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EXISTENCE OF POSITIVE SOLUTIONS TO 
VECTOR BOUNDARY VALUE PROBLEMS II 

ILJA MARTIŠOVITŠ 

(Communicated by Milan Medvěd!) 

A B S T R A C T . We show t h a t the question about the existence of a positive solu
tion to certain n-dimensional differential system of second order with Dirichlet 
boundary condition can be answered by multiple (step-by-step) solving of differ
ential equations of the first order. 

1. Introduction 

In [2] M. F e c k a n has dealt with the existence of a solution of the problem: 

-u" = Ua(x) + 9(u)) - u - s(u) • v , 
—v" = (a + r(u)) -v—v2, 

(1.0.1) 
u(0) =U(TT) = v(0) = v(ir) = 0, 

u(x) > 0 , v(x) > 0 for all x G (0, IT) , 

where the functions / , g, r , s fulfil the following conditions: 

/(.)(") e C ^ R x R j R ) , g,s,re C^R.R), 

£ / a ( 0 > 0 , / a (0>2 , 

a(0) = a,(0) = 0, g'(u)<0 for u > 0 , 

r(0) = rf(0) = 0 , 5(0) = 57(0) = 0 , 

r / ( 0 , o o ) < l , r 7 ( 0 , o o ) > 0 , s / ( 0 , o o ) > 0 , 

lim a = - c o for x - > o o . 

Using the bifurcation method he found a necessary and sufficient condition 
for the parameter a that problem (1.0.1) may have at least one positive so
lution u, v. 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 34B15. 
K e y w o r d s : shooting method, positive solution, Brouwer degree. 
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This is the second part of the paper, in which we investigate the existence of 
a positive solution depending on definition intervals which are determined by the 
Dirichlet boundary conditions for single components of the solution. We consider 
the second-order n-dimensional vector differential system, n > 2 (see (3.0.1)). 
Attention to similar problems has been paid in papers [7], [4] where solutions 
in a cone have been studied. Another problems with similar formulation or with 
similar method of solution (degree theory) were studied in papers [3], [1]. In 
this whole paper the question about the existence of solution to n-dimensional 
differential system can be answered by multiple (step-by-step) solving of differ
ential equations of the first order. This can be considered as the contribution of 
this paper. In the first part [8] some auxiliary lemmas were stated which will be 
proved in this part of the paper. Using them Theorem 6.1 (in [8]) was proved 
which gives a sufficient condition for definition intervals that guarantee the exis
tence of a positive solution to problem (3.0.1). In this part of the paper we shall 
also introduce and prove the second main result - Theorem 5.3 which gives a 
necessary condition on definition intervals for the existence of a positive solution 
to problem (3.0.1) under some assumptions on the form of the right sides of that 
problem. The last main result in this part is Theorem 6.1 which gives simple 
conditions on the right sides of problem (3.0.1). This result gives a necessary 
and sufficient condition for the existence of a positive solution to our problem. 

2. Auxiliary lemmas 

In this section auxiliary lemmas are stated and proved which were necessary 
for previous part of this work [8]. 

LEMMA 2 .1 . Let the function u G C\hs(a,b) fulfil the following conditions: 

(1) 
u(x) >0 for all xe (a,b) . (2.LI) 

(2) 
u(a) = 0, uf(a)=0. (2.1.2) 

(3) Let for almost every x G (a, b) the inequality 

u"(x) < M - (\u
f(x)\+u(x)) (2.1.3) 

hold, where M > 0 is a suitable fixed constant. 

Then the following assertion is true: 

u = 0 on the interval (a, b) . (2.1.4) 
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P r o o f . By contradiction. Hence, let y E (a, b) exist such that u(y) > 0. 
Let x0 be the first zero point of function u on the left to y. Let e be chosen so 
small, that the following condition holds 

a < x0 < x0 + e < y < b, 

u(x0) = 0 = u'(x0), (2.1.5) 

V x e (x0, x0 + e) u(x) > 0 . 

Let us now define auxiliary function g on the interval (x0,x0 + e) 

g(x)= max (u'(t)) . (2.1.6) 
te(x0,x) 

The following assertion is evident: 

(2.1.7) If we put g(x0) = 0, then function g is continuous and nondecreasing. 

Now we shall also try to prove absolute continuity of g. Let us choose rj > 0 
arbitrary small. Using the fact that u'(-) is absolute continuous, we can choose 
S > 0 such that it holds: 

(2.L8) For arbitrary choice of (^-partition x0 < cx < dx < c2 • • • < cn < dn 
n n 

< x0 + e such that Y^(d*i — c
?) < S we have Yl K ( ° U _ u'(ci)\ < V-

i=\ ' i=\ 

Let us verify that this S fulfils the condition analogous to (2.1.8) where u'(-) 
is replaced by function g(-). Let us choose fixed partition (cx, dx,..., cn,dn) and 
i E {1 ,2 , . . . , n } . According to (2.L7) only two possibilities can now be true: 

(1) g(di)>g(ci). 
(2) g(di) = g(ci). 

In both cases we can find c\, d\ such that 

c* < c\ <d\<dt, 

Wi)-9(^)1 <\u'{d\)-u'(c\)\. ( 2 ' L 9 ) 

In fact, let us verify: 
(1) If g(d7) > g(c?), then from nondecreaseness of g it follows d- > ci. Let 

us put c\ = max{t; t G (c-, d%) , g(t) = g(Ci)} . 

If we at first suppose that u'(c\) < g(c\), then from continuity of u'(-) it 
would follow for sufficiently small ex > 0 that u'(t) < g(c\) = O(c-) for all t 
from interval (c\,c\ + £x) , what would contradict our definition of c\. 

So, the case u'(c\) > g(c\) = ry(c-) must be true, from what with (2.1.6) we 
get 

u'(c\)=g(Ci)=g(c\). (2.1.10) 
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Because we assume g(d%) > g^), according to (2.1.6), u'(-) must reach, on the 
interval (cvdz), the value g(d%) at some point d\. Then the following estimations 

(2.1.7) (2.1.6) 
must hold u'(d\) = g(d%) > g(d\) > u'(d\) from what we get 

u'(d\) = g(dl)=g(d\). (2.1.11) 

So, inequality (2.1.9) follows from (2.1.10), (2.1.11) if we are assuming g(di) > 
g(c{) and nondecreaseness of g. 

(2) If g(dz) = g(c{), then choosing c\ = cz- and d\ = di we see that (2.1.9) 
is fulfilled. 

From (2.L9) for i = 1, 2 , . . . , n , when we realize that (c| , d { , . . . , cn, dn) is a 
^-partition in (2.1.8), we obtain 

n n 

£ Wi) - g(ct)\ < £ |«'(dj) - «'(c{)| < r? (2.1.12) 
i = l i=\ 

and by it the absolute continuity of g is verified. 

Therefore g'(x), i/"(x) exist almost everywhere in the interval (x 0 ,x 0 + e). 

Now we can define 

ŕ , ч d e f i 

</(x) for all x E (^ 0 ,^ 0 + e) such that 

g'(x), u"(x) exist and (2,1,3) holds, (2,1.13) 

0 for remaining x G (x 0, x 0 + e) . 

In particular we can write f(x) = g'(x) almost everywhere, and so from (2.1.7) 
and (2.1.13) it follows that f(x) > 0. Now we shall prove that on the interval 
(x 0 ,x 0 + e) it holds that 

/ ( x 1 ) < M . ( l + e) . .?(x 1 ) . (2.1.14) 

So, let xa be arbitrary but fixed. Two following cases are now possible 

(1) f(Xl) = 0, then (2.1.14) holds evidently. 
(2) f(xx) > 0, then from (2.1.13), xx simultaneously fulfils 

u"(Xl) < M-(\u'(xl)\+u(x1)) and g^x,) = f(x,) > 0. (2.1.15) 

(a) Let us now exclude the case u'(xx) < g(xx). By contradiction: If it 
were true, then from continuity of u'(•) we would obtain that v'(x) < g(xx) is 
true in some neighbourhood of x. , exactly for all x G (x^Xj + e2) and then 
(2.1.6) would imply that on the same interval g(-) = g(xx), what implies the 
contradiction g'(xx) = 0. 
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(b) So, (2.1.6) implies 

u'(x1)=g(x1) > 0 . (2.1.16) 

Let x e (xlyx0 + e) be chosen arbitrarily. From definition of g(-) in (2.1.6) we 
know that tx < x exists such that u'(tx) = g(x). Let us exclude the case t < xx. 

(2.1.6) (2.1.7) (2.1.7) 

If it were true, we could obtain g(x) = u'(tx) < g(t ) < g(^2) < g(x), 
what implies g(xx) = g(x) and then from (2.1.7) we obtain that g(-) is constant 
on the interval (xlyx), from what it follows that ^(x-^) = 0, and by (2.L15) we 
obtain the contradiction. 

So, xx <tx < x holds, and we can write 

g(x)-g(xx) = u'(tx)-g(x1) ( 2 . T I 6 ) u'(tx)-u'(xx) < u'(tx) - u'(xx) 
JL ^ 1 **^ 1 *^ *^ 1 T 1 

If x —r x^, then evidently tx -» xf and so g'(xx) < u"(xx). From this we 
obtain 

O 1 1 rA (2.1.15) 

/(x.)( =°V(a:1)<«"(x1) < M-flu'^.)!+«(:-.)) 
(2 = 6)M • (g(Xl) + «(».)) ( 2 = 5 ) M • (g(Xl) + ju'(ť) át 

X0 

X\ 

M • (g(Xl) + íg(t) dt) 2 < ? M • (g(Xl) + (x, - x0) • g(Xl)) 
(2.1.6) 

< 

< M-(l + e)-g(x1) 

and so we verified (2.1.14). 

From absolute continuity of g(-) and from (2.L14) it follows that for almost 
every x G (x0,x0 + e) 

(g(x) • c - M - ( 1 + e ) ' ( * - * ° ) y = e-
M<i+*Y(*-*o) . ^ ' ( x ) -M-(l + e)- g(x)) < 0 

where we have also used (2.1.13). By integration from x0 to x for x from the 
above interval we obtain 

g(x) • e-MH+eHx-X0) < 5 ( a . o ) (--4-7) Q -

Because g(-) is non-negative, we obtain g(-) = 0 on interval (x 0 ,x 0 + e). This 
cc 

together with (2.1.6) implies u(x) - u(a;0) = / u'(t) dt < 0. And finally 

(2.1.1) (2 15) 

0 < u(x) <u(x0) = ; 0 , 

what implies iz(-) = 0 on interval (x 0 ,x 0 + e) in contradiction with (2.1.5). • 
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LEMMA 2.2. Let the function u G CAbs(a>0) fulfil the following assumptions: 

(1) 
u(x) > 0 for all x G (a, b). (2.2.1) 

(2) 
3 xx G (a, b) u(xx) = 0 & u'(xx) = 0 . (2.2.2) 

(3) Let for almost every x G (a, b) (in the meaning of the Lebesgue measure), 
the inequality 

u"(x) < M • (\u'(x)\ + u(x)) (2.2.3) 

holds, where M > 0 is a fixed constant. 

Then the following identity holds: 

u = 0 on (a,b). (2.2.4) 

P r o o f . It can be done by an analogous method to that used in the proof 
of Lemma 2.L • 

LEMMA 2.3 . Let the functions f(x,ul,u2), g(x,vl,v2) satisfy locally Cara-

theodory's conditions on the set ((a,b) x KQ" X R) and the conditions: 

a) 
/(a;,0,0) = 0 for all x G (a,b). (2.3.1) 

(2) 

f(x,a • u,, a • u0) > a • f(x,u-,,u0) 

for all (x,ul,u2) G ((a, b) x R^ x R) and for all a>l. 

(3) The function f satisfies locally Lipschitz's condition 

\f(x,uvu2) - f{x,vvv2)\ < Lloc • (\Ul ~v1\ + \u2- v2\) . (2.3.3) 

(4) 
g(x,uvu2) > f(x,uvu2) (2 3 4) 

for all (x,uvu2) G ((a, b) x R+ x R) . 

Fe£ the functions u(-)iv(') G ^IC1 ((a, 6),RQ") &e solutions of the equations 

u"(x) = f(x,u(x),u'(x)) 
for almost all x G (a,b) (2.3.5) 

v (x) =g (x ,7 ; (x) ,^ (x) ) 

which satisfy 

u{x) > 0 /or aí7 а; Є (o,ö), (2.3.6) 

v(a) < u(a), v(b) < u(Ь). (2.3.7) 
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Then at least one of two assertions is true: 

[ v(x) < u(x) for all x 6 (a, b), 

(\v(a) - u(a)\ + \v'(a) - uf(a)\) > 0 , 

{ (\v(b) - u(b)\ + \v'(b) - uf(b)\) > 0 . (2-3-8) 

Simultaneously < 

3 a > 1 v(x) = a-u(x) for all x G (a, b). (2.3.9) 

P r o o f . If case (2.3.8) is false, then we shall show that case (2.3.9) must be 
true. It shall be useful for us to define the following auxiliary functions ipu and 
ipv on the interval (a, b). 

, x def _ ( _ ) 

^u W (*. + ( i - 0 - f = f ) - K + a-«k)-|=S) 
/ s d e f V(x) 

(2.3.10) 

where 

k + ( i - 0 - f ^ ) - K + (i-56)-fef) 

_ J 0 if u(a) = 0, _ J 0 if «(6) = 0, 
S a " \ l i f « ( a ) > 0 , ^ 6'6 ~ \ l if «(6) > 0 . 

Let us define the values of functions ipu, cpv also at points a, b so that these 
functions be continuous at boundary points a, b. (The existence of boundary 
limits in these cases, when at least one number from s a , sb is equal to zero, 
follows from inequalities (2.3.7).) 

From assumption u > 0 on (a, b), it follows that also tpu > 0 on (a, &). If 
the case ipu(a) = 0 were true then from the definition it would follow u(a) = 0, 
v'(a) = 0 what according to (2.3.1) and (2.3.3) implies that u is identically equal 
to zero and this would be a contradiction with (2.3.6). Therefore (fu(a) > 0 and 
similarly ipu(b) > 0 must be true. From continuity of tpu there exists a suitable 
small e > 0 such that: 

VxG (a,b) tpu(x) >e>0. (2.3.11) 

Since (2.3.8) is supposed not to be true, by (2.3.10) it easily follows 

mm(tpu(x)-tpv(x))<Q. (2.3.12) 
ccG\a,6) 

For a > 1 let us define the function 

<t/j(a)d= min. (a-<pu(x) - tpv(x)) . (2.3.13) 
x£{a,b) 

According to (2.3.11) function ij) is increasing, continuous and for a suitable 
great a also positive. From (2.3.12) it follows that -0(1) < 0 and therefore there 
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exists a unique number a0 > 1 (which we shall denote in the sequel only by a) 
such that: 

il>(a) = 0. (2.3.14) 

Let us consider two possible cases: 

3x0 <E (a,b) a • cpu(x0) - ipv(x0) = 0. 

Vx e (a,b) a • tpu(x) -<pv(x)>0. (2.3.15) 

Now we shall show that on the interval (a, b) there exists a point xx with the 
following property: 

a-u(xx) — v(xx) = 0 and a • u^x-^) - v'(xx) = 0. (2.3.16) 

If the former case is true, then by (2.3.10), (2.3.13) and (2.3.14), statement 
(2.3.16) follows. So let us assume that the latter case is true. Then according 
to (2.3.14) without loss of generality we can assume that a • ipu(a) — ipv(

a) — 0 
(because in the other case the same would be true at the point 6). If we now 
consider (2.3.10), then we obtain: 

(1) If sa = 0 is true, then u(a) = v(a) = a • u'(a) — v'(a) = 0. 
(2) If sa = 1 is true, then a • u(a) = v(a) > 0. 

In the first case we obtain the validity of (2.3.16) for xx = a. Only the second 
case is remaining: 

l < a (2.3.7) 

0 < u(a) < a-u(a)=v(a) < u(a). 
This implies a = 1, and therefore (2.3.15) is transformed to the statement for 
all x £ (a, b), u(x) > v(x) is true. Because we assume that (2.3.8) is not valid, 
at least at one of the points a or b (without lose of generality let it be a) it 
must hold: u(a) — v(a) = u'(a) — v'(a) = 0, what immediately implies (2.3.16), 
because a = 1. 

Now by (2.3.16) and (2.3.14), if we define 

w(x) = a • u(x) — v(x), (2.3.17) 

we obtain that 

w(xx) = w'(xx) = 0 , w(x) > 0 on (a, 6). (2.3.18) 

Let us verify the remaining assumption of Lemma 2.2. Almost everywhere it 
holds: 

/ / / \ (2.3.17) / ; / x a( . 

w (x) = a • u (x) — v (x) 

= a- f(x,u(x),u'(x)) - g(x,v(x),v'(x)) 
(2.3.2),(2.3.4) 

< f(x, a • u(x), a • u'(x)) - f(x, v(x), v'(x)) 

< LK(\au(x)~v(x)\ + \au'(x) -v'{x)\) 

(2 = 7) LK(\w(x)\ + \w'(x)\) 
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In the last inequality we have used that by (2.3.3) there exists a Lipschitz 
constant on the compact set K = (a, b) x (0,M) x (—M,M) where M = 
max { |a-^(x) | , \a-u'(x)\, \v(x)\,\vf(x)\\. By this, together with (2.3.18), we 

x£(a,b) 

have verified all assumptions of Lemma 2.2, from which it follows that w(-) = 0 
on (a, b) what implies validity of (2.3.9). • 

LEMMA 2.4. Let the functions f(x,u), g(x,v) satisfy locally Caratheodorxfs 
conditions on the set ((0,a) x RQ") and all assumptions (2.3.1). (2.3.2), (2.3.3) 
and (2.3.4) from Lemma 2.3 ; where f, g do not depend on arguments u2, v2. 
Let now v(-) G ACl(0,a) be a solution of the equation 

v"(x) — g(x.v(x)) , 

v(x)>0 for all x <E(0,a), v(0) = 0, T / ( 0 ) > 0 , v(a) = 0 . 

Then the solution u(-) of the equation 

u"(x) = f(x, u(x)) , u(0) = 0 , u'(0) = v'(0) (2.4.2) 

has a further zero in the interval (0, a ) . 

P r o o f . By contradiction. If the assertion were false, then u should be in 
the interval (0,a) positive, what together with (2.4.1) and (2.4.2) implies that 
assumptions of Lemma 2.3 are fulfilled. When we use it, we obtain that at least 
one assertion of (2.3.8), (2.3.9) must be true. The first assertion cannot be true, 
because by (2.4.1), (2.4.2) it follows that 

(|^(0) - -u(0)| + |^'(0) - ^7(0)|) = 0 . 

Also the second one cannot be true, because it is in contradiction with our 
assumption: 

u(a) > 0 ( 2 = 1 } v(a). 

Hence, proof is done. D 

3. Preliminaries 

Throughout the paper we shall use the following notations 

(1) En
 d= (0, oo) x (0, oo) x • • • x (0, oo). 

V v̂  ' 
n times 

(2) En is defined as the compactification of topological space En by adding 
point oo and defining its base of neighbourhoods 
Ok = {xeEn; \\x\\ > k } u { o o } . 
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def r -
(3) En,o = {s^En> ^ = 0 for some i € { 1 , 2 , . . . , n } } . 

(4) Eni+=tEn\En,0. 

(5) E:t0^Eni0U{^}. 

(6) Ent+ = ' _ • „ , + u { o o } . 
In the paper we will study the problem 

u"(x) = F(x,Ü(x)) 
def 

' u'{(x) = ' Ft (.c,uj(я:),u2(a;), •.. ,« n(ж)) , 

«2'(ж) =' E2 (ж, u^a;), « 2 ( x ) , . . . , u„(ж)) , 

l K(x) a = F„(a;,u 1 (ж),u 2 (a;), . . .,u„(a;)) 

(3.0.1) 

for i = 1,2,... , n . 

with the boundary conditions 

« < ( 0 ) = « i ( T i ) = 0 

Va;€(0 ,T i ) u,(x) > 0 

In the sequel we shall assume some of assumptions: 

Vfce { l , 2 , . . . , n } VxElR+ V t i ^ R 

Fk(x,uv . . . ,uk_x, 0,uk+v . ..,un) = 0. 

V/cE { l , 2 , . . . , n } V x 6 i + V i / . G R 

p (T v v \ _ p (T m + |m[ ^ + M _____±±?___1 ̂  
rk\Xi a l ' * " • ' Un) ~~ rk\Xi 2 ' 2 ' • • • ' 2 ) 

VkE { l , 2 , . . . , n - 2 } V x G E + V ^ E » , I ^ + 1 • t/ib+2 . . . n n = 0 

Fk(x, ux, v2,..., un) = F ^ x , II! , . . . , ufc, 0 , 0 , . . . , 0) . 

(3.0.2) 

(3.0.3) 

Vfce {1 ,2 , . . . ,n - i} VxelRj v ^ E 
дF, 

n — k times 

дFu 

(3.0.4) 

дu 
f (x, u , , . . . , «fc_!, 0, « f c + 1 , . . . , « J = -r-+(x,«!,-.., u f c - 1 , 0 , 0 , . . . , 0 ) . 

ð«í 
n — k times 

(3.0.5) 

(3.0.6) The functions Fk(x1ul,u2,... ,„,„) and ^—^(x,n1 , i t2 , . . . ,Hn) are con

tinuous in (n l 5 n 2 , . .. , n n ) on the set i_n for any fixed x E MQ , foi 

all k,i E {1,2, . . . , n } and Fk(x,ux , i j 2 , . . . , n n) are measurable in .r E 

(0, ex)) for each fixed (t / l 5 . . . ,un) E F^ and for all k E {1, 2,. .. , n } . 

(3.0.7) ^-^•(o:,/w1,i/2,. .. ,Hn) is locally bounded on the set RQ x En for all 

fc,iE{l,2,...,n}. 
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(3.0.8) For all T > 0 there exist continuous functions c x (A) , . . . , cn(A); 
c-{-): (0, oo) —» (0, oo) such that lim c{(A) — oo for all i £ {1, 2 , . . . , n} 

A-^oo 

and 
V k E { l , 2 , . . . , n } VxG (0,T) V A > 0 
\fue{u] uk— ck(X) and 0 < u• < c^(A) for all i £ { 1 , . . . ,n} , i ^ k] 

Fk(x,u19u2,...,un) > 0 . 

VJfc £ { l , 2 , . . . , n - l } V x G l + Vtx- G M+ V_fc > 0 

dF 1 
- ^ ( x , ^ , . . . , ^ , 0 1 ^ 1 0 ) > — -^(x , _ ! , . . . , _fc, O ^ ^ O ) . 

n—A; t imes n—k t imes 

V x G 8 | V ^ , ^ . . . , ^ £ < V u n > 0 

S F 1 
J ( x , _x, _ 2 , . . . ,_„_-_, 0) < — F n (x , n l 5 . . . ,un_vun). (3.0A0) 

V&, 2 < f c < n - l Vi, 1 < i < fc — 1 ^ux,u2,... ,uk £ M^ Va: G ffij 

^ ( x , U l , U 2 , . . . , M f e , 0 1 0 _ I 0 ) < 0 . ( 3 o n ) 

n—k t imes 

(3.0.12) ^f(xyuly...,ui_1,u,ui+l,...l>un_l,0) is nonincreasing in u in the in

terval (0, oo) for all i, 1 < i < n — 1, for all u1,..., u%_x, n i + 1 , . . . , un_1 

£ W£ , and for all .r G MQ" . 

Vfc, l < / c < n - l VxGlRj ^u1,u2,...,un£E^ 

Fk(x, _ ! , . . . , _fc, _ f c + 1 , . . . , un) > Fk(x, uv . . . , uk, 0, 0 , . . . , 0) . (3.0.13) 

n—k t imes 

We will study the question when problem (3.0.1) has at least one positive so
lution. We shall apply the shooting method and therefore the following definition 
of the mapping T(a) will be of use. 

def 

DEFINITION 3 .1 . Let a = ( a l 5 . . . , an) £ En + . Let u be the solution of the 
following problem 

u,,{x)='F(x,u{x))1 
V ^ V V ; ; (3.1.1) 

H(0) = 0, H'(0) = a\ 
If for each component u •, i = 1,2, . . . ,?/ , of solution u there exists a point T 
such that 

0 < T < oo , ut(Tt) = 0 , „.(_) > 0 for all x , 0 < x < T? , 
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then we define T(3) = (Tx, T 2 , . . . , Tn). 
In the case that at least one component u^(-) is positive on the whole interval 

(0 ,T m a x (a ) ) , where (0,Tm a x (a)) is the maximal interval where u is defined, 

then we put T(a) = oo G En. 

In the following definition the domain of T will be extended from E+ to En . 

For this purpose we use the functions uAx) = -^---- = ^77^-. 

D E F I N I T I O N 3 .2 . Put 

Gi(x,u1,...,un,a1,...,an)
d= ^•Fi(x,u1-a1,...,iin-an) for all at > 0 

(3.2.1) 
and 

G.(x,uv...,un,a1,...,an) 

def dFi , „ . v £• + |T / . | 
= g ^ + ( X ' ^ l " a l ' • • " ' W<-1 " ^ - 1 ' 0 ' ^ + - " <**+-' •-->Un'an)- 2 

for all a^ = 0 . 

Let now a e En. 

(1) If a = oo, then we define T(a ) = oo. 
(2) If a 7-= oo, then we shall consider the solution u of the following problem 

u"(x) = G(x, u(x), a) , 

£(0) = 0, 5'(0) = ( 1 , 1 , . . . , 1 ) . (3-2-2) 
V v ' 

n times 

Let (0 ,Tm a x (a)) be the maximal interval where the solution u can be 
defined. 

(a) If there exists i G { l , . . . , n } such that u^x) > 0 for all x G 
(0 ,T m a x (a ) ) , then we define 

rjn, -»\ def 

T(a) = oo. 

(b) Otherwise let T. be the zero point of u• for i G {1, 2 , . . . , n} such 
that 

f/,(T) = o, T , e ( o , f m » ) , 
and 

H?(x)>0 for all TG(0,T?). 

Then we define 

f (a) = f(T1 ,T2 ) . . . ,Tn) . 
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In the following lemmas we shall show the correctness of the previous defini
tions as well as the relation between u, T m a x (a) and u, Tm a x(c?). 

LEMMA 3.3. Let F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Then G(x,ti,a) 
defined in Definition 3.2 satisfies Caratheodory 's conditions. 

P r o o f . From the second part of assumption (3.0.6) it follows that G% is 

for fixed i?, a measurable in x in the interval (0, oo). 

Let us show its continuity in #, a. From assumption (3.0.3) we have that 

d(x,^^,...,^^,a1,...,an)=d(x,uv...,un,a1,...,an). 

Therefore it is sufficient for us to prove the continuity only for (#, a) E 
(En x En). From (3.0.2), (3.0.6) it follows 

l 

f OF 
Gr(x,U,a) =Ut- I ~^+{X>al -Ul>--->P'ai'Ui>--->an'iln) dP • ( 3 ' 3 - 1 ) 

0 

Continuity of the right-hand expression follows from continuity of 

J •zjr{x,v1,...,vi_1,p-vi,vi+1,...,vn) dp 
дuг 

o г 

in v E En for a fixed x and this easily follows from assumption (3.0.6) (from 
continuity of ^p+ )• The last condition what we need to prove is the existence of 

integrable local majorant of function G i ? and this follows from (3.3.1) and from 

assumption (3.0.7). Hence, function G(x, uy a) fulfils locally Caratheodory 's con

ditions. • 

LEMMA 3.4. Let F fulfils (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Then the problem 
(3.2.2) has the property of global uniqueness. 

P r o o f . Let us choose a G En arbitrary, but fixed. Let u(-) and u(-) be 
two solutions of problem (3.2.2), defined in the intervals (0, T m a x ) and ( 0 , T m a x ) 
respectively; we shall show that they are identical on the intersection (0,T ) of 
these two intervals. 

Let 

M°={{i- iG{l,2,...,n}, a- = 0 } , 

M+d={i; i G { l , 2 , . . . , n } , a- > 0} . 

Now we define new functions in the interval (0, T ) for i E {1, 2 , . . . . n} by 

vr(x) d= a- • uz(x); v.(x) d= a- • u^x). 
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Assuming Definition 3.2 we obtain that these functions fulfil: 

< ( * ) a=e- F% (x,Vl(x),v2(x),.. .,vn{x)) for ^ . e M + ; 

^ ( 0 ) = 0 , v\=a{ ^AX) 

v{(x) = 0 for all % G M° . 
(3.4.2) 

By (3.4.2) we see that in problem (3.4.1) only functions v{(-) for i G M + are 
entering. From assumption (3.0.7) we get that Fi fulfil locally Lipschitz's condi
tion and this implies the property of local and global uniqueness. Therefore for 
all i G M + we have 

Vi(x) = v.(x) for all x G (0,Tp) =--=> u{(x) = ti.(x) for all x G (0 ,T p ) . 

Now it remains to verify that ut(x) = u%(x) for all x G (0,T ) and for i G M°. 
When we use Definition 3.2, we can write for all i G M° 

u^)=P^)-UiiX)+
9
lUiiX)l, «4(0) = 0, tij(0) = l , 

(3.4.3) 
u;'{x)^Pl{X).^X)+^X)\, « i ( 0 ) = 0 , tiV(0) = l , 

where 

Pifr) =f ^ + ( X ^ l ( X ) ' • ' • ^n ( X ) ) = ^ t ( ^ t f l ( ^ ) » - - - » V n ( X ) ) 

From assumption (3.0.7) it follows that p%(x) is locally bounded, therefore right-
hand sides of (3.4.3) fulfil locally Caratheodory's, and also locally Lipschitz's 
conditions, and from uniqueness of solutions of (3.4.3) it follows: u%(x) = u%(x) 
for all x G (0,T}). Hence, we have proved u(x) = u(x) for all x G (0, T ). • 

N o t e . From Lemmas 3.3, 3.4 correctness and uniqueness of Definition 3.2 fol
lows. 

The following lemma is useful for us to estimate some solutions of prob
lem (3.1.1). 

LEMMA 3.5. Let F fulfil conditions (3.0.2), (3.0.3), (3.0.6), (3.0.7) and (3.0.8). 
Let T > 0 be a fixed number. Let c x (A), . . . , cn(A) be some functions satisfying 
(3.0.8). Then the following assertion is true: 

Let a G En be fixed. Let u(-) be the maximal solution of problem (3.1.1) 
which is defined on the interval ( 0 , T m a x ( a ) ) ; that is 

u"(x) = F(x,u(x)), 
_ V ; (3.5.1) 

tf(0) = 0, uf(0) = a. 
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If 
T<Tmsx{3) (3.5.2) 

and 

« i ( T ) < 0 for all t € { l , 2 , . . . , n } , (3.5.3) 

then u^x) < c<(0) for all i G { 1 , 2 , . . . ,n}, for all x G ( 0 , T m a x ( a ) ) . 

P r o o f . By contradiction. Let all assumptions be fulfilled and let the asser
tion be not true. So, for suitable a G En solution u(-) of problem (3.5.1) would 
fulfil 

3 t 1 6 { l , 2 , . . . , n } 3 x ^ ( 0 , ^ ^ ( 3 ) ) «. , (*.) > c^O) > 0 . (3.5.4) 

Assuming (3.5.3) we obtain that if some ut fulfils ut(T) < 0, then there is a 
point x0 < T such that ut(x0) = 0, u[(x0) < 0 and this by assumptions (3.0.2), 
(3.0.3) and also by (3.0.7) (which mean locally Lipschitz conditions for P\), 
implies that TJ-(X) = u[(x0) • (x -x0) for all x G ( ^ ^ m a x l ^ ) ) a n d therefore ui 

is not positive here. By (3.5.4) this gives 

3 i 1 G { l , 2 , . . . , n } 3Xle(0,T) uh(xx) > c-^0) > 0 . (3.5.5) 

Let us define auxiliary function ipx 

V > A
d = m a x { ^ f } ; l < i < n , 0 < x < T } . (3.5.6) 

Evidently this is a continuous function and if we also assume lim c^(A) = oo 
A-»oo 

(by (3.0.8)), then we get lim ipx = 0. From (3.5.5) we obtain ip0 > 1, so the 
A-*oo 

following definition is correct 
A 0

d =max{A: i/;x > 1} . (3.5.7) 

From this definition of A0 we immediately have: 

VA > A0 Vx G (0,T) Vi G {1 ,2 , . . . , n} ut(x) < c-(A), (3.5.8) 

V A > A 0 V x G ( 0 , T ) V i G { l , 2 , . . . , n } u{(x) < cz(X). (3.5.9) 

When we assume ipx = 1 and also definition (3.5.6), we have 3x2 G (0,T) such 
that 3i2 G {1,2, . . . , n } for which u^(x2) = c.2(A0). Let x0 G (0,T) be the 
smallest x2 with the introduced property, so according to definition we have 

V i G { l , 2 , . . . , n } V x G ( 0 , x 0 ) u{(x) < c-(A0) 

and (3-5.10) 

3i0 G {1,2, . ..,n} uio(x0) = cio(X0). 
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Let us consider i0 from (3.5.10). According to uio(x0) = cio(X0) and (3.5.9) we 
have uf

io(x0) = 0. Let us define function v(-) in some neighbourhood of x0 as 
the solution of the following problem: 

v"(x) *=p(x,v(x)) , 

v(xo) = ui0(
xo) = %(Xo) > v'(xo) = u'i0(

xo) = ° > 
where (3.5.11) 

p(x,v)d=Fio(x,u1(x),...,uio_1(x),max{v,c^^ 

Because function p(x,v) fulfils locally Caratheodory conditions, there exists a 
solution of this problem defined in an interval (x0 — S, x0 + 5), where 5 > 0 is 
so small that the following conditions also hold: 

Vx G (x0 - S,x0) v(x) < cio(X0 + 1) 

/ /x i N (3-5-8) . ( 3 . 5 . 1 0 ) / A X (3.5.11) , x x (3.5.12) 
(c i o (A 0 + l ) > uio(x0)' = >cio(X0)' = }v(x0)). 

Hence, if we put for arbitrary x G (x0 — S,x0), vx = max{t;(x), c{ (A0)}, then 
vx E (c{ (X0),c{ (X0 + 1)) and so there exists some A G (A0,A0 + 1) such that 
vx = c-o(A). Then from (3.0.8), (3.5.11) and (3.5.9) we get for all x G (x0-S,x0), 
p(x,v(x)) > 0. When we use this, we obtain by integration 

Xo 

v'(x) {3=n)
v'(x0) - (v{ztv{z)) dz < v'(x0)

 ( 3 t u ) 0. 

X 

Hence, function v(-) is on the interval (xQ — S,x0) nonincreasing, and therefore 

Vxe(x0-5,x0) v(x)>v(x0) '= cio(X0). (3.5.13) 

Thus, using definition (3.5.11) of function p(x,v) we obtain that function v is 
in the interval (x0 — S,x0) a solution of the following problem: 

v"(x) =^ 0 ( ^^ i (^ )> - - ->^ 0 - i ( ^ )> 7 X^O>^ 0 +i (^ )> - - -^n ( x ) )> 
v(xo) = uio(xo)» v'(xo) = O o ) • 

Because Fi fulfils locally Lipschitz conditions, from uniqueness of this problem 
we get, when we realize that ui is also solution of this problem, that: 

Vx G (x0 - 6, x0) uio(x) = v(x) , 

what together with (3.5.13) and (3.5.10) gives us the contradiction. • 

The following lemma deals with the relation between solutions v and u of 
problems (3.1.1) and (3.2.2), respectively. 
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L E M M A 3.6. Let the function F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Let 
a e En. Let u(-) and u(-) be the maximal solutions of problems (3.LI) and 
(3.2.2) respectively, which are defined on the intervals (0,T) and (0 ,T) . respec
tively. 

Then T = T and u{(-) = at • u^-) for all i G { 1 , . . . , n } . 

P r o o f . Validity of ut(x) = ai • ut(x) for x G (0,T) n (0,T) is evident, 
when we realize that functions ai-ui(-) are components of the solution of prob
lem (3.LI) and when we assume also its uniqueness (which follows from (3.0.7)). 
Hence, it only remains to show that T = T. From the above procedure it follows 
that T <T. Let us show also inverse inequality. 

Let 

M + = f { i G { l , 2 , . . . , n } ; a, > 0} , 

M ° = f { i G { l , 2 , . . . , n } ; a, = 0} . 

Let u(-) be the solution of (3.1.1) defined in the interval (0 ,T) . By means 
of it we shall construct a solution v(-) of problem (3.2.2), which will be also 
defined at least in the interval (0,T) and then the proof will be done if we use 
the uniqueness of this solution (Lemma 3.4), from what we have u(-) = v(-) 
on (0,T) . Let us put: 

V(X) 4|f ^M, x G ( 0 , T ) , ieM+. (3.6.1) 
ai 

Because ai = 0 for i G M ° , if we later define the other vt(-) arbitrarily, then 
this will be always true: 

v.(0) = 0 , ^ (0 ) = 1 for all i G M+ 

and 

v"(x) *=- - ? i ( ^ » i ^ i W , - , a w - t > » ) x € 

ai 

Let us choose i0 e M° arbitrary. We define v-(-) as the solution of the following 
problem: 

// / x a.e. 9F, , Vio(x) + \vio(x)\ 

v10(x) = -^Jr(x,a1.vx(x),...,an.vn(x)).^ , 

^o(°)=0> <(0) = 1-
We see that the other i^(-) for i G M ° , i ^ i 0 , do not appear directly in this 
equation and these are defined by formula (3.6.1). Function p(x,vi ) (in the 
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right-hand side of (3.6.3)) fulfils in vi locally Lipschitz condition in the interval 
of its definition (0, T ) , so we have guaranteed existence of the maximal solution 
and also its uniqueness. Moreover from the following estimate 

d F i , ^ 

-f(x,ax -vl(x),...1an-vn(x)) \pfav

io)\ < 
д< 

гo 

1 гo ' 

and from assumption (3.0.7) we would get the estimation of vio(-) on every 
compact interval, and this enables to prolong its definition interval up to (0, T ) . 
Hence, v(-) is defined in the whole interval (0,T) and from (3.6.2), (3.6.3) and 
Definition 3.2 it follows that v is solution of problem (3.2.2). So the proof is 
complete. • 

4. Continuity of the mapping T 

In this section we shall prove the continuity of mapping T . 

THEOREM 4.1 . Let F fulfil (3.O.2.), (3.0.3), (3.0.6), (3.0.7) and (3.0.8). Then 

the mapping T : En -» En defined in Definition 3.2 is continuous. 

P r o o f . We shall prove the continuity at every point a £ En\ the proof of 
this will be divided into several parts and the proof of each of them will be done 
separately in the following lemmas. 

(1) a e En and simultaneously T = T(a) G En _,_. 
The proof is done in Lemma 4.3. 

(2) a E En and simultaneously T(a) = oo, Tm a x(a) = oo. 
The proof is done in Lemma 4.4. 

(3) a e En and simultaneously T(a) = oo, Tmax(<3) < oo. 
The proof is done in Lemma 4.5. 

(4) a = oo what implies T(a) = oo. 
The proof is done in Lemma 4.6. 

• 
LEMMA 4.2. Let F fulfil assumptions of Theorem 4.1. Then the mapping T •) 
from Definition 3.2 is correctly defined and problem (3.2.2) has the property of 
continuous dependence of its solution u on parameter ~*. 

P r o o f . Correctness of the definition follows fiom Lemmas 3.3, 3.4 and by 
the well-known theorems on ordinary differential equations they also imply the 
continuous dependence of solution on parameter a (for example [5; Lemma 6.1] 
can be used). • 
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LEMMA 4.3 . Let F fulfil assumptions of Theorem 4.1. Let a G En be chosen 
so that: 

a G En and simultaneously T = T(a) G En + . 

Then the mapping T(-) from Definition 3.2 is continuous at the point a. 

P r o o f . Let u(-) be the solution of problem (3.2.2), where we put a = a. 
We shall prove the following statements: 

V i G { l , 2 , . . . , n } ui(Ti) = 0> (4>3-1) 
^ ) < o . 

The first part is evident. The second part will be proved by contradiction: If the 

second part were not true, according to definition of T we would get that 

3 k G { l , 2 , . . . , n } u'k(fk) = 0. 

Hence, the component uk(-) would be a solution of the following problem: 

u'l(x)^p(x,uk(x)), xe(0,fk), 

**(**) = o, <(f,) = o, 
where (4.3.2) 

p(x, u) = Gk (x, ux(x),...,iii_l(x), u, ui+1(x),...,un(x), ax,..., d n ) . 

From Definition 3.2 it easily follows that p(x, u) fulfils locally Lipschitz condition 
in u and so from uniqueness of solution it would follow that uk = 0 in the inter
val (0,2^.), what would give us the contradiction, because according to (3.2.2), 
u'k(0) = 1 holds. Hence, (4.3.1) is proved. Now we shall prove the continuity 
which we need. Let e > 0 be chosen arbitrarily small. From assumptions of this 
lemma it follows 

0 <-*i <-"max(^) for all t e { l , . . . , n } , 

therefore when we use (4.3.1), we get that for suitable small ex > 0 the following 
assumptions hold: 

0 < £ l < e , 0 < f . - e i < f . + £ l < T m a x ( 5 ) for all i e { l , . . . , n } 
(4.3.3) 

ul(fi-e1)>0>ui(fi+e1) for all i G {1 ,2 , . . . ,n} . (4.3.4) 

If we use continuity of solutions of problem (3.2.2) on parameter a (proved in 
Lemma 4.2), then we can choose a small 5 such that the following property 
holds: For all a G En with ||a — a|| < 6 we have: If u(-) is a solution of 
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problem (3.2.2) for the chosen a , then u(-) will be denned at least in the interval 

(0, max ( T + ^ ) ) and will fulfil the following inequality: 
\ \<i<n I 

ur(Ti-s1)>0>ui(fi + £1) for all i G {1 ,2 , . . . , n} . (4.3.5) 

If we use the property (which follows from (3.0.2), (3.0.3) and (3.2.2)) that 
every solution ui can have at most one zero point in the interval (0 ,T m a x (a) ) 
(because when it reaches the first zero point then it is only linearly decreasing), 
then using (4.3.5) we obtain 

fi-ex<Ti<fi + el for all i G {1, 2 , . . . ,n] , 

where Ti > 0 are the zero points of solutions u{(-), precisely (T1? T 2 , . . . , T J = 
- - * (4.3.3) 

T = T(a) and that is why | |T(a) - T(a) | | < y/n • el < y/E • e holds for all 

a, 6 - near to a . D 
LEMMA 4.4. Let F fulfil all assumptions of Theorem 4.1. Let a G F?* 6e 
chosen in such a way, that 

a e En and simultaneously T(d) = oo , Tm&x(a) = oo . 

Then the mapping T(-) /rom Definition 3.2 zs continuous at the point a . 

P r o o f . Let £?(•) be a solution of problem (3.2.2) (where we put a = a ) 
defined in the interval (0,oo). From our assumption by Definition 3.2 we have 
that there exists k G {1,2, . . . , n } such that uk(x) > 0 for all x G (0, oo). Let 
us choose sufficiently small neighbourhood of point oo in space En; for example 
basic neighbourhood {T; ||T|| > R] U{oo}. Because ^ ( 0 ) = 1 and vk(x) > 0 
for all x G (0, R + 1), we can choose suitable d G (0, R + 1), e > 0 such that: 

u'k(x) > 1/2 for all x G (0, d); uk(x) > e for all x G (d, i t + 1) . (4.4.1) 

Then from continuous dependence of solution (3.2.2) on parameter a (which 
follows from Lemma 4.2) we obtain the existence of such a suitably small <5" 
neighbourhood of point a , that it holds: 

For all a G En such that | |a — a|| < 8 it holds: The solution v(-) of prob
lem (3.2.2) with this new a will be defined at least in the interval (0,i? + 1) 
and simultaneously: 

ll^(-) - s(-)llcMo,R+1> < m i n { i f } 
holds. From this together with (4.4.1) it follows 

u'k(x) > \ for all x G (0,d) and vk(x) > - | for all x G (d, 7? + 1) 

from what it is evident that function vk(-) has no zero point in the interval 
(0,i? + 1). So, either the case T(a) = oo will be true, or in the opposite case 
we shall have | |T(a)| | > R + 1 > i?. Hence, continuity of T at the point a is 
proved. • 
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LEMMA 4.5. Let F fulfil assumptions of Theorem 4.1. Let a G En be chosen 
such that 

a G E,n and simultaneously T(a) = oo , Tm&x(a) < oo . 

Then the mapping T(-) from Definition 3.2 is continuous at the point a. 

P r o o f . Let u(-) be the maximal solution of problem (3.2.2) for the above 

a defined in the interval (0,T) where T = T m a x ( a ) . By Lemma 3.6 we obtain 

that v(-) which is defined as 

def 
v{(x) = a- • u^x), x G (0, T ) , i G { 1 , . . . , n } 

is a maximal solution of problem (3.1.1). Let us choose R > 0, which will 
determine arbitrarily small basic neighbourhood of the point oo G En of the 
form 

00O = {f; | | f | | > J l } u { o o } . (4.5.1) 

Let Cj(•),. . . ,cn(-) be function whose existence is guaranteed by assumption 
(3.0.8) for T = R. Let us define: 

Min = finf{«.(a;); x G ( 0 , f ) , % G {1 ,2 , . . . ,n}} . (4.5.2) 

From assumptions (3.0.2) and (3.0.3) it follows that if some v^-) (solution of 
problem (3.1.1)) reaches negative value, then it is further only linearly decreasing 
and that is why we have 0 > Min > - c o . Hence, the following set will be 
compact: 

Kd= {(x,u) GM+ x R n ; 0 < x < f , Min < u. < c-(0) for i G { l , . . . , n } } . 

We know that v(-) is a maximal solution of problem (3.1.1) (which fulfils the 
condition of local existence and uniqueness of its solution), and it is defined 
according to our assumption in a bounded interval (0, T). By the known theorem 
on behaviour of solutions of ordinary differential equation at both ends of maxi
mal existence interval ([5; Theorem 5.4], [6; Theorem 2.1]) we obtain that the 
whole graph of this solution must not be contained in compact K. According 
to its definition using definition (4.5.2) of constant Min we get: 

3 f c e { l , 2 , . . . , n } 3 x 0 G ( 0 , T ) vk(x0) > cfc(0). 

When we use continuous dependence of solution v of problem (3.1.1) on pa
rameter a (which can be obtained formally from the already proved continu
ous dependence of solutions of a problem (3.2.2) (see Lemma 4.2) and from 
Lemma 3.6), we get that there exists a suitable small 5 such that 

for all a G En, \\a — a\\ < £, the above property is true, 
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this means that the solution v of problem (3.LI) for such a is defined at least 
in the interval (0,x0) and the following inequality is true 

vk(x0) > ck(0). (4.5.3) 

We assert that from this it already follows 

T(a)e0OQ (see (4.5.1)) (4.5.4) 

and this gives us the statement of our lemma. Statement (4.5.4) can be proved 
by contradiction. If it were not true, then we would consider solution tl(-) of 
problem (3.2.2) and according to Definition 3.2 every u{(-) reaches the zero value 
at the point T{, 0 < T- < R, where ( T l 5 . . . ,Tn) = f(a). Because components 
^ii(•) of that solution will be on the right to these points linearly decreasing, we 
get R < T m a x (a) = oo and ^/.(i^) < 0 for all i G {1 ,2 , . . . , n } . From Lemma 3.6 
it follows that solution v(-) of problem (3.1.1) also fulfils the same inequalities 
and it is also defined in the interval (0, oo) what implies that all assumptions of 
Lemma 3.5 are fulfilled. From this lemma it follows 

v{(x) < 0^(0) for all x G (0, oo), for all i G { 1 , . . . , n) , 

what gives us contradiction to (4.5.3). • 

LEMMA 4.6. Let F fulfil assumptions of Theorem 4.1. Let a G E*n be such 

that a = oo and thus T(d) = oo. Then mapping T(-) from Definition 3.2 is 

continuous at the point a. 

P r o o f . By contradiction. If it were not continuous, then there would exist 
a suitable sequence { o ^ } ^ C En and R > 0 such that: 

115,11 -» oo for / -> oo, but H-f^JH < R for all / G N . (4.6.1) 

Let cx ( • ) , . . . , cn(-) be functions whose existence is guaranteed by assump
tion (3.0.8) for T = R. Let us define the set K: 

Kd= {(x,tf) E l + x T ; 0 < x < l , 0 ^ < c . ( 0 ) for all i G { 1 , . . . ,n}} . 
(4.6.2) 

Evidently K is a compact set. By assumption (3.0.2) and (3.0.7), we obtain that 
Fi (x, u) are locally bounded in M| x En and therefore also in every compact 
set. So, if we define 

M = f s u p { | F . ( £ , £ ) | ; (x,u) £K for i G { l , . . . , n } } (4.6.3) 

then we get M < oo. Let us put: 

n 

«max= f^ + £ c <(°)> 0 - (4-6.4) 
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According to (4.6.1), there exists / such that ||5{|| > y/n- a m a x and therefore if 

we put a = at, then there exists k£{l,2,...,n} such that there holds: 

« * > « m a x , \\f{S)\\<R. (4.6.5) 
For this chosen a we define u(-) as the maximal solution of problem (3.2.2) 
which is denned in the interval ( 0 ,T m a x ) . From the second part of (4.6.5) we 
would obtain from (3.0.2) and (3.0.3) by standard way that: 

T m a x - - o o , u{(R) < 0 for all i e { 1 , 2 , . . . ,n} . (4.6.6) 

If we define a function v as v{(-) = a{ • u{(-) for all i G { 1 , . . . , n } , then from 
Lemma 3.6 it follows that v(-) is solution of problem (3.1.1) and by (4.6.6) we 
obtain: 

Vi(R)<0 for all i e { l , 2 , . . . , n } . (4.6.7) 

This by Lemma 3.5 implies 

VxG (0,oo) Vi G { l , 2 , . . . , n } v.(x) < c-(0), (4.6.8) 

and therefore the following estimations are true for x e (0,1): 

K'(x)-vk'(0)\ 
! < 

(t) åt 

X 

(Z=)\JFk{t,vl(t\---,vn(t))te 

(з 
X 

£-3> I [ ғ (t « I ( . ) + І " I ( . ) І i>n(t)+it»n(.)i\ _ \J k\ 2 '"'' 2 / dť 

(4.6.3),(4.6.2),(4.6.8) 

< I M åt<M. 
' ! • 

Using this we obtain for all x e (0,1): 

V(-)> VW-IVW-VWI 
(3.1 .1) ,(4.6 .5) 

> < ( 0 ) - M > 'an M 

(4.6.4) 
^ C i ( 0 ) > c f c ( 0 ) . 
i = l 

Hence, we have vk(x) > ck(0) in the interval (0,1) from what we obtain 

vk(l)
{*=] jvk'(x)áx>l.ck(0) 

and this gives us contradiction to (4.6.8). 
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5. Necessary condition for the existence of a solution 

In the previous part of this paper ([8; Chapter 5]) we have defined set Qn. 
Then we have proved ([8; Chapter 6]) that if (T 1 ? . . . ,Tn) e Qn, then problem 
(3.0.1) has at least one positive solution. 

In this part we shall prove inverse theorem which gives us that if problem 
(3.0.1) has a positive solution for some (T1,...,Tn), then (T1,...,Tn) e Qn 

must be true. At first we shall prove two auxiliary lemmas: 

LEMMA 5.1 . Let F1,...,Fn fulfil assumptions (3.0.2), (3.0.6) and (3.0.9). 
Then they also fulfil the following assumption: 

(5.1.1) For all k e { l , . . . , n - 1} , for all x G Kj for all u1,...,uk_1 e K j , 

function ^ • Fk(x, u1,..., uk__1, u, 0 , . . . , 0 ) is increasing in u in the 

interval (0, oo). n ^ T ^ s 

P r o o f . So, let it > u > 0 be arbitrary, but fixed. 
n—k times 

Fk(x,u1,...,uk_1,u, 0 , . . . , 0 ) 

n—k times 
(3.0.2)_(3.0.6) 8Fk 

du +
 ( ^ ^ P - - , V P 0 ' 0 , . . . ,0 ) 

k 
û n—k times 

+ I (^7+(x>uv->uk-nß> 6T^To) 
j yдuҷ

к 
o к 

n—к times 

Fк(x,u1,...,uк_1,ß,Õ^Q)\ àß 

0 ) 0 
n—k times 

(3.0.9) dF, , / A s x 

> ^ f ( ^ ^ , . . . , V i ' 0 > 0,...,0) 

u n—k times 

+ / (g- .f-(^,^i,---^ib-i>A o, . . . ,o) 
o k 

n—k times 

Efc(iC«,,...,«fc_1(/9, 0 , . . . , 0 ) \ à(i 

ß ) ß 
n—k times 

(з.o.9),(з.o.б) Fk(x,uг,.. .,uk_x,u, 0, . . . ,0 ) 
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what we had to prove. D 

LEMMA 5.2. Let F l 5 . . . , F n fulfil assumptions (3.0.2); (3.0.6) and (3.0.11). 
Then they also fulfil the following assumption: 

(5.2.1) For all k G { l , . . . , n - 1} for all i, 1 < i < k - 1, for all Uj G M+ , 

1 < J < k - 1 ; j ^ i, for all x G R j , 

dF 
Q^+(X>UI> • • • >Ui-i>u> _i+i>... ,n^_1 ? 0, 0 , . . . ,0 ) 

n—k times 

is a nonincreasing function in u in the interval (0, oo). 

P r o o f . Let us choose x G i | , n • E RQ~ for 1 < j < k — 1, j =̂  i , n G R J 
and a > 0 arbitrarily. Then for all nfc > 0 by (3.0.11) we obtain 

n—k times 

Fk(x, u . , . . . , ^ _ 1 ; M, u i + 1 , • • •, uk_y uk, 0, • • . , 0 ) 

uk 
n—k times 

Fk(x,u1,...,ui_1,u + a,ui+1,...,uk_1,uk, 0 , . . . , 0 ) 
uk 

When uk —¥ 0 + , we obtain: 

n—k times 

—£(a;, ^ , . . . , u{_x, u, n i + 1 , . . . , i / ^ , 0 , 0 , . . . , 0 ) 
auk 

n—k times 

> T ~ T (x> ui>• • • > ^ i - i ^ + a> ^+i> • • • >uk-i> °> 0 , . . . , 0 ) 

what we had to prove. D 

THEOREM 5.31 . Let F 1 , . . . , F n fulfil assumptions (3.0.2), (3.0.3) and 
(3.0.6)-(3.0.13). Let ft°n be defined according to [8; Definition 5.12]. If prob
lem (3.0.1) has a positive solution for some (Tx,... ,Tn) G F n + , then there 
holds (T1,...,Tn)eSl°n. 

P r o o f . Let functions nx (•) , . . . ,nn(-) be defined at least in the interval 

max T \ and let they fulfil (3.0.1). B 
l__i__n I 

assertion step-by-step for k — 0 , 1 , . .. ,n 

0, max T ) and let they fulfil (3.0.1). By induction we shall prove the following 
1 < ?' < n I 

l\\\ [8] mentioned as Theorem 7.3. 
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Assertion. There exist fc functions vx (•),... , ^ ( " ) J which fulfil the following 
three conditions: 

(1) These functions fulfil in the interval (0, max (7^)) the following system: 
\ l < i < n / 

n—1 times 

<(x) = F1(x,Vl(a:),b7^To), 
-.,(0) = v,(T.) , Vl(x) > 0 for all x G (0,T,), 

n—2 times 

v2(x) a= F2(x,vx(x),v2(x), 0,... , 0 ) , 

v2(0) = v2(T2), v2(a;)>0 for all x G (0,T2), t5-3-1) 

n—k times 

v'l(x) =• Ffe(x,u,(x),.. .,vk(x), 0 , . . . ,0 ) , 

vk(0) = vk(Tk), t>fc(x)>0 forallxG(0,T f c). 

(2) 

Vt, l < i < m i n { f c , n - l } VxG(0,T.) vt{x) > ut(x). (5.3.2) 

(3) If al,a2(-),...,ak(-) are defined according to [8; Definitions 5.6, 5.9], 
then it holds: 

T1>al, 
T2>a2(T1), 

(5.3.3) 

T fc>a fc(T1 , . . . ,T fc_1). 

This assertion is evidently true for fc = 0. Let now according to induc
tion assumption the assertion be true for fc — 1. So, we have defined functions 
vx (•),..., vk-\ (") • Let us define function w(-) as a solution of the following prob
lem: 

n—k times 

W"{X) = ^ ( ^ ( ^ • • • ^ - 1 ( * ) , 0 , 0 ) ' m W +
2

k W I , ( 5 .3 . 4 ) 

u>(0) = 0, w'(0)=u'k(0)>0. 

Now we shall prove that w(-) has the zero point in interval (0,Tfe). By con
tradiction. Let w(x) > 0 for all x G (0,Tfc). No we can use Lemma 2.3, 
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in which we put (a,b) = (0,Tk), u(-) = VJ(-) , v(-) = uk(-), f(x,u1,u2) = 
n—k times 

l^{x1v1(x)J...,vk_1(x)i09 0 ^ ^ ) - ^ ^ , g(x,vvv2) = Fk (x,ux(x),... 

• • • iuk-i(x)'Vi>uk+i(x)> •• -iun(x))- Assumptions (2.3.1), (2.3.2), (2.3.5), 
(2.3.6) and (2.3.7) easily follow from our assumptions. Lipschitz condition 
(2.3.3) easily follows from (3.0.7). Now it only remains to verify (2.3.4). So, 
let x e (0,Tk), and let u > 0. Then it holds: 

Fk(x,ux(x),.. .,uk_x(x),u,uk+x(x),.. - ,u n (x)) 

n—k times 

(3.0.13M3.0.3) F fc(z, « , > ) , . . . , ufc_.(a;),u, o T ^ O ) 
> u 

u 

if for k < n — 1 we use (5.LI) from Lemma 5.1 in which we let u —•> 0+ and for 
k = n we use (3.0.10), then we can continue in the last inequality: 

n—k times 
OF ^-^—-^ 

> - | ( x , t i 1 ( x ) , . . . , t i H ( x ) , 0 , 0 , . . . , 0 ) -u 
auk 

if besides (5.3.2) in induction assumptions we use (5.2.1) for k < n — 1 and 
(3.0.12) for k = n, then we can continue in inequality: 

n—k times 

> ^ ( x ) V x ) , . . . , v , W . o , C o ) ^ . 
Hence, for u > 0 we have: 

g(x,u) > f(x,u). (5.3.5) 

Assumption (2.3.4) is verified and we can use Lemma 2.3. Because uk(0) = 0 
= w(0), u'k(0) = w'(0) holds, possibility (2.3.8) cannot be true. So statement 
(2.3.9) must be true and using w'(0) = uf

k(0) > 0 we obtain a = 1. Then 
uk(-) = w(-) in the interval (0,Tk), what by already proved condition (5.3.5) 
and equations (2.3.5) gives us a contradiction. So, we have proved that w(-) 
(solution of (5.3.4)) has the zero point in the interval (0, Tk), what together with 
(5.3.1) in the induction assumption and with [8; Definition 5.6] for k > 2 or with 
[8; Definition 5.9] for k = 1 imply Tk> ak. Hence, the second step of induction 
for condition (5.3.3) is proved. If we now use analogously [8; Definition 5.1] of 
mapping 7?^ we obtain: 

B ^ , . . . , ak_x,ak) = (T1 5 . . • ,Tk_x,ak(Tx,... ,Tk_x)) 

where 

a. :=v[(0) > 0 , a2 := v2(0) > 0 , . . . , ak_x := v'k_x(0) > 0 , &k:=0. 
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From [8; Lemma 5.5] continuity of Rk(
m) follows, so if we let ak —» oo, then 

the right-hand side must converge to infinity and because according to the defi
nition the first components of right-hand side are always Tx,..., Tk_l, the last 
component must grow up to infinity from what we obtain, if we consider 

H{T1,...,Tk_1)<Tk, 

that for suitable ak > 0 the following statement will be true: 

Rk(av ..., ak_x,ak) = (Tx,.. .,Tk_vTk). 

From the definition it follows that we can complete k — 1 functions vx,. .., vk_x 

to k functions so that (5.3.1) will hold for new k. Hence, induction step for 
condition (5.3.1) is proved. If k < n — 1, we need to do induction step also 
in condition (5.3.2): Functions uk(-), vk(-) are solutions of the following two 
problems: 

n—k t imes 

rfk(x)*-Fk{x>vi(x)>--'>vk-i(x)>vk(xy> °»"- .° ) . 
%(0) = 0, vk(Tk) = 0, vk(x) > 0, for all x e (0, Tk) 

u'k\x) =• Fk {x, ux(x),..., uk_x (x), uk(x), uk+1(x),..., un(x)) , 

ttfc(0) = 0, uk(Tk) = 0, uk(x)>0 for all x G (0, Tk). 

Now we can use Lemma 2.3, in which we put (a, b) = (0,Tfe), u(-) = vk(-), 
n—k t imes 

v(') =uk(')i f(xiunu2) =Fk{xivi(x)>---'vk-i(x)iuii 0 , . . . , 0 ), g(x,vx,v2) = 
Fk(x,u1(x),... ,uk_l(x),vl,ukjrl(x),... ,un(x)). Let us verify assumptions of 
Lemma 2.3: (2.3.1) follows from (3.0.2). Condition (2.3.3) follows from (3.0.6) 
and from (3.0.7). Conditions (2.3.5), (2.3.6) and (2.3.7) hold evidently. Let us 
verify assumption (2.3.2): So, let u > 0, a > 1. Using Lemma 5.1 we easily 
obtain 

n—k t imes 

Fk(x,v1(x),...,vk_1(x),a.U, 0, . . . , 0 ) 

n—k t imes 

>a-Fk(x,vx(x),..., vk_x (x),u, 0 , . . . , 0 ) 

from what we have (2.3.2). Now it remains to verify (2.3.4): 

Fk(x,ux(x),... ^^(x),^^^),... ,un(x)) 
n—k t imes 

(3.0.13),(3.0.3) / „ _ _ _ - ^ _ N 

> Fk(x,ux(x),... ,uk_x(x),u, 0 , . . . , 0 ) 
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by using (5.3.2) and induction assumption and assumption (3.0.11) 

n—k times 

> Fk (X> Vl(X)>---> Vk-1 (X)> U> °> • " • > ° ) 

and (2.3.4) is verified. So Lemma 2.3 can be used and it gives us that at least 
one of the following cases must be true: 

1. Assertion (2.3.8) is true. In this case uk(x) < vk(x) holds for all x G 
(0,Tk), and the induction step in condition (5.3.2) is complete. 

2. Assertion (2.3.9) is true. In this case we obtain (using notation from 
Lemma 2.3) there exists a > 1: v(-) = a • u(-). We shall eliminate the case 
a > 1. By contradiction: Let x G (0,Tk). 

(2.3.4) 

v"(x) a=' g(x,v(x)) = g(x, a • u(x)) > f(x,a • u(x)) 

by use (2.3.6), u(x) > 0 and a > 1 in (5.3.6) we can continue 

> a • / ( # , u(x)) a=' a • u"(x) = v"(x). 

Because this holds for almost every x G (0,Tk), so we got contradiction which 
we needed. Hence a = 1 => uk(-) = vk(-), and induction step in condition 
(5.3.2) is complete. 

So, we have shown validity of all three induction assumptions also for this 
new fc. From induction principle it follows, that the proved assertion holds also 
for k = n and then from condition (5.3.3) and from [8; Definition 5.12] we obtain 
(Tx,..., Tn) G fln, what we needed to prove. • 

The following lemma can be applied in order to simplify assumption (3.0.8) 
by easier assumption (5.4.1), which can be verified separately for every compo
nent Fi. 

LEMMA 5.4. Let F1,... ,Fn fulfil (3.0.13) and also the following condition: 

VfcG{l,...,n} V T > 0 V I?>0 a c > o 

Nxe (0,T) Vw. G (0,i2), i = l , . . . , f c - l V ^ >C 
\ (5.4.1) 

Fk(x,u1,...,uk_1,uk, 0 , . . . , 0 ) > 0J . 
n—k times 

Then Fx,...,Fn fulfil also (3.0.8). 

P r o o f . Let T > 0 be chosen arbitrarily, but fixed. We shall construct some 
functions O:(A),.. . ,cn(A) which will fulfil all conditions in form (3.0.8). To do 
it, we prove the following statement for fc = 1 , . . . , n. 
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Statement: 
There exist k functions ct(-)> • • •, ck(-): (0, co) H> (0, co) such that 

Vj G {l,- .- ,fc} lim cAX) = oo 
A—KX> •' 

and 

V z G ( 0 , T ) V A > 0 Vt/. G(0,c-(A)), i = l , . . . , j - l 

Fj(x,ul,...,uj_l,cj(X), 0 , . . . , 0 ) > 0 . 

n—j times 

We shall prove this by induction. 

The case (k = l). 
Let us choose C > 0 according to assumption (5.4.1), where we put k = 1 and 
R arbitrary (for k = 1 it has no meaning). If we choose continuous function 
c^-) such that 

V A > 0 c x ( A ) > C and limc1(A) = oo, 
A—>-oo 

then the statement will be true for k = 1. 
Induction step (2 < k < n). 

We assume that the statement is true for k — 1, so we have already constructed 
functions c 1 ( - ) , . . . , ck_1(-). Let us put for every / G N 

R{ '.= max{c?:(A); l < i < k - l , / - 1 < A < /} . (5.4.2) 

We shall choose C{ for every I G N according to assumption (5.4.1), in which 
instead of R we shall put Rt. Then it will be true: 

V / G N V X G ( 0 , T ) V ^ G (0,it ,), i = l , . . . , f c - l Vuk>C{ 

Fk(x,ul,...,uk_l,uk, 0 , . . . , 0 ) > 0 . (5.4.3) 

n—k times 

If we now construct continuous function ck(-) such that 

lim C/c(A) = oo and VZ G N V A G ( / - 1 , 0 ck(X) > C{ , 

then by (5.4.2), (5.4.3) we easily verify that functions cx(-),... ,ck(-) fulfil the 
statement for k. Hence, induction step is complete and the statement holds also 
for k = n. By it and by assumption (3.0.13) we can easily verify that functions 
c 1(-) , . . . ,cn(-) fulfil all conditions from (3.0.8) for the above chosen T . Hence, 
the lemma is proved. • 
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6. Example of weak assumptions on Fi 

In this section we present a special form of functions Fi, which we can apply 
in already proved [8; Theorem 6.1] and in Theorem 5.3 in present paper. We 
summarize it in the following theorem: 

THEOREM 6 . 1 2 . Let the functions Fk have the following form for all ( a : , ^ , . . • 

•••-«„) € R f xEn: 

Fk (x, « ! , . . . , « „ ) 

I" uk- [fk{x,uv...,uk 

~ \un-fn(x,uv...,un) fork = n, 

where functions fk G O1 (RQ" x (R+)fc,R) fulfil the following conditions: 

V f c 6 { l , . . . , n } V(x , tx 1 , . . . , « f c )GR+ xEk, uk>0 

-^r{x,uv...,uk)>0, 

V f c G { 2 , . . . , n } V t e { l , . . . , f c - 1 } V ( x , t t 1 , . . . , « f c ) € R f x Ek 

-^{X, « ! , . . . , Uk) < 0, 

def I uk ' [fk(x>uv- • >uk) + VÁxiun • - • >u
n)] for k<n-l, 

дfk 

dul 

V f c € { l , . . . , n } V x G R + V«4 G R+, i = 1 , . . . ,fc - 1 

Jin^/fctx,«!,...,«*_!,«) >0, 

and where functions gk G C 1 (R+ x (M+)n,R) fulfil: 

V f c G { l , . . . , n - l } V ( x , « ! , . . . , « „ ) G l + x £ n 

flffc(a:,«1,...,tin)>0, 

V f c G { l , . . . , n - l } V ( x , « ! , . . . , « „ ) GR+ x £ n , «.. • u fc+1 • . . . • « n = 0 

gfc(x, « . , . . . , « „ ) = 0. 

We shall define functions Fk for all k £ {1,..., n} and for all {x, u1,..., un) 
G R+ x Rn in the following way: 

Then problem (3.0.1) has a positive solution if and only if (T 1 ? . . . ,T n) G ftn. 
lu/aere f/ie se£ ftn is defined so as in [8; Definition 5.12] and practical "algo
rithm" for verifying whether ( T l 5 . . . ,Tn) belong to this set is shown at the end 
of Section 5 in the first part of this paper [8]. 

2 In [8] mentioned as Theorem 8.L 
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P r o o f . Let us verify assumptions of [8; Theorem 6.1] and Theorem 5.3. 

Conditions (3.0.2), (3.0.3)-(3.0.7), (3.0.9)-(3.0.13) can be easily proved with 

using assumptions which are stated on fk, gk. From the first and the third as

sumption on fk we can easily verify condition (5.4.1) when we use compactness 

of the set (0,T) x (0,i?,) f c _ 1 in it. Hence, according to Lemma 5.4 also condi

tion (3.0.8) is true. All assumptions of [8; Theorem 6.1] and Theorem 5.3 are 

verified. D 
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