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DIGRAPHS MAXIMAL WITH RESPECT
TO ARC CONNECTIVITY

PETER HORAK

1. Introduction

One of the most important goals of the theory of connectivity of digraphs is to
compile a list of all k-connected digraphs. But this problem seems to be very
difficult. Thus there were investigated (by Kameda [6] for strong connectivity, by
Mader [7] for strong arc connectivity) minimally k-connected digraphs, which are
“lower bound” for the class of k-connected digraphs. The dual question, maximally
k-connected digraphs which are “upper bound” for the class of digraphs with
connectivity k, have been studied by the author of [5] for all three invariants of
point connectivity.

In this paper we shall describe constructively and determine the number of
digraphs maximal with respect to the strong or weak arc connectivity, respectively.
A sufficient and a necessary condition for a digraph to be maximal with respect to
the unilateral arc connectivity is given.

2. Notation and terminology

The notions not defined here will be used in the sense of [4].

The strong (unilateral, weak) connectivity »* = »*(G) (x* = x*(G), x' = x'(G)) of
a digraph G is the minimum number of points whose removal results in a not strong
(unilateral, weak) or trivial digraph.

Analogously, the strong (unilateral, weak) arc connectivity A’=1%G)
(A’=4%G), A'=A'(G)) of a digraph G is the minimum number of arcs whose
removal results in a not strong (unilateral, weak) digraph.

Let digraphs G, and G. have disjoint sets V; and V, of points and disjoint arc
sets E; and E,, respectively.

Their union is the digraph G = G,uG,, which has the point set V= V,uV, and
the arc set E= E,UE,.
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Their join G + G, consists of GiuG and all arcs joining V' with V,.

Their directional join G,@® G- consists of G,UG, and all arcs going from V, to
V . 1t is clear that the directional join is not a commutative operation.

We shall denote by D the complement of a digraph D, by K, the complete graph
on p vertices, by K. , the graph K, + K, by D, the complete digraph on p points,
by D, , the digraph D + D.,.

Let v be a point of a digraph G. Then id(v) is the indegree of v and od(v) is the
outdegree of v. Let deg(v) be the sum of id(v) and od(v) and let 8(G)—
min deg(t ).
1€G

The symbol I'(G) denotes the vertex(point) group of a graph (digraph) G and
I'(G) denotes the edge (arc) group of G.

Further, let the symbol A(G; n) denote the class of digraphs that arose from
a digraph G by adding n new arcs.

We sha | say that G,, G, € A(G; n) are similar if there is @€ I'(G) such that ¢:

G,— G is anisomorphism. If G,, G are not similar, they are called dissimilar.

Let, as usual, the symbol Z(H) be the cycle index of a permutation group H. The

polynomial Z(H, 1 + x) is determined by substituting 1 + ¢* for each variable s, in

Z(H).

3. Maximal digraphs

Let n be a nonnegative integer and let G be a non-complete digraph. Then G is
called A', (x')-maximal if A'(G)—n and A(G+x)>n (%'(G)=n and
x (G + x)>n) for every arc xe E(G), i=1,2,3.

In this part of our paper we shall describe A;- and A)-maximal digraphs. For
A>-maximal digraphs a sufficient and a necessary condition are given.

In [5] the following result has been proved:

Theorem 1. Let G be a digraph. Then G is
a) xo-maximal iff G=D,uD,,
b) xo-maximal iff either G=D,uD, or G=D.®(D.uD,) or G=(D.,uD,)®D
or G=D,®(D.uD,)Y®D.),
¢) »), maximal iff G=D,®D,.

Theorem 2. A digraph G is A\-maximal iff G is x,-maximal, for i=1, 2, 3.
Proof. Let G be a digraph. Then A'(G) — 0 iff »'(G) =0, i.e. G is A;-maximal iff
G is xo-maximal, i 1,2, 3. Q.E.D.

Theorem 3. Let G be a A, maximal digraph and n be a natural number. Then
Ge A(D; n), where D is A\-maximal digraph (for i=1, 2, 3).

244



Proof. Let G be a A;-maximal digraph. Then there exists a set A of arcs of G
such that |A|=n and 1'(G — A)=0. Let us denote by D the digraph G— A. To
finish our proof we must show that the digraph D is A;-maximal. We shall prove it

indirectly.
Let xe E(G) and A'(D+x)=0 (i.e. xé A). Then A'(G+x)=n and this is
a contradiction because G is A,-maximal. Thus D is A;-maximal. Q.ED.

Now we shall give a sufficient condition for a digraph G to be AZ-maximal.

Theorem 4. Let G be a digraph and G € A(D; n), where D is a Aj-maximal
digraph and every strong component of D has at least n+2 points. Then G is
A*-maximal.

Proof. Let Ge A(D; n), where the digraph D is A5 maximal and every strong
component of D has at least n + 2 points. Let A = E(G) — E(D). Then A}(G — A)
= A%(D)=0 and we get A}(G)<n. As AX(D+x)=1 for xe E(D) and every
strong component of D has at least n +2 points, we have A*(G) = n. By a similar
reasoning we get A*(G + x) = n + 1 for x € E(G). Q.E.D.

Before describing A,- and 1)-maximal digraphs we shall state two lemmas.

Lemma 1. Let A'(G)=c, Bc AcE(G), |A|=a, |B|=b. Let A'(G—A)—
c—a. Then A'(G—B)=c-b, fori=1,2,3.

Proof. Let A'(G)=c, Bc AcE(G), |A|=a, |B|=b.Let A\'(G A)=c—a.
It is easy to see that

AM(G)=A(G—x)=A(G)—1 forany xeE(G).
Thus A'(G — B)=c¢ — b. On the other hand
A(G—-A)+1=21(G-A)+x=A(G—A) forany xeE(G-A)
and we have A'(G — B)<(c—a)+(a—b)<c—b. Q.E.D.
Lemma 2. Let r=s be natural numbers and let Ge A(D,uD,; k). Then

6(G)> k iff either s?k;:; ors =§+1 and each point of D, (in the case of r=s

each point of G) is incident with at least one arc belonging to D,uD..
Proof. Let r=s and let Ge A(D,uD,; k). It is clear that the condition is
sufficient for a digraph G to have the property that §(G)> k.

Let now 6(G)> k. Let us denote by u, u,, ..., u, the points of D;. Let s S%.

Then mindeg(u)=2(s—1)+ [f] < k and this is a contradiction. Thus s 2§+ 1.In

the case of s =§+ 1 we get deg(u,) = k and each point of D, (in the case s = r each

point of G) must be incident with at least one arc of D,uD.. Q.ED.
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Theorem 5. Let n be a natural number. Then the digraph G is A\-maximal iff
Ge A(D,uD,; n), where either r=1 and s>g or 6(G)>n.

Proof. Let G be a A,-maximal digraph. Then 1'(G) = n and according to [1] we
have 8(G)=n. Let v be a point of G with deg(v) = n. Let us denote by A the set
of arcs incident with point v. Because the digraph G is A,-maximal we have
G — A = D,uD, and any arc of G must be incident with point v. Thus there can be
at most two points with degree n in G. We have to consider only three cases.

I. digraph G contains exactly two points with degree #n. As any arc of G must be

incident with those two points we get G=D:.,, {x,y}, where x, y are
symmetric arcs, i.e.

GeA(Di.,uD\; n) fornevenand G=D,.5.—x, ie.
Ge A(Du+1y20D0; n) for nodd.

I1. The digraph G contains only one point with degree n. Then any arc of G is
incident with this point. Thus Ge A(D\uD;; n), where s Bg-l— 1.

II1. The digraph G does not contain a point with degree n. Then §(G)>n and
from Theorem 3 it follows that G=A(D,uD,; n).

Now we shall prove the sufficient condition.

Let Ge A(D\uD;; n), where s >g. Let us denote by A the set of arcs incident
with point v, v € V(D,.,). Itis easy to see that A'(D,.,)=2s. Further, |A|=2s and
A'(Dy.1—A) = A'(D uD,)=0. Thus the assumptions of Lemma 1 hold. Hence
we get A'(G)=n and A'(G+x)=n+1 for any x € E(G), i.e. G is A,-maximal.

Let Ge A(D,uD,; n) where r=s and 8(G)> n. From Lemma 2 it follows that
n

+
either s =~ 3 3 + 1 and any point of D; (in the case of s = r any point of G)

ors=

N n+3
is incident with at least one arc of D,uD,. Let s =

. Obviously A'(G)<n. Let

AcE(G), |A|<n. Then G- A is a weakly connected digraph as A'(D,) =

A'(D.) = n+1.Thus A'(G) = n. Similarly, 1'(G + x)=n + 1 for any x € E(G), i.e.
G is A,-maximal.

Let r?s=g+l. As A'(D)=n and Ge A(D,uD,; n), we have A'(G)=n.

Further, let A < E(D,), |A]=n and let D, — A be a disconnected digraph. Then
there is a point v € V(D) such that A= {x; xe E(D,), x is incident with v}.
It follows that 1'(G + x) = n + 1 as each point of D, is incident with at least one

arc of D,uD.,. Thus G is a A,-maximal digraph. Q.E.D.
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Theorem 6. Let n be a natural number and let G be a digraph. Then G is
A}-maximal iff Ge A(D,@ D, ; n), where eithers=1,r=n+1orr=1,s=n+1
ors, r=zn+2.

Proof. Let n be a natural number. Let G be a A)-maximal digraph. Then
A*(G) = n and from [1] it follows that n <min (od (v), id (v)) for every ve V(G).

Let v be a point of G such thatid(v)=n. Let A={uv; uv e E(G)}. As G is
A’-maximal, we have G — A = D,@ D,. It follows that for any x € E(G) we have
x = uv. Analogously, for a point with od (v) =n we get: if x € E(G), then x = vu.
Further, there is no point with od(v)=id(v)=n. Thus there exist at most two
points with the property that the indegree or the outdegree of them is exactly n. Let
us consider three cases.

1. Let u, v be points of G such that od(v)=id(«) = n. Then G = D,., — x, thus
Ge A(D:\@D..1; n) and Ge A(D...®D:; n), too.

II. Let v be a point of G with od (v) = n and semidegrees of all other points are
greather than n. Then for any x € E(G) we have x=vu and Ge A(D,@® D;; n),
where s>n+1. If id(v)=n, we get Ge A(D\@ D, ; n), where r>n+1.

IIL. Let od(v), id(v)>n for any point v of G. Then from Theorem 2 and 3 it
follows that Ge A(D.®D,;n) and s, r=n+2.

Now we shall prove the sufficient condition.

Let Ge A(D,®D,;n). Let r=1, s=zn+1 and let ve V(D,,,) and A=
{uv; uve E(D,.\)}. It is easy to see that A’(D,.,)=s. Further, |A|=s and
AY(Dys1— A) = AX(D.@D,)=0. Thus the assumptions of Lemma 1 hold. Hence
we get A’(G)=n and A’ (G+x)=n+1 for any xe E(G), i.e. G is A)-maximal.
The proof for s =1, r=n+1 is analogical. Let r=s=n+2. As A’(D,) = A} (D)
= n+1 we get A*(G)=n and A*(G+x)=n+1 for any xe E(g). Thus G is
A>-maximal. Q.E.D.

By using Theorem 3 we prove the following inequalities.

Theorem 7. Let G be a digraph with p points and q arcs. Let A'(G) = n. Then

a) g<(p—-1)p—-2)+n for i=1,2; (1)
b) gs(p—1) ' +n for i=3.

Proof. Let G be a digraph with p points and g arcs and let A'(G)=n. Then
there exists a A,-maximal digraph H such that G is a factor of H. As H is
As-maximal, from Theorem 3 it follows that H € A(D; n), where D is Aj-maximal.
Thus we have

9(G)<q(H)=q(D)+n. (2
By [1] we have
gD)<(p—-1)(p-2) for i=1,2; 3)
q(D)<(p-1) for i=3.
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The statement (1) follows immediately from (2) and (3). In addition, for
GeA(DuUD, ;n), i=1,2 and for Ge A(D\®D, ;n), i—3, we get an
equality in (1). Q.E.D.

4. Enumeration of maximal digraphs

In this part we determine the number of A)- and A,-maximal digraphs.
The case n —0 is not interesting as we obviously have:

Theorem 8. The number of nonisomorphic A«-maximal digraphs with p points is

a) [%’] ifi=1;

b) p 1 ifi 3.

The number of A;-maximal digraphs for n>0, i 1,3 will be determined by
applying Polya’s Enumeration Theorem [8].

Theorem 9. Let G be a digraph. Then the number of dissimilar digraphs in the
class A(G; n) is the coefficient of x" in Z(I(G), 1+ x).

The proof of Theorem 9 is the same as that in [2] for its undirected version.

Before determining the number of A;-maximal digraphs we shall state a lemma
and give the cycle index of I'(D; ,).

Lemma 3. Suppose that G,, G.€ A(D uD,; n), where either s — 1, r>; +1 or

s>;, r>;+1 Then G, and G, are similar iff G,= G,.

Proof Let G\, G.e A(D,uD,; n), where s — 1, r>;+ lor s>g, r>g+ 1 As
G, G.e A(D,uD,; n),we have V(G )= V(G,) - V(D,uD,) - V(D)uV(D).
To express it more clearly V(G.)nV(D,)=A, V(G)nV(D.)— B, for i—1, 2.
Obviously A, — A,, B,=B . It is well known that ¢ e I'(D,uD,) iff the compo-
nents of digraph D,uD, are invariable with respect to ¢ for s#r, and
@ e I'(D.uD ) iff either the components of this digraph are invariant with respect
to @ or @ maps any point of one component onto a point from the other
component.

The necessity of the condition is traightforward. Let now G, ~ G-. We shall show
that G, and G; are similar. We shall consider two cases.

1. It is clear that in the case of s=1, r—§+1 the statement holds. Let s — 1,

n+3
2

r= Then for the point v € A we have n =deg(v) < deg(u) for every point
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u€ B, i—1, 2. Therefore if ¢: G,— G: is an isomorphism, there must be ¢(v) = v.
Thus ¢ e I'(DyuD,) and G, and G are similar.

II. Let s >§, r>§+ 1. We shail prove indirectly that G, and G are similar. Let
us consider the case s#r. Let ¢: G,—G:. be an isomorphism and let
@& I'(D,uD,). Thus there is a point u € A, such that ¢(u)e D,. Put

A={u;ueA, p(u)e B,},
B={u; ueB,, @(u)e A,}.

Obviously |A|=|B|. Let |A|=p (as ¢ ¢ I'(D,uD,) in the case of s = r there must
be p<s). Let u, ve A, and @(u) € Az, (v) € B,. Since uv, vue E(G)), and @ is
an isomorphism, @(u)@(v) and @(v)@(u) belong to E(G.). As @(u)e A; and
@(v)e B,, the arcs @(u)@p(v) and @(v)e(u) do not belong to E(D,uD,).
Analogously for z, we By, ¢(z) € A; and @(w) € B,. Therefore

n=2(r—p)p+2(s—p)p.

On the other hand for r>s=Z + 1, l=sp<s (in the case r=s?§+ 1,
1sp=<ys—1) we have

2(r=p)p+2(s—p)p>n 4)
and we have a contradiction. Thus ¢ € I'(D,uD,), i.e. G, and G; are similar.

Now we shall consider the case of s =2, r2§+ 1. The statement (4) holds for

2
n n n n
= - = 6 —-— = — . —_ -
2-+-1 s 2 1<p<s and for r 2+1,s 2,p<s, too. But for r 2—f-l,
s= g, p=s we have only the equality in (4). However, then there must be
=G,=(D,uD,)+ D, (i.e. G, G:€ A(D,uD,.,; n)), hence we get that G,, G,
are similar. QE.D.

Theorem 10. Let n, m be natural numbers. Then for n#+ m we have

z n s2(r ')/(ull(ﬂ) (5)

Z(IN(D..m)=Z(n, m)=——— 'm'( .

where a € S,, B € S and ju(@) is the number of cycles of length k in the disjoint
cycle decomposition of g,

Z(I(D...) =% (Z(n, n)+2Z2), (6)
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where

k 2(r 1)
1 n st n SHKPEE] 1) n s3r

n!()nk]k k dd r<t

and the sum is over all partitions (j)=(ji, j2 .- Ja) Of n.
Proof. Let n, m be natural numbers. From [2] it follows that

2 I‘I s(rl/(a);(ﬁ) (7)

Z(rl(Kn m)_Z(S”xSm) 'm' 1 Bt

for n¥+m,
Z(F (K, )=y (Z(5 x$)+Z), ®)

where

1 5 .
— n st sk #4807 s %
n! k ret

T Hk’*k

The cycle index of I' (D, .) will be determined using (7) and (8). As the groups
(K, ») and I'(D, .,) are identical, the group I'(D, ,.) is induced by the group
I'(K.. ), too.

Let us denote the maximal indenpendent sets of vertices of the graph K, ., by A
and B. Thus AUB = V(K, ..), AnB=#. Now we indicate the correspondence
between the terms of the cycle indices of (K., ) and I(D,, ).

Let @ e I'(K. ) and let for any vertex u € A we have @(u)€ A (then for ue B
we have @(u)B). Let ¢' € I'(K, ) and ¢" € I'((D,, .,) be automorphisms induced
by @. Let Is’ be an addend of Z(I'(K., »)) corresponding to @. Then ITs?is the
addend from Z(I'(D. »)) corresponding to @" as any cycle of length k in the
disjoint cycle decomposition of @’ corresponds to two cycles of length k of ¢”. One
of them consists of arcs going from A to B, the other from symmetrics arcs, i.e.
from arcs going from B to A. Thus from (7) we get the statement (5).

Now let @€ I'(K,..) such that for any ue A, ¢(u)e B. Let ¢’ e (K., .) and
¢"eI'(D. .) be automorphisms induced by ¢. Let ITs" be an addend from
I (K., .) corresponding to ¢'. Then [_L 54 n s¥ is the addend of I(D...)

corresponding to @” as " maps an arc going from A to B onto an arc going from B
to A. Thus any cycle of length k of @' corresponds to two cycles of length k for k&
even, and a cycle of length 2k for k odd of ¢".

From the above and from Z, we get that the contribution of automorphisms,
which maps any vertex of A onto a verex of B in Z(I'\(D, .)) is equal to Z,. As it

is clear that Z(I' (D .)) — 1 Z(n, n)+ Z,), the proof is complete.
> |y p
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+
Theorem 11. Let p, n be natural numbers, p?n 2 3. Then the number of

A»-maximal digraphs with p points is

a) 1 forp=£;—§,

n+4

b) the coefficient of x" in Z(I'(Dx.,-1), 1+ x), where either <p<n+2or

p=n+2 and n is odd

c) the coefficient of x" in

(-N"+1 gy
Z(T(Dry 1), 14x) =222 Z(N(Dy, 1) 140+ 3 Z(TWD.p ), 1+3),
=024

where either n+2<p or p=n+2 and n is even.

Proof. Let G be a digraph with p points and let p ?nT-I-Z&_ From Theorem § it is

n+3

easy to see that there is only one A)-maximal digraph for p ==

4$p<n+2 or p=n+2and n is odd. From Theorem 5 it

. n+
Let now either

follows that G is A.-maximal iff G € A(D,uD,_;; n). By Theorem 9 we have that
the number of dissimilar digraphs in A(DyuD, :; n) is the coefficient of x” in

Z(I/(DywuD,-1), 1+x)=Z(I(D),p-1), 1+ x) and by Lemma 3 we get that the
number of dissimilar digraphs in A(DiuD,_;; n) is equal to the number of
nonisomorphic digraphs in this class. Thus we get part b).

Suppose that n +2 <p and n is even. From Theorem 5 it follows that a digraph
G is A,-maximal iff either Ge A(DyuD,_,; n) or Ge A(D,uD,_,; n) where
6(G) > n. The number of digraphs of the class A(Ds..wD,_3 1; n) with 8(G)>n
is equal to

W=|A(Ds.1UD,-g-1; )|~ |A(DsUDys-1; n)|.

Further, let Gie A(D,uD,_,; n), G.e A(D,uD,_,; n), where r#s# p —r. Then
G, cannot be isomorphic to G, because |E(G:)| # | E(G:)|- Thus the number of
As-maximal digraphs is equal to

[p 2]
W+|A(DiUD,-; n)|+ X |[A(DUD,-,; n)|.

=842

As all of these classes of digraphs satisfy the assumptions of Lemma 3 we get from
Theorem 9 that the number of nonisomorphic digraphs in these classes is the
coefficient of x" in
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[2 2]
Z(I'(Di , ), 1+ x)—Z(I(D~, 3 1), 1+ x)+ 2 Z([(D., ), i+x. (9)
~8+1
Similarly for p>n +2, n odd we get that the number of A.-maximal digraphs with
p points is the coefficient of x” in

lp 2]
Z(I(Dyp 1), 14 x)+ D Z(I(D, , ), 1+x). (10)
¢ 232
The part c) follows immediately from (9) and (10). Q.E.D.

Lemma 4. Let G, G,€ A(D,@®D.; n), where r, s=n+2. Then G, and G, are
similar iff G,=G..

The proof of Lemma 4 is analogical to that of Lemma 3.

Theorem 13. Let n, p be natural numbers, p=n+2. Then the number of
A»-maximal digraphs with p points is
a) 2 forn+2<p<2n+3;
b) the coefficient of x" in

p n 2

2x"+ Y Z(S. xS, ,1+x) for 2n+4<p,

¢ n+2

where Z(S. x S..) is given by (7).
Proof. Let G be a digraph with p points. Let n +2< p <2n + 3. By Theorem 6
we have that there are two A)-maximal digraphs.
Suppose that 2n+4<p. Let Gie A(D-@®D, ,;n), G.e A(D.®D, .; n),
where r# s# p —r. Then G, cannot be isomorphic to G, as |E(G\)| # |E(G.)|.
From the above and from Theorem 6 if follows that there are

p n 2

2+ EzlA(D'G')Dp ' ")I

t n+

As-maximal digraphs with p points. As all these classes of digraphs satisfy the
assumptions of Lemma 4 we get from Theorem 9 that the number of A}-maximal
digraphs with p points is the coefficient of x” in

p n 2

2x"+ > Z(N(D.®D, ), 1+x).

1 n+2

As Z(r'(D.®D, )=Z(I(D, .®D.)=2Z(S, .xS,), the proof is complete.
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OPTPA®BI, MAKCUMAIJILHBIE OTHOCHTEJIbBHO CBA3HOCTH
MeTep F'opak
Pe3ome

CunbHolt (onHOCTOpOHHEH, cnaGo#i) peGepHOR CBA3HOCTHIO Oprpacda Ha3bIBAaeTCS HauMeHblliee
yucno pebep, ynaleHHe KOTOPLIX MPHBOAHT K HE CWIbHOMY (HE OJHOCTOPOHHeMy, He ciabomy,
COOTBETCTBEHHO) oprpady.

KOHCTPYKTHBHO ONHCAaHO H OTpefeNeHo YHCNO0 oprpacdoB, MAKCHMAIBHBIX OTHOCHTENIBHO CHILHOM
unH cnaboit cBs3HOCTH. B ciyuae oprpacdos, MaKCHMaNbHBLIX OTHOCHTENLHO OHOCTOPOHHEH CBA3HOCTH,
NOKa3aHO OAAHO HEOGXOAHMOE M OHO IOCTATOYHOE YCIIOBHE.
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