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A COMPARISON THEOREM FOR WEIGHTED MEAN 
AND CESARO METHODS 

B. E. RHOADES 

(Communicated by Eubica Hold ) 

ABSTRACT. In this paper, we obtain a new inclusion theorem between (C, a), 
the Cesaro ma trix of order a , 0 < a < 1 , and weighted mean me thods (N, p), 
genera ted by certain mono tone sequences. 

Let Y2 a
n ^ e a n infinite series with partial sums {sn}, T — (an k) an infinite 

matrix. Suppose that the sums 

oo 

Tn'-=YanjSJ ( n = 0 , l , . . . ) 
3=0 

exist. If 
oo 

E**" 1 .^-^-! .*^ . (1) 
n=l 

then Yla
n
 ls sa ,i^ ^° ^e l-̂ lk s u m m a b l e , k > 1 . 

In a recent paper [3], S a r i g 61 and B o r obtained some comparison theo
rems between absolute Cesaro and absolute weighted mean matrices. Specifically, 
they proved the following two results. 

THEOREM S B 1 . Let 0 < a < 1. Then \N,p\k summability (k > 1) implies 
|C, a\k summability provided that 

Pn = 0(n«pn) as n - > o o . (2) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 40D25, 40G05, 40G99. 
K e y w o r d s : Cesaro ma tr ix, weighted mean ma trix, inclusion theorem. 
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THEOREM S B 2 . Let a > 1. Then \N,p\k summability (k > 1) implies 
|C, a\k summability provided that 

pn = 0{nPn as n ^ o o . (з) 

We first note that Theorem SB2 is a consequence of known results. Condition 
(3) implies that \N,p\k C |C, l | f c from Theorem 1 of B o r [1]. Actually Theo
rem 1 of [1] has both condition (3) and the condition that npn = 0(Pn) in the 
hypotheses. However, if one examines that proof and uses (1) as the definition of 
absolute summability of order k, then the theorem is true using only condition 
(3). From F l e t t [2], |C, \\k C |C, a\k for a > 1, and Theorem SB2 now follows 
from the transitivity of inclusion. 

We also note that there are no nonincreasing sequences satisfying condi-
n 

tion (2), For, if {pn} is nonincreasing, then Pn := ~~\Pj — ( n + l)~n> a n ( ^ 
j=o 

Pn/napn > n 1 _ a , contradicting (2). 
Our result provides the analog of Theorem SB1 for ordinary convergence 

using nondecreasing sequences satisfying condition (2). 

THEOREM. Let 0 < a < 1, {pn} a nondecreasing sequence satisfying condi
tion (2). Then (N,p) C ( C , a ) . 

P r o o f . The entries of iV"1 are F T 1 = Pj/pj, # 7 + I , J = ~Pj/Pj+i a n d 

N~] - 0, otherwise. With A = CW1, E« := ( n + a) , 
n3 ' oc ' n V (x y ' 

anj = < 

n^n 

Ea 

n 

E 
P. 

a - l J 
n - j 

E: a - l " 
PІ

 n J Ч-+i 

J =n, 

j <П. 

We shall verify that A satisfies the Silverman-Toeplitz conditions. Since C Q 

and jV are both triangles with row sums 1, it follows that A has row sums 1. 
For each fixed j , 

ПJ 

(n-j)"-1 ^ ( n - j - 1 ) " - 1 

n c 

n 1 n —1 n-1 | p 
- ; q - l J 

j=0 ~ j = 0 
n - J 

P* 

1 P 7 
Tria— 1 J 

• ^ n - j - i ; — 
l p І+l 

as n —> 00 . 

p_ 

Eap 
nrn 
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T(n -j + a) T(n - j + a - 1) P P. 
rpot-l 3 l ? a - l 3 

n JPj n 3 XPÍ+1 
(n - j)\ T(a)Pj (n-j- 1)\ T(a)pj+1 

P,Г(n -j + a-1) n — j — a — 1 n — j 

Pj Pj+i (n-j)\T(a) 

n — j — a — 1 n — j Pj\K-] 
1-a Pi P з+i 

From the hypotheses on {P n } , 

n — j — a — 1 n — j 

E: 

Pj Pз+i 

1 - Ҷ l + a)P.|E:Г2 

'n U ( 1 " a)p> 

— - — V 

< ( n - j ) 
Pj Pj+i 

+ 
1 + a 

Pj 
n-1 

^Er(n- jr-2<£(n- jr-2 = O(i). 
j=0 j=0 

-2I 
Pi p 

±y(n_jr-l/
/_.__i_')p 

( Л - j ) 

n - 1 n - 1 
1 yin-JГ^Pj 1 

n° è í Pi n< , = o 
E (n - j) a - l 

Pj+1 

= n«-iP ! ^ [ (n - j r -^ . -^ - j+i r - 1 ]^ 
n a p n n a Z- , p. n -1 /*« 

*Po J'=l 

P, 
= o(i) + =_ E % [(n - J ) - 1 - (n - i + ir"1] + ̂  _ > - -lr"1 

n« - - ' P3 
3=1 J 3=1 

O(l) 
n - 1 

= O(i) + -±+ £ r [(n - jГ-1 - (n - j +1)- 1 ] 
І = I 

< 0 ( 1 ) 

n - 1 

i + E [ ( n - j ) в " 1 - ( n - j + 1)в"1] 
J'=l 

= 0 ( 1 ) . 

D 

R e m a r k . Condition (2) is not satisfied for nondecreasing sequences of the form 
(n + l ) a for a > 0. For sequences of the form a n , a > 1, the matrix method 
(_V,p) is equivalent to convergence, so that the Theorem is trivially true. How
ever, there do exist nondecreasing sequences which satisfy (2), and for which the 
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corresponding matrix method is not equivalent to convergence. For example, 
define {pn} by p0 — 1 and pn = e n / n 1 _ a for n > 0. 

A reasonable conjecture is the following: Let 0 < a < 1. If {pn} is either 

(a) nonincreasing, or 
(b) is nondecreasing and satisfies 

-P-n (4) P. 
П 

then ( C , a ) C ( iV,p) . 

If condition (a) is satisfied, then it is known that (C, 1) C (7V,p). The result 
then follows by the transitivity of inclusion. 

Suppose that condition (b) is satisfied. 

Since (C, a) is a Hausdorff matrix with nonzero diagonal entries, the inverse 

matrix is also a Hausdorff matrix with nonzero entries of the form ( ? ) An~k{ik , 

where /j,k = Ek, A/u,k = \xk - / i f c + 1 , A*1/^ = A ( A n _ 1 / i / c ) . A straightforward 
calculation verifies that 

k _ - q ( l - a ) • • • (n - k - 1 - q)r(fc + a + 1) 
A ^ f c " T(q + l )n ! 

Hence 

( f c ) A " " V = -3£'-"»-"1-

With B = NO-X, 

* > n f c = < 
n J=fc+1 n 

"n n Jfe = n . 

19 has row sums equal to 1. For k fixed, using (4), 

Kk\ ~ 4- f E Pi(i - ^)-a~1) + °(i) = ^ ^ + o(i) = o(i). 
n \ j=fc+i / n 

For fc < n , 6nfc = (E%/Pn)f(k), where 

n n —k 

/(*):= J ] Pi-57_V1+Pfc = E-,i+*^"a"1 + -fc-
j=k+l i = l 

To verify the conjecture, it would be sufficient to show that f(k) is of fixed 
sign for all k sufficiently large. 
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