- and A^-maximal digraphs. For 
A?,-maximal digraphs a sufficient and a necessary condition are given. 

In [5] the following result has been proved: 

Theorem 1. Let G be a digraph. Then G is 
a) x!,-maximal iff G — D„uDh, 
b) xl-maximal iff either G=-DuuDhorG^Dc©(D^D„)orG^(D.uDb)@D 

or G - - D J @ ( ( D a u A ) © D ) , 
c) x) maximal iff G — D,®Db. 

Theorem 2. A digraph G is X',-maximal iff G is x[,-maximal, for / = 1, 2, 3. 
Proof. Let G be a digraph. Then A'(G) — 0 iff x'(G) = 0, i.e. G is An-maximal iff 

G is Xo-maximal, / 1,2, 3. Q.E.D. 

Theorem 3. Let G be a A„ maximal digraph and n be a natural number. Then 
G e A(D; n), where D is X\-maximal digraph (for i= 1, 2, 3). 
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Proof. Let G be a A ̂ -maximal digraph. Then there exists a set A of arcs of G 
such that |A | = « and k'(G-A) = 0. Let us denote by D the digraph G-A. To 
finish our proof we must show that the digraph D is Ao-maximal. We shall prove it 
indirectly. 

Let xeE(G) and A ' ( D + JC) = 0 (i.e. x^A). Then k'(G + x) = n and this is 
a contradiction because G is An-maximal. Thus D is Ai-maximal. Q.E.D. 

Now we shall give a sufficient condition for a digraph G to be A2-maximal. 

Theorem 4. Let G be a digraph and GeA(D; n), where D is a kl-maximal 
digraph and every strong component of D has at least n+2 points. Then G is 
V-maximal. 

Proof. Let GeA(D; n), where the digraph D is A(
2 maximal and every strong 

component of D has at least n+2 points. Let A = E(G) — E(D). Then A2(G — A) 
= A2(D) = 0 and we get A 2 (G)<« . As A 2 ( D + J C ) = 1 for xeE(D) and every 
strong component of D has at least n+2 points, we have k2(G) = n. By a similar 
reasoning we get A2(G + x) = n + 1 for x e E(G). Q.E.D. 

Before describing Ai- and A^-maximal digraphs we shall state two lemmas. 

Lemma 1. Let k'(G) = c, B c A c £ ( C ) , \A\ = a, \B\ = b. Let k'(G-A)-
c-a. Then k'(G-B) = c-b, for i = 1 , 2 , 3. 

Proof. Let A'(G) = c, B^A<=E(G), \A\ = a, \B\ = b. Let A'(G A)=c-a. 
It is easy to see that 

k'(G)^k'(G-x)^k'(G)-\ forany x e E ( G ) . 

Thus k'(G-B)^c-b. On the other hand 

k'(G-A) + l»k'((G-A) + x^k'(G-A) forany xeE(G-A) 

and we have k'(G-B)^(c-a) + (a-b)<c-b. Q.E.D. 

Lemma 2 . Let r^s be natural numbers and let GeA(DsuDr;k). Then 
k + 3 k 

6(G) >k iff either s >—-— or s = - + 1 and each point of Ds (in the case of r = s 

each point of G) is incident with at least one arc belonging to D ,uD„ 
Proof. Let r^s and let G e A ( D , u D r ; k). It is clear that the condition is 

sufficient for a digraph G to have the property that 6(G)>k. 
k + l 

Let now 6(G)> k. Let us denote by u,, u2, ..., us the points of Ds. Let s^—-—. 

Then min deg ( M, ) = 2($ — 1) + - ^ A: and this is a contradiction. Thus s ^ - + 1. In 

the case of s =-+ 1 we get deg(«,) = k and each point of Ds (in the case s = r each 

point of G) must be incident with at least one arc of D s uD r . Q.E.D. 
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Theorem 5 . Let n be a natural number. Then the digraph G is Al-maximal iff 

G e A ( D , u D , ; n ) , where either r = 1 and s>-or 6(G)>n. 

Proof. Let G b e a A„-maximal digraph. Then A'(G) = « and according to [1] we 
have 6(G)^n. Let v be a point of G with deg(t>) = «. Let us denote by A the set 
of arcs incident with point v. Because the digraph G is A„-maximal we have 
G — A = DiuDp and any arc of G must be incident with point v. Thus there can be 
at most two points with degree n in G. We have to consider only three cases. 

I. digraph G contains exactly two points with degree n. As any arc of G must be 
incident with those two points we get G — D2+„2 {x,y}, where x, y are 
symmetric arcs, i.e. 

G e A(Di+„ 2 u D r , / . ) for n even, and G = D n + 3 ) 2 - J C , i.e. 

G e A(D,„+1) 2 u D i ; n) for n odd. 

II. The digraph G contains only one point with degree n. Then any arc of G is 

incident with this point. Thus G e A ( D i u D , ; n), where s ^ - + 1. 

III. The digraph G does not contain a point with degree n. Then 6(G)>n and 
from Theorem 3 it follows that G - A ( D , u D , ; n). 

Now we shall prove the sufficient condition. 

Let G e A ( D i u D , ; n), where s > —. Let us denote by A the set of arcs incident 

with point v,ve V(Ds+i). It is easy to see that A'(D.+i) = 2s. Further, | A | = 2s and 
A'(Ds+i —A) = A'(D uD, ) = 0. Thus the assumptions of Lemma 1 hold. Hence 
we get A'(G) = « and A'(G + x) = n +1 for any xsE(G), i.e. G is Ai-maximal. 

Let G e A ( D s u D , ; n) where r^s and 6(G)> n. From Lemma 2 it follows that 

either s 2=—-— or s = - + 1 and any point of Ds (in the case of s = r any point of G) 

n + 3 
is incident with at least one arc of DsuDr. Let s5=—-—. Obviously A (G)=S n. Let 

AcE(G), | A | < « . Then G — A is a weakly connected digraph as A'(Dr) 3= 
A'(DS) =a n + 1. Thus A'(G) = n. Similarly, A'(G + x) = n + 1 for any x e E(G), i.e. 
G is Ai-maximal. 

Let r^s=^+l. As V(Ds) = n and GeA(Ds\jD,;n), we have V(G) = n. 

Further, let A c E(DS), \A\ = n and let Ds — A be a disconnected digraph. Then 
there is a point v e V(DS) such that A = {x; xe E(DS), x is incident with v). 

It follows that A'(G + x) = n + 1 as each point of Ds is incident with at least one 

arc of DsKjDr. Thus G is a A„-maximal digraph. Q.E.D. 
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Theorem 6. Let n be a natural number and let G be a digraph. Then G is 
X3

n-maximal iff G e A(Ds@Dr; n), where eithers = 1, rSsn + 1 or r=\, s5*n + \ 
or s, r^n+2. 

Proof. Let n be a natural number. Let G be a A3-maximal digraph. Then 
A3(G) = n and from [1] it follows that n =£ min (od (v), id (v)) for every ve V(G). 

Let v be a point of G such that id(v) = n. Let A = {uv; uv eE(G)}. As G is 
A3-maximal, we have G —A = D i © D p . It follows that for any xeE(G) we have 
x = uv. Analogously, for a point with od(v) = n we get: if xe E(G), then x = vu. 
Further, there is no point with od(v) = id(v) = n. Thus there exist at most two 
points with the property that the indegree or the outdegree of them is exactly n. Let 
us consider three cases. 

I. Let u, v be points of G such that od(v) = id(u) = n. Then G — Dn+2 — x, thus 
GeA(Dl@Dn+l;n) and GeA(Dn+1@D,;n), too. 

II. Let v be a point of G with od (v) = n and semidegrees of all other points are 
greather than n. Then for any xeE(G) we have x = vu and G € A ( D , © D i ; n), 
where s>n + \. If id(v) = n, we get G e A ( D i © D r ; n), where r>n + \. 

III. Let od(u), id(v)>n for any point v of G. Then from Theorem 2 and 3 it 
follows that GeA(D,®Dr; n) and s, r^n + 2. 

Now we shall prove the sufficient condition. 
Let GeA(D,@Dr;n). Let r = l , s^n + \ and let veV(Ds+1) and A = 

{uv; uveE(D,+i)}. It is easy to see that A3(DJ+i) = s. Further, | A | = s and 
A2(D,+i — A) = A3(D,©Di) = 0. Thus the assumptions of Lemma 1 hold. Hence 
we get A3(G) = n and A 3 ( G + JC) = « + 1 for any xeE(G), i.e. G is A3-maximal. 
The proof for s = 1, r^n + 1 is analogical. Let rSssSsn + 2 . As A3(Dr) 2s A3(Dj) 
2s n + 1 we get A3(G) = n and X3(G + x) = n + \ for any xeE(g). Thus G is 
A3-maximal. Q.E.D. 

By using Theorem 3 we prove the following inequalities. 

Theorem 7. Lef Gbea digraph withppoints and q arcs. LetX'(G) = n. Then 

a) q^(p-\)(p-2) + n for i=\,2; 
b) q^(p-\)2 + n for i = 3. (D 

Proof. Let G be a digraph with p points and q arcs and let X'(G) = n. Then 
there exists a A|,-maximal digraph H such that G is a factor of H. As H is 
Al.-maximal, from Theorem 3 it follows that HeA(D; n), where D is Ao-maximal. 
Thus we have 

q(G) *£ q(H) = q(D) + n. (2) 

By [1] we have 

q(D)^(p-\)(p-2) for i = l , 2 ; ( 3 ) 

q(D)^(p-\)2 for i = 3. 
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The statement (1) follows immediately from (2) and (3). In addition, for 
GeA(D u D p , ; n ) , / = 1 , 2 and for GeA(D\@DP , ; « ) , / - 3 , we get an 
equality in (1). Q.E.D. 

4. Enumeration of maximal digraphs 

In this part we determine the number of Vn- and A^-maximal digraphs. 
The case n — 0 is not interesting as we obviously have: 

Theorem 8. The number of nonisomorphic ^-maximal digraphs with p points is 

a) [f] T . - l , 
b) p 1 if i 3. 

The number of A^-maximal digraphs for n>0, i 1, 3 will be determined by 
applying Polya's Enumeration Theorem [8]. 

Theorem 9. Let G be a digraph. Then the number of dissimilar digraphs in the 
class A(G; n) is the coefficient of x" in Z(T\(G), 1 + x). 

The proof of Theorem 9 is the same as that in [2] for its undirected version. 
Before determining the number of Ai-maximal digraphs we shall state a lemma 

and give the cycle index of T,(DS r). 

Lemma 3. Suppose that G,, G2e A(D u D , ; n), where eithers — 1, r> + 1 or 

s > , r > + 1 Then G, and G2 are similar iff G\ — G2. 

Proof Let Gi, G 2 6 A ( D . u D , ; «), where j - 1 , / - > " + l o r s > ^ , r > " + 1 As 

G\, G 2 e A ( D u D r ; «),wehave V ( G ) = V(G2) - V ( D u D ) - V ( D ) u V ( D ) . 
To express it more clearly V(G, )nV(A) = A , V(G,)nV(Dr) - B, for / - 1 , 2 . 
Obviously A,—A2, B\ = B . It is well known that <per(D,<uDr) iff the compo
nents of digraph Ds(jDr are invariable with respect to q> for s± r, and 
q?e T(D,uD ) iff either the components of this digraph are invariant with respect 
to <p or <p maps any point of one component onto a point from the other 
component. 

The necessity of the condition is traightforward. Let now G, — G->. We shall show 
that G, and G2 are similar. We shall consider two cases. 

I. It is clear that in the case of s = l, r — - + 1 the statement holds. Let s~ 1, 

r^—-— Then for the point v e A we have n =deg(v) < deg(«) for every point 
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u e B,, i— \, 2. Therefore if <p: Gt—*G2 is an isomorphism, there must be <p(v) = v. 
Thus <pe r(DtuDr) and G and G2 are similar. 

II. Let s>-, r>-+ 1. We shall prove indirectly that G, and G2 are similar. Let 

us consider the case s^r. Let <p: G\^>G2 be an isomorphism and let 
<p<£ r ( D , u D r ) . Thus there is a point we A, such that <p(u)eD2. Put 

A = {u; we A,, <p(u)eB2}, 
B = {u; ueBu <p(u)eA2}. 

Obviously \A\ = \B\. Let \A\ = p (as <p<£ f ( D , u D , ) in the case of s = r there must 
be p<s). Let u, v e A, and <p(u)eA2, <p(v)e B2. Since uv, vu e E(G,) , and <p is 
an isomorphism, <p(u)<p(v) and <p(i>)<p(j.) belong to iE(G.). As <p(u)eA2 and 
<p(v)eB2, the arcs <p(u)<p(v) and <p(u)<p(w) do not belong to E(DsuDr). 
Analogously for z, weBu <p(z)eA2 and <p(w)eB2. Therefore 

n^2(r-p)p + 2(s-p)p. 

On the other hand for r>s^ , \^p^s (in the case r = s^-+\, 

1 ^ p ^ s — 1) we have 

2(r-p)p + 2(s-p)p>n (4) 

and we have a contradiction. Thus <pe T(DsuDr), i.e. G, and G2 are similar. 

Now we shall consider the case ots=-,r^-+\. The statement (4) holds for 

r> +\, s=-, \^p^s and for r = -+\, s=-r, p<s, too. But for r = -+\, 

5 = - , p=s we have only the equality in (4). However, then there must be 

G, = G2 = (D s uD s ) + D, (i.e. G,, G 2e A ( D s u D s . , ; /.)), hence we get that G,, G2 

are similar. Q E.D. 

Theorem 10. Let n, m be natural numbers. Then for n^m we have 

Z(r,(Dn.m) = Z(n,m) = -±-2 ff^V''™, (5) 
n \m! (а ß) r i 1 

where <xeS„, p7eSm and jk(<p) is the number of cycles of length k in the disjoint 
cycle decomposition of <p, 

Z(rl(D„,r,) = ±(Z(n,n) + Z'n), (6) 
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where 

и ! ( f П k k]k! * dd r<, 

and the sum is over all partitions (J) ~ 0>> j2> •••> /») °I n-
Proof. Let n, m be natural numbers. From [2] it follows that 

for nФm, 

where 

z(n(K„ m)-z(s„x&)=-rb 2 ff si:r'»w 0) 
"t • fft ' i f}) r t 

Z(r(K„„)~l(Z(S *S,) + Z), (8) 

z. = i 2 fг^Ц П - - П - - "+I *' * П s^V-
П ] , \ 11 K k]k'. k аdd k r^, 

The cycle index of T (D„ „,) will be determined using (7) and (8). As the groups 
r(K„ m) and r(D„ m) are identical, the group ri(D„ m) is induced by the group 
r(K„.m), too. 

Let us denote the maximal indenpendent sets of vertices of the graph K„,m by A 
and B. Thus AuB= V(K„ m), AnB = 0. Now we indicate the correspondence 
between the terms of the cycle indices of r\(K„,m) and r\(D„,m). 

Let q>er(K„ m) and let for any vertex ue A we have q>(u)e A (then for ueB 
we have q>(u)B). Let q>' e rx(K„ m) and q>"e r\(D„,m) be automorphisms induced 
by q>. Let n^i' be an addend of Z(rx(K„, m)) corresponding to q>. Then TlsV' is the 
addend from Z(rx(D„ m)) corresponding to q>" as any cycle of length A: in the 
disjoint cycle decomposition of q>' corresponds to two cycles of length k of q>". One 
of them consists of arcs going from A to B, the other from symmetries arcs, i.e. 
from arcs going from B to A. Thus from (7) we get the statement (5). 

Now let q>er(K„,„) such that for any Me A, q>(u)eB. Let q>' eTi(K„ ,„) and 
q>" e r\(D„,„) be automorphisms induced by q>. Let Y\s'; be an addend from 

r\(K„ „) corresponding to q>'. Then f l s'i, \\ s*h is the addend of ri(D„,„) 
odd i even 

corresponding to q>" as q>" maps an arc going from A to B onto an arc going from B 
to A. Thus any cycle of length k of q>' corresponds to two cycles of length k for k 
even, and a cycle of length 2 k for k odd of q>". 

From the above and from Z„ we get that the contribution of automorphisms, 
which maps any vertex of A onto a venex of B in Z(Ti(D„ „)) is equal to Z'„. As it 

is clear that Z(r (D „)) — - (Z(n, n) + Z,), the proof is complete. 
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n + 3 
Theorem 11 . Lef p, n be natural numbers, p^—-z—. Then the number of 

V„-maximal digraphs with p points is 

a) 1 / o r p = - y - , 

n +4 
b) the coefficient of x" in Z(r,(Di,p_i), 1 +x), where either——s;p<n + 2 or 

p = n + 2 and n is odd 

c) the coefficient of x" in 

z(r,(D,,p 0,i+*)- (~1>'' + 1z(r , (p t . , J-,),I+JC)+ X z(n(D,.p ,),i+x), 
. - [ ^ 1 

w/iere either n + 2<p or p = n + 2 and n is even. 
n + 3 

Proof. Let G be a digraph with p points and let p 5s—-—. From Theorem 5 it is 

n -+- 3 
easy to see that there is only one Ai-maximal digraph for p=—-—. 

n + 4 
Let now either —-— ^p<n+2 or p = n + 2 and n is odd. From Theorem 5 it 

follows that G is Ai-maximal iff G e A(DiuD p _i ; n). By Theorem 9 we have that 
the number of dissimilar digraphs in A ( D i u D p i; M) is the coefficient of x" in 

Z(r,(D,uDp_,) , l + jr) = Z(~i(D,,p- ,) , 1 + *) and by Lemma 3 we get that the 
number of dissimilar digraphs in A ( D i u D p - i ; n) is equal to the number of 
nonisomorphic digraphs in this class. Thus we get part b). 

Suppose that n + 2<p and n is even. From Theorem 5 it follows that a digraph 
G is Ai-maximal iff either Ge A(DiuD p _i ; n) or Ge A ( D , u D p - , ; n) where 
S(G)>n. The number of digraphs of the class A(D;+ iuDp_j i; n) with 6(G)>n 
is equal to 

W= |A(D ! + ,uD p - ,_ , ; n)\ - |A(D!uDp_,_,; n)\. 

Further, let G, e A(D,uD p _ , ; n), G2 e A(DruDp-r; n), where r£s£p — r. Then 
G, cannot be isomorphic to G2 because |E(G,) | 4= |E(G2)|. Thus the number of 
Ai-maximal digraphs is equal to 

W + | A ( D , u D p - , ; n ) | + £ |A(D,uDp_,; «) | . 
1-1+2 

As all of these classes of digraphs satisfy the assumptions of Lemma 3 we get from 
Theorem 9 that the number of nonisomorphic digraphs in these classes is the 
coefficient of x" in 
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Z(H(Dip ,), 1 + J C ) - Z ( r , ( D " . , 3 ,), 1 + * ) + 2 Z ( v , ( D , p , ) , . + *. (9) 

Similarly for p > n + 2, n odd we get that the number of An-maximal digraphs with 
p points is the coefficient of x" in 

Z(H(Dlp ,), l+x)+ 2 Z ( T , ( D , P ,), 1+x). (10) 

The part c) follows immediately from (9) and (10). Q.E.D. 

Lemma 4. Let G,, G 2e A ( D r © D s ; «), where r, s^n+2. Then G, and G2 are 
similar iff G, — G2. 

The proof of Lemma 4 is analogical to that of Lemma 3. 

Theorem 13. Lef n, p be natural numbers, p^n + 2. Then the number of 
X„-maximal digraphs with p points is 
a) 2 for * i + 2 < p < 2 r t + 3 ; 
b) the coefficient of x" in 

p n 2 

2x"+ 2 Z(S, xSp „ 1 + x) for 2n+4^p, 
I n + 2 

where Z(S„ x Sm) is given by (7). 
Proof. Let G be a digraph with p points. Let n + 2 = S p ^ 2 n + 3. By Theorem 6 

we have that there are two A„-maximal digraphs. 
Suppose that 2«+4=£p . Let GleA(D®Dps;n), G2eA(Dr®Dp r;n), 

where r±s+p — r. Then G, cannot be isomorphic to G2 as | £ ( G , ) | 4= |E(G2) | . 
From the above and from Theorem 6 if follows that there are 

2 + "X \A(D,®DP ,;n)\ 
, n + 2 

A;i-maximal digraphs with p points. As all these classes of digraphs satisfy the 
assumptions of Lemma 4 we get from Theorem 9 that the number of A'-maximal 
digraphs with p points is the coefficient of x" in 

p n 2 

2x"+ 2 Z(П(D.®DP ,),l+x). 

As Z(H(D,®DP ) = Z(T)(DP ,®D,) = Z(SP ,xS,), the proof is complete. 
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ОРГРАФЫ, МАКСИМАЛЬНЫЕ ОТНОСИТЕЛЬНО СВЯЗНОСТИ 

Петер Гора к 

Резюме 

Сильной (односторонней, слабой) реберной связностью орфафа называется наименьшее 
число ребер, удаление которых приводит к не сильному (не одностороннему, не слабому, 
соответственно) орфафу. 

Консфуктивно описано и определено число орфафов, максимальных относительно сильной 
или слабой связности. В случае орфафов, максимальных относительно односторонней связности, 
показано одно необходимое и одно достаточное условие. 
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