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VARIETIES WITH RECTANGULAR IDEALS 

JAROMIR DUDA 

ABSTRACT. A variety 1/has rectangular ideals whenever every ideal I in A x B, A, 
Be I/, is product I = f, x IB of ideals IA, IB'm A, B, respectively. The paper gives a 
Mal'cev characterization of varieties having rectangular ideals. 

Ideals in arbitrary universal algebras were studied in [1], [2], and [4]. In par
ticular, it was shown in [1], [2] that the rectangularity of ideals (see the definition 
below) in bidual varieties can be expressed by a suitable Mal'cev condition. The 
aim of this paper is to prove that the rectangularity of ideals is Mal'cev definable 
in an arbitrary variety having a miliary operation 0. Moreover we prove that the 
ideals in a variety V (with miliary operation 0) are rectangular iff the square 
Fv(x) x Fv(x) of the l/-free algebra Fv(x) with one free generator x has this 
property. In addition we find identities characterizing rectangular ideals in 
permutable varieties. To make this paper selfcontained we begin with some 
definitions: 

Let C be a class of similar algebras having a miliary operation 0. A term 

p(x, y) (x is an abbreviation of a finite sequence xx,..., xn) is called an ideal term 

in x if 0 = p(0, y) holds identically in C 
A nonempty subset I of an algebra A e C is and ideal in A if for every ideal 

term p(x ,y) in x,T e I x ... x 7, a e A x ... x A the relation p(7, a) e /holds. 
An ideal I in the product A x B, A, B e C, is named rectangular whenever 

I = IA x IB for suitable ideals IA, IB in A, /?, respectively. A class Cis said to have 
rectangular ideals ifwhenever A, B e C, then every ideal of A x B is rectangular. 

Lemma 1. Let A an algebra with nullary operation 0. The ideal I(S) generated 

by a subset S ^ A consists exactly of the elements p(?, a) where p(x , y) is an 

ideal term in x andl e S x ... x S, a e A x ... x A. 
Proof. [4; Lemma 1.2, p. 46]. 

Lemma 2. Let A, B be similar algebras having a nullary operation 0. Let I be 
an ideal in the product A x B. The following conditions are equivalent: 

AMS Subject Classi f ication (1985): Primary 08B05 
Key words: Variety, Mal'cev condition, Rectangular ideal 

29 



(1) I is rectangular; 
(2) (i) <a, b) el implies <a, 0>, <0, b> e I, and 

(ii) <a, 0>, <0, b> G I imply <cz, b> e /. 

Proof . (1) => (2) is evident. 
(2) => (1): We have to prove that <fl, b>, {a\b/} e I imply <a, tV > G I in the 

product ^ x B. By (2) (i) we have <a, 0>, <0, b>, (a\ 0>, <0, A' > e /. Further, 
applying (2) (ii) to <a, 0>, <0, tV> G I we conclude ( a , F)e1, as required. 

Theorem 1. Let V be a variety with nullary operation 0. The following con
ditions are equivalent: 

(1) l /has rectangular ideals; 
(2) there exist binary terms r , , . . . , rn, s , , . . . , s,, atzd a (2 + n)-ary term p suc/z 

l/zal l/ze identities 

(a) 0 = p(0 , 0, z) 

(p) x = p ( x , j , r ( x , ; 0 ) 

(y) ^ =- p ( Y , j , 3(x , y)) 

hold in V\ 
(3) there exist unary terms a , , . . . , u„, i/,, . . . , vn, w}, ... , wn and (2 + n)-ary 

term p such thai l/z<? identities 

(a) 0 = p ( 0 , 0 , 3 ) 

(5) x = p(x , 0, D(x)) 

(8) x = p(0, x, i/(x)) 
(Q 0 = p(0, x, w(.v)) 

/zo/d in V. 

Proof . (1) => (2): Let Fv(x, y) be the V-free algebra with free generators 
x and y. Consider the ideal I«x, x>, <y, y}) generated by the elements <x, x> 
and <>', v> in the product F„(x, y) x Fv(x, y). Then <x, v> G I«x, x>, <y, y» 
follows from the assumption of rectangularity. Applying Lemma 1 we get a 
(2 + n)-ary ideal term p (whence the identity (2) (a) follows) such that 

<x, y) = <p, p > « x , x>, <v, >•>, <r,(x , j ) , s,(x, ;>)>, . . . , <rw(.v, y), s/;(x, v ) » 

for some binary terms r,, . . . , r„, s , , . . . , s,,. Writing this separately in each 
variable we find 

(p) x = p (x , v, r ( x , j ) ) 

(y) y = P(-V, y, S(.v,y)), 

as claimed. 
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(2) => (3): The identity (3) (5) follows from (2) (P) by setting y = 0 and 

u(x) = r(x, 0). 
The identity (3) (e) follows from (2) (y) by setting x = 0, y = x, and 

v(x) = s(0, x). 
The identity (3) (Q follows from (2) (P) by setting x = 0, y = x, and 

iv(x) = r(0, x). 
(3) => (1): Let / be an arbitrary ideal in the product A x Be V. Following 

Lemma 2 we have to prove that 
(i) <a, b> G / implies <a, 0> e / and <0, b) e I: By (3) (e) (Q we obtain 

(e) a = p(0, a, v(a)) 

(Q 0 = p(0, b, ri/(b)), 
which means that 

<a, 0> = <p, p > « 0 , 0>, <a, b>, <i/,(a), i^,(b)>, ..., <^(a), 1^(6))). 

Since pis an ideal term and <0, 0>, <a, b) e /we conclude that also <a, 0> e I. 
Similarly <0, b> G / follows from the identities (2) (Q (e). 
(ii) Now suppose that <a, 0> G / and <0, 6> e /. By applying (3) (8) (e) we 

find 

(5) a = p(a, 0, u(a)) 

(8) b = p(0,b, v(b)), 
which means that <a, b) e I. 

Altogether, / is rectangular, as required. 

Theorem 2. Let V be a variety with nullary operation 0. The following 
conditions are equivalent: 

(1) V has rectangular ideals; 
(2) Fv(x) x Fv(x) has rectangular ideals', 
(3) the ideal condition 

<x, x, 0 > G / « x , 0, 0>, <0, x, x))) holds in the product Fv(x) x 
x Fv(x) x Fv(x). 

Proof. (1) <^ (2): See Lemma 2. 
(1) <-> (3): See Theorem 1. 

Theorem 3. Let V be a permutable variety such that FV(Q) = {0}. The following 
conditions are equivalent: 

(1) V has rectangular ideals; 
(2) there exists a quaternary term q such that the identities 
(a) 0 = q(0,0,z],z2) 
(P) x = q(x, y, x, 0) 
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(Y) y = q(x, y, 0, y) 
hold in V; 

(3) there exists a quaternary term q such that the identities 
(a) 0 = q(0 , 0, z , ,z 2 ) 
(5) x = q(x, 0, x, 0) 
(e) x= q(0, x, 0, x) 
(0 0 = q(0, x, 0, 0) 

hold in V. 

Proof . (1) => (2): Let Fv(ex, e2, e3, e4) (Fv(x, >)) be the \/-free algebra 
with free generators ex, e2, e3, e4 (x, y, respectively). As it was already proved 
in [6; p. 102] the correspondence given by 

<?,»-* <x, x>, e2\-+(y, >>, e3r--<x, 0>, e4h-<0, >> 

determines the homomorphism cp from Fv(ex, e2, e3, e4) onto Fv(x, y) x 
x Fv(x, y). 

Consider the ideal I«x, x>, <>, > » in the square Fv(x, y) x Fv(x, y). 
Then <x, y}el((x, x}, <>, > » by rectangularity. Further, I«x, x>, <>, 
y» = [<0, 0>]G>(«0,0>, <x, x» , <0, 0>, <>,>») since any ideal is a congruence 
block in a permutable variety, see [4; p. 49]. Altogether we have «x , j > , <0, 
0» G 0(«O, 0>, <x, x» , «0, 0>, <>,>>»). Then [5; p. 113] and [7] guarantee the 
existence of an element q(ex, e2, e3, e4) e Fv(ex, e2, e3, e4) such that 

(*) (q(ex,e2,e,,e4), 0> e 0 « O , ex}, <0, e2» 

and 

(**) (p(q(ex, e2, e3, e4)) = <x , >>. 

Then the identity (2) (a) 

(a)0 = q(0,0,e3,e4) 

follows from (*) and the remaining identities (2) (p) (Y) 
(P) x= q(x, y, x, 0) 
(Y) > = q(x,y, 0, >) 

are consequences of (**). 
(2) => (3): The identity (3) (5) follows from (2) (P) by setting > = 0. 
The identity (3) (e) follows from (2) (Y) by setting x = 0 and x = y. 
Finally the identity (3) (Q follows from (2) (Y) by setting x = 0 and > = x. 
(3) => (1): Let I be an arbitrary ideal in the product A x B e V. 
(i) Assuming <a, b> e I the identities (3) (e) (Q 

(e) a = q(0, a, 0, a) 
(Q 0=q(0, b, 0, 0) 
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yield <a, 0> = <</, q) « 0 , 0>, <a, b>, <0, 0>, <a, 0 » . Applying (3) (a), the 
conclusion <a, 0> e I follows. 
Analogously <0, b) e I can be derived by means of (3) (Q (e) and (3) (a). 

(ii) Now suppose <a, 0>, <0, b) e I. Then the identities (3) (5) (e) 
(5) a = q(a9 0, a9 0) 
(8) b = q(09b909b)9 

i.e. <a, b) = < q9 qf>«a ,0>,<0,b>,<a ,0>,<0, />», together with (2) (a) imply 
<a, b) e I. Lemma 2 completes the proof. 

Example. Any variety of rings with 1 has rectangular ideals: Evidently 
the classical ring ideals coincide with ideals mentioned in our paper. Further, for 
the quaternary term p(x9 y9 z,, z2) = x • z, + y • z2 and the unary terms 
U{(x) = u2(x) = 1, i/,(x) = v2(x) = 1, iv,(x) = w2(x) = 0 the identities 

(a) p(0, 0, z,,z2) = 0 -
(5) p(x9 0, i/,(x), u2(x)) =x 
(c) p(0, x, !/,(*), v2(x)) = 0 -
(Q p(0 ,x , i^,(x), w2(x)) = 0-

from Theorem 1 (3) are satisfied. 
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z, +<)• z2 = 0 
1 +()• 1 =x 
1 +x •1 = x 
0 +x- 0 = 0 
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