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AN EXTENSION THEOREM FOR MULTIFUNCTION 
AND A CHARASTERIZATION OF COMPLETE 

METRIC SPACES 

LUBICA HOLA 

Let X and Y be topological spaces. If Y is a metrizable space, then Y is 
topologically complete (see [1], p276) iff each continuous mapping/: A -> Y 
with A dense in X has a continuous extension to a G^set containing A. To see 
this just consider the identity mapping /: Y -> Y and view Y as a dense subspace 
of its completion. 

We show that if Y is a metrizable space, then Y is topologically complete if 
and only if each upper semicontinuous compact-valued multifunction F: A -> Y 
with A dense in X has an upper semicontinuous compact-valued extension to a 
G^-set containing A. 

We shall use the terminology from [1]. 

Notation. In what follows X, Y denote topological spaces. The closure of a 
subset M of a topological space X will be denoted by M. 

The intersection of a family aU of sets will be denoted by n ^ . 
^ (Y) denotes the collection of all subsets of Y, C( Y) denotes the collection 

of all nonempty closed subsets of Y. If (Y, d) is a metric space, (C(Y), <7) denotes 
the metric space equipped with the Hausdorff metric, i.e. 3(A,B) = 
= mf{s: A c SJ£], £ c SJ^]}, where SJ.4] = u{SJ*]: xGyl} and SJx] = 
= {y: d(x,y)<s}. 

ir(x) denotes the set of all open neighbourhoods of x. N denotes a set of all 
positive integers, R denotes the set of all real numbers. 

A family °U of sets has the finite intersection property if the intersection of 
every finite subfamily is not empty. A centred family is a family of sets having 
the finite intersection property. 

A multifunction F from X to Y is a mapping F: X-±0*(Y). We write 
F: X-+ Y for brevity. We suppose F(x) 7-- 0 for any xeX. 

A multifunction F: X-> Yis upper semicontinuous at j teX if for every open 
set V in Y such that F(x) a V, there exists an open set U in X such that x e U 

and F(U) a V, where F(U) = ( J F(x). 
xeU 
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Fis upper semicontinuous if Fis upper semicontinuous at every xeX. 
Let A be a subset of X and F: A -> Y be a multifunction from A to Y. A 

multifunction F*: X-> Y is an extension of Fif F*(x) = F(x) for every xeA. 
Let (Y, d) be a metric space. Let x be a functional defined on ^ (Y) as follows: 

X(0) = 0 and if A is a nonempty subset of Y, then x(A) = 1nf{£: ^ has a finite 
£-dense subset}. In literature x h a s been called the Hausdorff measure of 
noncompactness functional. 

Remark. (See [2]) The HausdoriT measure of noncompactness functional 
has some good properties. 

Lemma 1. (See [2]) The Hausdorff measure of noncompactness functional x for 
a metric space (Y, d) acts as follows: 
(a) j (A ) = x if and only if A is unbounded 
(b) x(A) = 0 if and only if A is totally bounded 
(c) If A czB,then x(A)^2x(B) 
(d) If A is totally bounded, then for each s > 0, x(S£[A]) ^ £ 
(e) x(A) = x(A) 
(f) If{Fn} is a sequence in C(Y) convergent in the Hausdorff metric to FeC(Y), 

then lim x(Fn) = x(F). 
n -» x 

Lemma 2. (See [2]) Let {An} be a decreasing sequence of nonempty closed sets 
X 

in a complete metric space (Y, d). The following are equivalent: (1) Q A„ is a 
n = 1 

nonempty compact set, and {An} is a sequence convergent in the Hausdorff metric 

to P) A„. (2) lim X(A„) = 0. 
/; - 1 " - > X 

Remark 1. Let (Y,d) be a metric space and F: A -• Y be a multifun
ction with A dense in X. Put G = {xeX: the net {x(F(Vn A)): Ve ir(x)} con
verges to zero}, where i^(x) denotes the set of all open neighbourhoods of x. 

It is easy to verify that G = <xeX: for any neN there exists V£^(x) such 

that x(F(Vn A)) ^ ->, which mens that G is a G^set in X. 
n) 

If F: A -• Y is a compact-valued upper semicontinuous multifunction, then 
A c G. Let xeA and neN. Since F(x) is compact by Lemma 1 (d) 

X Si [F(x)] I ̂  —. The upper semicontinuity of Fat x implies there exists a set 
\ Jii ) In 

Vei~(x) such that F(VnA) c S_JF(x)]. Then by Lemma 1 (c) 
Yn 

X(F(Vn A)) ^ - . The inclusion A c G is proved. 
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Theorem 1. Let Y be a complete metric space. Let F: A -> Y be an upper 
semicontinuous closed-valued multifunction, where A is dense in X. Let the net 
{x(F( V n A)): VeY* (x)} converge to zero for any x e X\ A. There exists an upper 
semicontinuous extension F* of F defined on X. 

Proof. Put F*(x) = F(x) for xeA. Now let xeX\A and i^(x) be the set 
of all open neighbourhoods of x. First we show that n{F(VnA): 
Vei^(x)} 7-= 0. There exists a decreasing sequence {Vn} of open sets from i^(x) 

such that x(F(Vn n A))) ^ l/n. By Lemma 1 (e) and Lemma2 (~) F(Vn n A) is a 
n= 1 

nonempty compact set and {F(VnnA)}n=x is a sequence convergent in the 

HausdoriTmetric to f) F(VnnA). 
n=A  

Let Ve Y(x). Then {F(V n jVn^)}^°=1 is a decreasing sequence of closed sets 
such that the sequence {x(F(Vn VnnA))^=x converges to zero and thus by 

Lemma2 f) F(Vn Vn n A) is a nonempty compact set and {F(Vn Vnn A)}*= , 

is a sequence convergent in the Hausdorff metric to f) F(Vn VnnA). 
n= 1 

A family G = {F(VnA) n(f\ F(VnnA)\ Ve^(x)} is a centred family of 

nonempty compact sets. Then 0 ^ n 0 cz n{F(Vn A): VeV(x)}. It is easy to 
verify that n{F(VnA): Ve^(x)} = n&. 

Since n (9 is a compact set, the set n {F(Vn A): Ve i^(x)} is also a compact 
set. Put F*(x) = n{F(VnA): Vei^(x)} for xeX\A. 

We show that F* is upper semicontinuous. Let xeA. Let U be an open set 
in Y such that F*(x) cz U. Since F*(x) = F(x) is a closed set in l^and Y is a 
normal space, there exists an open set Ux such that F*(x) cz Ux cz [/. cz U. The 
upper semicontinuity of F at x implies, there is an open neighbourhood Vofx 
such that F(VnA) cz_[/,. Let ze V\A. Then F*(z) = n{F(GnA): 
Geir(z)} cz F(VnA) cz [/. cz U. The upper semicontinuity of F* at xeA is 
proved. 

Now let xeX\A. It is sufficient to prove that for any £> 0 there exists a 
neighbourhood V of x such that F*(V) cz Se[F*(x)] (F*(x) is a compact set for 
any xeX\A). 

Let e > 0. F*(x) = n | F ( c7n^ ) n(f] F(VnnA)J: Ue^(x)J cz Se/2[F*(x)], 

where {1̂ } is a decreasing sequence of neighbourhoods of x such that the 

sequence {x(F(Vn n A))}™= , converges to zero. Put B = (~) F(Vn n A). The com-
n= 1 
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pactnessofi? implies that F(U n A) n B is a compact set for any Ue i" (x). Since 
n{F(UnA)nB: Uei^(x)} is a subset of the open set Se2[F*(x)] by [1] 5E 

there exist sets Ul,U2,...,U„ei~(x) such that f] F(U(n A) n B cz Se2[F*(x)]. 
/ = i 

Put G = P | t / . . Then Gei(x) and F(Gn A) n B = F(Gn A) n ( f) 
/ = 1 \n = 1 

F(KnA)) c Se2[F*(,v)]. 

By Lemma 2 {F(Gn V., nA)}„x
=, is a sequence convergent in the HausdoriT 

metric to f^\ F(G n Vnn A). Thus there exists M such that for any 
n= 1 

V r ~ 

m ^ MF(G n Vm n A) cz S£2\ p | F(G n Vn n A) 
L/7 = 1 

f) F(G n A)rл 

nF(V,nA) Se2[Se2[F*(x)]] cz S£[F*(x)]. That implies F*(z) cz S£[F*(x)] for 

any zeGn VM. The upper semicontinuity of F* is proved. 

Theorem 2. A metric space Y is complete if and only if each upper semicon-
tinuous closed-valued multifunction F: A -> Ywith A dense in X and such that ford 
any xeX\A the net {x(F(Vn A)): Vei^(x)} converges to zero, has an upper 
semicontinuous extension to X. 

Proof . The necessity is obvious from Theorem 1. 
Suppose that a metric space Y is not omplete. Then there exists a Cauchy 

sequence {yn} such that no point in Y is a cluster point of {y„}„c=\. We can 
suppose that j , # }) i -* j Put X = {vM ...,y„,...}. Let ST consist of 0 and of the 
sets {yi'y/i'y« + i' ."•}> n = 1, 2 , . . , ^" is a topology on X. Put ^ = {y2,y3,...}. It 
is easy to verify that A is dense in X. Define a multifunction F: A -+ Yas follows: 
F(y„) = {y„,yn+ M •••} « = 2, 3 , . . . . Then F is a closed-valued upper semicon
tinuous multifunction on A. 

Since {>'„} is a cauchy sequence in Y, the net {x(F(Vn A)): Ve i^(y{)} conver
ges to zero. There exists no upper semicontinuous extension F* of F defined on 
X. 

Suppose that F* is an upper semicontinuous extension of F defined on X. The 
upper semicontinuity of F* at yn for n = 2,3, implies F*(y,), contains no point 
from the set {y2,y3, . . . } • Let / > 1 be such that>'le^7*(yi)- Let n > 1. There exists 
an open set U in Y such that F*(yn) = F(yn) cz U and y^U. Thus 
f*(ji) n (X\ U) ^ 0, which is a contradiction with the upper semicontinuity of 
F* at yn. F*(yj) n ({y2,y3, ...}) = 0, that means V = Y\{y2, ...,yn} is open in Y 
such that F*(yj) cz V and F*0;J n V = 0 for any n = 2, 3 , . . . However, that is 
a contradiction with the upper semicontinuity of F* at yx. 

Theorem 3. Let Y be a metric space. Y is topologically complete if and only if 
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each upper semicontinuous compact-valued multifunction F: A -> Y with A dense 
in Xhas upper semicontinuous compact-valued extension to a G5-set containing A. 

Proof. Suppose that a metric space (Y,d) is topologically complete. That 
means, there exists a complete metric g in Y topologically equivalent to d. 

Put G = {xeX: the net {x(F(VnA): Vei^(x)} converges to zero}. By Re
mark 1 G is a G^-set and A <= G. 

Define F* as in the proof of Theorem 1., that means F*(x) = n {F(Vn A): 
Vei^ (x)} forxeG\A and F*(x) = F(x) forxeA. Then F* is an upper semicon
tinuous compact-valued multifunction, (see the proof of Theorem 1.) 

Suppose that the metric space (Y, d) is not topologically complete. We show 
that there exist a topological space X and an upper semicontinuous compact-
valued multifunction F from a dense set in X to Y, which has no upper 
semicontinuous compact-valued extension to a G^-set in X. 

Let (Y, d) be a completion of (Y, d). Put X = (Y,d). Then Yis a dense subset 
of X, which is not a G^-set in X. (Suppose that Y is a G^-set in X. Then by [4] 
p. 49 Y is topologically complete.) 

Consider the identity mapping /: Y-> Y. There exists no upper semicon
tinuous compact-valued extension of / to a G^-set in X containing Y. 

Suppose that there exists an upper semicontinuous compact-valued extension 
/* of / to a G^-set L containing Y. Let yeL\ Y. There exists a sequence {yn} of 
points of Y which is convergent to y. The sequence {yn} has no cluster point in 
Y, that means every subsequence of {yn} is a closed set in Y. 

There exists NxeNsuch that for any n^ Nxynei*(y). Otherwise there exists 
a subsequence {ynk} of {yn} such that ynk $ i*(y) for any k e N. The upper semicon-
tinuity of i* at y implies there exists an open set V such that y e V and i*(z) cz -
Y\{y„ ,y„, ...9y„9...} for any zeV. But there exists N2eN such that for any 
k^ N2yn eV, which is a contradiction. 

Thus i*(y) => {y„,y„ + i,...} where n^ Nu that means i*(y) is not compact, 
which is a contradiction. 

The following example shows that the assumption on values of the multifun
ction in Theorems 1 and 3 is essential. 

Example 1. Put Y=R with the usual topology. Put X = {1,1/2,..., 
\/n,...,0}. Let ^ be a family consisting of 0 and of the sets of the form 
{0, \/n, \/n + 1,...} for n = 1,2,... Then ^ is a topology on X. Put A = {1,1/2, 
1/3,..., \/n,...}. Then A is dense in X in the topology ^ and only the G^-set 
containing A is the set X. Define F: A -> Yin this way: F(l /n) = (— \/n,0). Then 
Fis upper semicontinuous on A. It is easy to verify that the net {x(F(VnA)): 
Ve i^(0)} converges to zero, where 'V (0) is the set of all open neighbourhoods 
of 0. There is no upper semicontinuous extension of F defined on X. (Suppose 
that there exists an upper semicontinuous extension F* of F defined on X. The 
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upper semicontinuity of F* at points of A implies F*(0) c f] ( - l/V/,0) - 0. 
n = 1 

That is a contradiction.) 
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ТЕОРЕМА О ПРОДОЛЖЕНИИ ДЛЯ МНОГОЗНАЧНЫХ ОТОБРАЖЕНИЙ 
И ХАРАКТЕРИЗАЦИЯ ПОЛНЫХ МЕТРИЧЕСКИХ ПРОСТРАНСТВ 

СиЫса Но 1а 

Резюме 

Пусть У — метризуемое пространство. Доказывается: пространство У топологически 
полно, тогда и только тогда, когда каждое сверху напрерывное многозначное отображение 
Ф: А -*• У с бикомпактными значениями, где А плотное множество в X, имеет сверху не
прерывное продолжение на 7^-множество Г, причем Г=> А. 
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