Mathematic Slovaca

Joanna Raczek; Magdalena Lemańska; Joanna Cyman
 Lower bound on the distance k-domination number of a tree

Mathematica Slovaca, Vol. 56 (2006), No. 2, 235--243

Persistent URL: http://dml.cz/dmlcz/130763

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

LOWER BOUND ON THE DISTANCE k-DOMINATION NUMBER OF A TREE

Joanna Raczek - Magdalena Lemańska - Joanna Cyman
(Communicated by Martin Škoviera)

Abstract

A subset D of vertices of a graph $G=(V, E)$ is said to be a distance k-dominating set of G if every vertex of $V-D$ is at distance at most k from some vertex of D. The minimum size of a distance k-dominating set of G is called the distance k-domination number of G. We prove that for each tree T of order n with n_{1} end-vertices, the distance k-domination number is bounded below by $\left(n+2 k-k \cdot n_{1}\right) /(2 k+1)$ and we characterize the corresponding extremal trees.

1. Introduction

Let G be a finite simple graph and let $k \geq 1$ be an integer. A set D of vertices of G is said to be distance k-dominating if any vertex not in D is within distance k from some vertex of D. The distance k-domination number $\gamma_{k}(G)$ of G is the smallest number of vertices of a k-dominating set in G. Note that the distance 1 -domination number is the domination number $\gamma(G)$.

This kind of domination was defined by Henning, Oellermann and Swart [1]. As an illustration, let G be a graph associated with the road grid of a city, the vertices of G corresponding to the street intersections. Two vertices of G are adjacent if and only if the corresponding street intersections are adjacent (i.e. block apart). Then $\gamma(G)$ is the smallest number of policemen who may be placed at intersections so that every intersection is at most one block away from a policeman. If the prescribed distance of each intersection (or intersection and policeman) from a policeman is changed from at most one block to at most $k-1$ blocks, $k \geq 2$, then the minimum number of policemen required is $\gamma_{k}(G)$.

In this paper we consider the distance domination number of non-trivial trees. Let $n=n(T)$ be the order of T and let $n_{1}=n_{1}(T)$ denote the number of endvertices of T.

[^0]Lemańska [2] proved that each non-trivial tree T satisfies the inequality $\gamma(T) \geq\left(n+2-n_{1}\right) / 3$ and characterized the extremal trees. The purpose of this paper is to generalize this result to the distance version of the domination number. In particular, we prove that for each tree T of order n the distance k-domination number is bounded below by $\left(n+2 k-k \cdot n_{1}\right) /(2 k+1)$ and we characterize the corresponding extremal trees.

2. Proof of the bound

Our aim in this section is to present and prove a lower bound on the distance k-domination number of a tree.

LEMMA 1. If T is a tree with $\gamma_{k}(T)=1$, then $k \cdot n_{1}(T) \geq n(T)-1$.
Proof. We proceed by induction on the number of end-vertices of a tree T. If $n_{1}(T)=2$, then T is a path P. As $\gamma_{k}(T)=1$, it follows that the path has at most $2 k+1$ vertices. Thus

$$
k \cdot n_{1}(P)=k \cdot 2=(2 k+1)-1 \geq n(P)-1
$$

Assume now that the result is true for all trees T^{\prime} with $n_{1}\left(T^{\prime}\right)=2, \ldots, j$ and $\gamma_{k}\left(T^{\prime}\right)=1$. Let T be a tree with $\gamma_{k}(T)=1$ and $n_{1}(T)=j+1$. Let p be the smallest integer such that $\left(x_{0}, \ldots, x_{p}\right)$ is a path in T with $d_{T}\left(x_{0}\right)=1$ and $d_{T}\left(x_{p}\right)>2$. Observe that $1 \leq p \leq k$, as $\operatorname{diam}(T) \leq 2 k$, and T is not a path. Let $V_{1}=\left\{x_{0}, x_{1}, \ldots, x_{p-1}\right\}$. Obviously $\left|V_{1}\right| \leq k$. Let us remove from T all vertices of V_{1}. By induction we have

$$
k \cdot n_{1}\left(T-V_{1}\right) \geq n\left(T-V_{1}\right)-1
$$

Since $n_{1}(T)-1=n_{1}\left(T-V_{1}\right)$ and $n\left(T-V_{1}\right) \geq n(T)-k$, it follows that

$$
k \cdot\left(n_{1}(T)-1\right) \geq n(T)-k-1
$$

Thus

$$
k \cdot n_{1}(T) \geq n(T)-1
$$

which completes the induction step.
The open k-neighbourhood of a vertex $x \in V(G)$, denoted $N_{G}^{k}(x)$, is the set $\left\{v \in V(G): 0<d_{G}(v, x) \leq k\right\}$. The set $N_{G}^{k}[x]=N_{G}^{k}(x) \cup\{x\}$ is called the closed k-neighbourhood of v in G. Let us define $P N_{G}^{k}[x, D]=N_{G}^{k}[x]-$ $N_{G}^{k}[D-\{x\}]$ to be the private distance k-neighbourhood of a vertex x, with respect to a set D. If $y \in P N_{G}^{k}[x, D]$, we say that y is a private distance k-neighbour of x. The set of end-vertices of G is denoted by $\Omega(G)$.

We continue with a basic property of minimal k-dominating sets, due to Henning, Oellerman and Swart [1].

Proposition 2. Let D be a distance k-dominating set of a graph G for some $k \geq 1$. Then D is a minimal distance k-dominating set if and only if each vertex $u \in D$ satisfies at least one of the following conditions:

1. there exists a vertex $v \in V(G)-D$ for which $N_{G}^{k}(v) \cap D=\{u\}$;
2. $d_{G}(u, w)>k$ for every vertex $w \in D-\{u\}$.

For a given tree T, let $S=\left(s_{0}, s_{1}, \ldots, s_{l}\right)$ be a longest path in T. Assume $l>2 k$. Let $P_{0}, P_{1}, \ldots, P_{l}$ be a partition of $V(T)$ such that

$$
P_{i}=\left\{v \in V(T): d_{T}\left(v, s_{i}\right)=d_{T}(v, V(S))\right\}
$$

Observe that $d_{T}\left(s_{i}, x\right) \leq \min \{i, l-i\}$ only if $x \in P_{i}$, as otherwise there would be a path longer than S in T.

Let D be a minimum distance k-dominating set in T. We say that D has a property \mathcal{F} if $s_{k} \in D$ and $\sum_{v \in D} d_{T}(v, V(S))$ is minimum.
LEMMA 3. If D has the property \mathcal{F}, then s_{k} distance k-dominates all vertices in $P_{0} \cup \cdots \cup P_{k}$.

Proof. As S is a longest path in T and $s_{k} \in V(S)$, the result is straightforward.

LEMMA 4. If D has the property \mathcal{F}, then $\left(P_{0} \cup \cdots \cup P_{k}\right) \cap D=\left\{s_{k}\right\}$.
Proof. Suppose that the result is not true, i.e. let $x \in\left(P_{0} \cup \cdots \cup P_{k}\right) \cap D$ and $x \neq s_{k}$. By Lemma $3, s_{k}$ distance k-dominates x. Thus, by Proposition 2 , x has a private distance k-neighbour, say y. As y is not distance k-dominated by s_{k}, we have $y \notin P_{0} \cup \cdots \cup P_{k}$ and $d_{T}\left(s_{k}, y\right)>k$. It follows that $d_{T}(x, y)=$ $d_{T}\left(x, s_{k}\right)+d_{T}\left(s_{k}, y\right)>k$, which is a contradiction with the fact, that y is a private distance k-neighbour of x. Thus such a vertex x does not exist, as claimed.

LEMMA 5. If D has the property \mathcal{F} and $x \in D \cap P_{i}$, then $d_{T}\left(s_{i}, x\right) \leq i-k$.
Proof. Suppose to the contrary that D is a minimum distance k-dominating set having the property \mathcal{F} in T and let $x \in D \cap P_{i}$ such that $d_{T}\left(s_{i}, x\right)>$ $i-k$. Thus $i-k<d_{T}\left(s_{i}, x\right) \leq i$. It follows that there exists a vertex y such that $d_{T}\left(s_{i}, x\right)=d_{T}\left(s_{i}, y\right)+d_{T}(y, x)$ and $d_{T}\left(s_{i}, y\right)=i-k$. Hence $d_{T}(y, x)=$ $d_{T}\left(s_{i}, x\right)-d_{T}\left(s_{i}, y\right) \leq k$.

We claim that $N_{T}^{k}[x] \subseteq N_{T}^{k}[y]$. Suppose, contrary to our claim, that there exists a vertex z belonging to $N_{T}^{k}[x]-N_{T}^{k}[y]$. Then from $d_{T}(z, y)>k$ and $d_{T}\left(s_{i}, y\right)=i-k$ we find that either $d_{T}\left(s_{i}, z\right)>i$ or $d_{T}\left(s_{i}, z\right)<i-2 k$. The inequality $d_{T}\left(s_{i}, z\right)>i$ implies that there is a longer path than S in T, which is a contradiction. If $d_{T}\left(s_{i}, z\right)<i-2 k$, then $d_{T}(x, z) \geq d_{T}\left(x, s_{i}\right)-d_{T}\left(s_{i}, z\right)>$ $i-k-(i-2 k)=k$, which contradicts $z \in N_{T}^{k}[x]$.

Consequently, the set $D^{\prime}=D-\{x\} \cup\{y\}$ is a minimum distance k-dominating set in T, where $\sum_{v \in D^{\prime}} d_{T}(v, V(S))<\sum_{v \in D} d_{T}(v, V(S))$, again a contradiction.
LEMMA 6. If $P N_{T}^{k}\left[s_{k}, D\right] \cap P_{i} \neq \emptyset$ for $i \in\{k+1, \ldots, 2 k\}$, then $D \cap\left(P_{k+1} \cup\right.$ $\left.\cdots \cup P_{i}\right)=\emptyset$.

Proof. For a contradiction let us suppose that $x \in P N_{T}^{k}\left[s_{k}, D\right] \cap P_{i}$ for $i \in$ $\{k+1, \ldots, 2 k\}$ and let there exist a vertex $z \in D \cap P_{r}$, where $r \in\{k+1, \ldots, i\}$. By Lemma $5, d_{T}\left(z, s_{r}\right) \leq r-k$. As s_{k} distance k-dominates x, we have

$$
d_{T}\left(s_{k}, x\right)=d_{T}\left(s_{k}, s_{r}\right)+d_{T}\left(s_{r}, x\right)=r-k+d_{T}\left(s_{r}, x\right) \leq k
$$

Hence, $d_{T}\left(s_{r}, x\right) \leq 2 k-r$. On the other hand

$$
d_{T}(z, x)=d_{T}\left(z, s_{r}\right)+d_{T}\left(s_{r}, x\right) \leq(r-k)+(2 k-r)=k
$$

which means that z distance k-dominates x, a contradiction, as x is a private distance k-neighbour of s_{k}.

By Lemmas 4 and 6 we find the following corollary.
Corollary 7. If $P N_{k}\left[s_{k}, D\right] \cap P_{i} \neq \emptyset$ for $i \in\{k+1, \ldots, 2 k\}$, then $D \cap\left(P_{0} \cup\right.$ $\left.\cdots \cup P_{i}\right)=\left\{s_{k}\right\}$.
LEMMA 8. If $P N_{T}^{k}\left[s_{k}, D\right] \cap P_{i} \neq \emptyset$ for $i \in\{k+1, \ldots, 2 k\}$, then s_{k} distance k-dominates all vertices in $P_{k+1} \cup \cdots \cup P_{i}$.

Proof. Suppose that the result is not true, i.e. suppose that $x \in$ $P N_{T}^{k}\left[s_{k}, D\right] \cap P_{i}$ for $i \in\{k+1, \ldots, 2 k\}$ and s_{k} does not distance k-dominate a vertex $y \in P_{j}$, where $j \in\{k+1, \ldots, i\}$. Then there exists a vertex $z \in D \cap P_{r}$ such that z distance k-dominates y and z does not distance k-dominate x. Corollary 7 implies that $i<r$. We need to consider the inequality chain: $k<j \leq i<r$. As z distance k-dominates y, we have
$d_{T}(z, y)=d_{T}\left(z, s_{r}\right)+d_{T}\left(s_{r}, s_{j}\right)+d_{T}\left(s_{j}, y\right)=d_{T}\left(z, s_{r}\right)+r-j+d_{T}\left(s_{j}, y\right) \leq k$. As z does not distance k-dominate x we can write that
$d_{T}(z, x)=d_{T}\left(z, s_{r}\right)+d_{T}\left(s_{r}, s_{i}\right)+d_{T}\left(s_{i}, x\right)=d_{T}\left(z, s_{r}\right)+r-i+d_{T}\left(s_{i}, x\right)>k$.
Combining these inequalities we obtain

$$
d_{T}\left(s_{j}, y\right)-j<d_{T}\left(s_{i}, x\right)-i
$$

As s_{k} distance k-dominates x, we have $d_{T}\left(s_{k}, x\right) \leq k$ and thus $d_{T}\left(s_{i}, x\right) \leq$ $2 k-i$. Similarly, as s_{k} does not distance k-dominate y, we have $d_{T}\left(s_{j}, y\right)>$ $2 k-j$. Thus

$$
-2 j+2 k<d_{T}\left(s_{j}, y\right)-j<d_{T}\left(s_{i}, x\right)-i \leq 2 k-2 i
$$

which gives $i<j$, which is impossible.
From Lemma 3 and Lemma 8 we have:

Corollary 9. If $P N_{T}^{k}\left[s_{k}, D\right] \cap P_{i} \neq \emptyset$ for $i \in\{k+1, \ldots, 2 k\}$, then s_{k} distance k-dominates all vertices in $P_{0} \cup \cdots \cup P_{i}$.

Here and subsequently, for a tree T and an edge $u v$, let T_{1} and T_{2} be the components of $T-u v$ to which vertices u and v belong, respectively.

LEMMA 10. If $\gamma_{k}(T)>1$, then there exists an edge $u v$ in T such that $\gamma_{k}\left(T_{1}\right)+$ $\gamma_{k}\left(T_{2}\right)=\gamma_{k}(T)$.

Proof. Let $S=\left(s_{0}, s_{1}, \ldots, s_{l}\right)$ be a longest path in T. As $\gamma_{k}(T)>1$, we have $l>2 k$. Let D be a minimum distance k-dominating set having property \mathcal{F} in T. According to Lemma 4, we conclude that $s_{0} \in P N_{T}^{k}\left[s_{k}, D\right]$. Let $i=$ $\max \left\{j: P_{j} \cap P N_{T}^{k}\left[s_{k}, D\right] \neq \emptyset\right\}$. We need to consider two cases:
Case 1: $i \leq k$.
If $i \leq k$, then we remove the edge $s_{k} s_{k+1}$ and we obtain two trees: $T_{1}=$ $\left\langle P_{0} \cup \cdots \cup P_{k}\right\rangle$ and $T_{2}=\left\langle P_{k+1} \cup \cdots \cup P_{l}\right\rangle$. By Lemma $4,\left(P_{0} \cup \cdots \cup P_{k}\right) \cap D=\left\{s_{k}\right\}$ and by Lemma $3, s_{k}$ distance k-dominates all vertices in T_{1}. Moreover, s_{k} has no private distance k-neighbour among vertices of $P_{k+1} \cup \cdots \cup P_{l}$ in T. Therefore $\gamma_{k}\left(T_{1}\right)=1$ and $\gamma_{k}\left(T_{2}\right)=\gamma_{k}(T)-1$.
Case 2: $k<i \leq 2 k$.
If $k<i \leq 2 k$, then we remove the edge $s_{i} s_{i+1}$ and we obtain two trees: $T_{1}=$ $\left\langle P_{0} \cup \cdots \cup P_{i}\right\rangle$ and $T_{2}=\left\langle P_{i+1} \cup \cdots \cup P_{l}\right\rangle$. According to Corollary 7, $\left(P_{0} \cup\right.$ $\left.\cdots \cup P_{i}\right) \cap D=\left\{s_{k}\right\}$ and by Corollary $9, s_{k}$ distance k-dominates all vertices in T_{1} and s_{k} has no private distance k-neighbour among vertices of $P_{i+1} \cup \cdots \cup P_{l}$ in T. Therefore $\gamma_{k}\left(T_{1}\right)=1$ and $\gamma_{k}\left(T_{2}\right)=\gamma_{k}(T)-1$.

We are now in position to prove the main result of this paper.
Theorem 11. If T is a tree, then

$$
k \cdot n_{1}(T) \geq n(T)+2 k-(2 k+1) \gamma_{k}(T) .
$$

Proof. We proceed by induction on $\gamma_{k}(T)$. If $\gamma_{k}(T)=1$, the result follows by Lemma 1.

We assume now that the result is true for all trees T^{\prime} with $\gamma_{k}\left(T^{\prime}\right)=1, \ldots, j$. Let T be a tree with $\gamma_{k}(T)=j+1$. Let $S=\left(s_{0}, s_{1}, \ldots, s_{l}\right)$ be a longest path in T. Note that $l>2 k$, as $\gamma_{k}(T)>1$. Let D be a minimum distance k-dominating set in T such that $s_{k} \in D$ and $\sum_{v \in D} d_{T}(v, V(S))$ is minimum. From Lemma 10 there exists an edge $u v$ of T such that for the two components T_{1}, T_{2} of $T-u v$, we have $\gamma_{k}(T)=\gamma_{k}\left(T_{1}\right)+\gamma_{k}\left(T_{2}\right)$. By induction we have the following inequalities for T_{1} and T_{2} :

$$
k \cdot n_{1}\left(T_{1}\right) \geq n\left(T_{1}\right)+2 k-(2 k+1) \gamma_{k}\left(T_{1}\right)
$$

and

$$
k \cdot n_{1}\left(T_{2}\right) \geq n\left(T_{2}\right)+2 k-(2 k+1) \gamma_{k}\left(T_{2}\right) .
$$

Summing those inequalities we obtain

$$
k \cdot\left(n_{1}\left(T_{1}\right)+n_{1}\left(T_{2}\right)\right)-2 k \geq n(T)+2 k-(2 k+1) \gamma_{k}(T) .
$$

Observe that $n_{1}(T) \geq n_{1}\left(T_{1}\right)+n_{1}\left(T_{2}\right)-2$, so

$$
k \cdot n_{1}(T) \geq n(T)+2 k-(2 k+1) \gamma_{k}(T),
$$

which completes the proof of the inequality.

3. Characterization of the extremal trees

We are now able to provide a characterization of all the trees for which $k \cdot n_{1}(T)=n(T)+2 k-(2 k+1) \gamma_{k}(T)$. For this purpose, we define a family \mathcal{R} to be a family of all trees for which $d_{T}(u, v)=2 k \bmod (2 k+1)$ for each two end-vertices u, v, where $u \neq v$.

For a given integer $j \geq 2$, a k-spider is a graph obtained by attaching j disjoint paths of length k to a single vertex of K_{1}.

Let T be a tree belonging to the family \mathcal{R} and let $S=\left(s_{0}, s_{1}, \ldots, s_{l}\right)$ be a longest path in T. Since s_{0}, s_{l} are end-vertices of T, we conclude that $l=$ $t(2 k+1)+2 k$ for some non-negative integer t. Let $I=\{0, l\} \cup\{j(2 k+1)+k$: $j=0,1, \ldots, t\}$ be a set of indexes.
Lemma 12. If T is a tree belonging to the family \mathcal{R} and $S=\left(s_{0}, s_{1}, \ldots, s_{l}\right)$ is a longest path in T, then $P_{i} \cap \Omega(T)=\emptyset$ for $i \notin I$.

Proof. Suppose that x is an end-vertex belonging to P_{i} and $i \notin I$. As $T \in \mathcal{R}$, we conclude that $d_{T}\left(s_{0}, x\right)=t_{1}(2 k+1)+2 k$ for some non-negative integer t_{1} and thus $d_{T}\left(s_{i}, x\right)=t_{1}(2 k+1)+2 k-i$. On the other hand we have

$$
\begin{aligned}
d_{T}\left(s_{l}, x\right) & =d_{T}\left(s_{l}, s_{i}\right)+d_{T}\left(s_{i}, x\right)=t(2 k+1)+2 k-i+t_{1}(2 k+1)+2 k-i \\
& =t_{2}(2 k+1)+4 k-2 i,
\end{aligned}
$$

where $t_{2}=t+t_{1}$. As $T \in \mathcal{R}$, it follows that $d_{T}\left(s_{l}, x\right)=2 k \bmod (2 k+1)$. Hence, it is required to be $4 k-2 i=t_{3}(2 k+1)+2 k$, where t_{3} is an integer and thus $i=k-\frac{t_{3}}{2}(2 k+1)$. Since i is a positive integer, t_{3} must be 0 or a negative even number. For $t_{3}=0,-2,-4, \ldots$, we obtain $i=k,(2 k+1)+k, 2(2 k+1)+k, \ldots$, respectively, which are elements of I, and it is a contradiction with our assumptions.

LOWER BOUND ON THE DISTANCE k-DOMINATION NUMBER OF A TREE

COROLLARY 13. If $T \in \mathcal{R}$, then for all vertices of a longest path $S=$ $\left(s_{0}, \ldots, s_{l}\right)$ there holds $d_{T}\left(s_{i}\right)=2$ only if $i \notin I$.

LEMMA 14. If $T \in \mathcal{R}$ and $\gamma_{k}(T)=1$, then

$$
k \cdot n_{1}(T)=n(T)-1
$$

Proof. Let $S=\left(s_{0}, s_{1}, \ldots, s_{l}\right)$ be a longest path in a tree T belonging to the family \mathcal{R}. Since $\gamma_{k}(T)=1$, we have $d_{T}\left(s_{0}, s_{l}\right) \leq 2 k$. As $T \in \mathcal{R}$, we conclude that $d_{T}\left(s_{0}, s_{l}\right)=2 k$ and thus $l=2 k$. Moreover, $d_{T}\left(s_{0}\right)=d_{T}\left(s_{2 k}\right)=1$ and, by Corollary $13, d_{T}\left(s_{i}\right)=2$ for $i \notin\{0, k, 2 k\}$. Hence, if $d_{T}\left(s_{k}\right)=2$, then T is a path P on $2 k+1$ vertices. In this case

$$
k \cdot n_{1}(T)=k \cdot 2=(2 k+1)-1=n(T)-1,
$$

so the equality holds. Otherwise, $d_{T}\left(s_{k}\right)=j>2$ and $T \in \mathcal{R}$ imply that T is a k-spider. In this case we have

$$
k \cdot n_{1}(T)=k \cdot j=(k \cdot j+1)-1=n(T)-1,
$$

and the equality holds as well.
Lemma 15. If $T \in \mathcal{R}$, then

$$
k \cdot n_{1}(T)=n(T)+2 k-(2 k+1) \gamma_{k}(T) .
$$

Proof. We proceed by induction on $\gamma_{k}(T)$. If $\gamma_{k}(T)=1$, then by Lemma 14 the equality holds.

Assume now that the result is true for all tress T^{\prime} belonging to the family \mathcal{R} with $\gamma_{k}\left(T^{\prime}\right)=1, \ldots, j$. Let $T \in \mathcal{R}$ be a tree with $\gamma_{k}(T)=j+1$ and let $S=\left(s_{0}, s_{1}, \ldots, s_{l}\right)$ be a longest path in T. Let D be a minimum distance k-dominating set with property \mathcal{F} in T. Lemma 12 implies that each vertex s_{i} where $i \notin I$ has degree 2 . Thus, without loss of generality, we may assume that $\left\{s_{k+1}, \ldots, s_{3 k}\right\} \cap D=\emptyset$ and $s_{3 k+1} \in D$. Now we remove the edge $s_{2 k} s_{2 k+1}$ from T to obtain trees $T_{1}=\left\langle P_{0} \cup \cdots \cup P_{2 k}\right\rangle$ and $T_{2}=\left\langle P_{2 k+1} \cup \cdots \cup P_{l}\right\rangle$. It is clear that $\gamma_{k}\left(T_{1}\right)=1$ as s_{k} distance k-dominates all vertices in T_{1}. Moreover, $\gamma_{k}\left(T_{2}\right)=\gamma_{k}(T)-1$ as s_{k} has no private distance k-neighbour in $P_{2 k+1} \cup \cdots \cup P_{l}$. Furthermore, as $d_{T}\left(s_{2 k}\right)=d_{T}\left(s_{2 k+1}\right)=2$ and $d_{T_{1}}\left(s_{2 k}\right)=d_{T_{2}}\left(s_{2 k+1}\right)=1$, we conclude that $n_{1}\left(T_{1}\right)+n_{1}\left(T_{2}\right)=n_{1}(T)+2$.

We claim that $T_{1} \in \mathcal{R}$. Indeed, $d_{T}\left(s_{0}, s_{2 k}\right)=2 k$. Moreover, as $T \in \mathcal{R}$, we have $d_{T}\left(s_{0}, x\right)=2 k$ only if $x \in \Omega(T) \cap P_{k}$. Thus $d_{T}\left(x, s_{2 k}\right)=2 k$. In this case T_{1} is a k-spider. If $\Omega(T) \cap P_{k}=\emptyset$, then T is a path on $2 k+1$ vertices. Hence $T_{1} \in \mathcal{R}$.

We also claim that $T_{2} \in \mathcal{R}$. From $T \in \mathcal{R}$ it follows that $d_{T}\left(s_{0}, s_{l}\right)=2 k$ $\bmod (2 k+1)$. Thus $d_{T}\left(s_{2 k+1}, x\right)=d_{T}\left(s_{0}, x\right)-(2 k+1)=2 k \bmod (2 k+1)$ for each $x \in \Omega\left(T_{2}\right)$. Hence $T_{2} \in \mathcal{R}$.

JOANNA RACZEK - MAGDALENA LEMAŃSKA - JOANNA CYMAN

By induction, for T_{1} and T_{2} we have equalities

$$
k \cdot n_{1}\left(T_{1}\right)=n\left(T_{1}\right)+2 k-(2 k+1) \gamma_{k}\left(T_{1}\right)
$$

and

$$
k \cdot n_{1}\left(T_{2}\right)=n\left(T_{2}\right)+2 k-(2 k+1) \gamma_{k}\left(T_{2}\right) .
$$

Summing these equalities, we obtain

$$
k \cdot\left(n_{1}\left(T_{1}\right)+n_{1}\left(T_{2}\right)\right)-2 k=n(T)+2 k-(2 k+1) \gamma_{k}(T)
$$

and from $n_{1}\left(T_{1}\right)+n_{1}\left(T_{2}\right)-2=n_{1}(T)$,

$$
k \cdot n_{1}(T)=n(T)+2 k-(2 k+1) \gamma_{k}(T)
$$

and the induction is completed.
LEMMA 16. If $\gamma_{k}(T)=1$ and $k \cdot n_{1}(T)=n(T)-1$, then $T \in \mathcal{R}$.
Proof. We use induction on the number of end-vertices of a tree T. If $n_{1}(T)=2$ and $k \cdot 2=n(T)-1, T$ is a path P on $2 k+1$ vertices. In this case $d_{T}(u, v)=2 k$ for the two end-vertices in P, so $T \in \mathcal{R}$.

Assume now that the result is true for all trees T^{\prime} with $n_{1}\left(T^{\prime}\right)=2, \ldots, j$. Let T be a tree with $n_{1}(T)=j+1, \gamma_{k}(T)=1$ and $k \cdot n_{1}(T)=n(T)-1$. Let p be the smallest integer such that $\left(x_{0}, \ldots, x_{p}\right)$ is a path in T, where $d_{T}\left(x_{0}\right)=1$ and $d_{T}\left(x_{p}\right)>2$. Observe that $1 \leq p \leq k$, as $\operatorname{diam}(T) \leq 2 k$ and T is not a path. Let $V_{1}=\left\{x_{0}, x_{1}, \ldots, x_{p-1}\right\}$. Obviously $\left|V_{1}\right| \leq k$. Let T^{\prime} be a tree obtained from T by removing of all vertices belonging to V_{1}. According to Theorem 11, we have inequality

$$
k \cdot n_{1}\left(T^{\prime}\right) \geq n\left(T^{\prime}\right)+2 k-(2 k+1) \gamma_{k}\left(T^{\prime}\right) .
$$

As $n_{1}\left(T^{\prime}\right)=n_{1}(T)-1, \gamma_{k}\left(T^{\prime}\right)=1$ and $\left|V_{1}\right| \leq k$, we obtain

$$
k \cdot n_{1}(T)-k=k \cdot n_{1}\left(T^{\prime}\right) \geq n\left(T^{\prime}\right)-1 \geq n(T)-k-1
$$

Since $k \cdot n_{1}(T)=n(T)-1$, it follows that

$$
k \cdot n_{1}(T)-k=k \cdot n_{1}\left(T^{\prime}\right)=n\left(T^{\prime}\right)-1=n(T)-k-1 .
$$

Thus $\left|V_{1}\right|=k$ and $k \cdot n_{1}\left(T^{\prime}\right)=n\left(T^{\prime}\right)-1$. By induction we find that $T^{\prime} \in \mathcal{R}$. As $\gamma_{k}(T)=\gamma_{k}\left(T^{\prime}\right)=1$ and $\left|V_{1}\right|=k$, we conclude that T is a k-spider and thus $T \in \mathcal{R}$.

LEMMA 17. If

$$
k \cdot n_{1}(T)=n(T)+2 k-(2 k+1) \gamma_{k}(T),
$$

then $T \in \mathcal{R}$.
Proof. We proceed by induction on $\gamma_{k}(T)$. If $\gamma_{k}(T)=1$, then by Lemma 16 the equality holds.

LOWER BOUND ON THE DISTANCE k-DOMINATION NUMBER OF A TREE

Assume now that the result is true for all trees T^{\prime} with $\gamma_{k}\left(T^{\prime}\right)=1, \ldots, j$. Let T be a tree with $\gamma_{k}(T)=j+1$ and let $k \cdot n_{1}(T)=n(T)+2 k-(2 k+1) \gamma_{k}(T)$.

By Lemma 10 , there exists an edge $u v \in E(T)$ such that $T-u v$ has two components T_{1} and T_{2} and $\gamma_{k}\left(T_{1}\right)+\gamma_{k}\left(T_{2}\right)=\gamma_{k}(T)$. Theorem 11 implies that

$$
\begin{equation*}
k \cdot n_{1}\left(T_{1}\right) \geq n\left(T_{1}\right)+2 k-(2 k+1) \gamma_{k}\left(T_{1}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
k \cdot n_{1}\left(T_{2}\right) \geq n\left(T_{2}\right)+2 k-(2 k+1) \gamma_{k}\left(T_{2}\right) \tag{2}
\end{equation*}
$$

By summing (1) and (2) and applying $n_{1}(T) \geq n_{1}\left(T_{1}\right)+n_{1}\left(T_{2}\right)-2$ we obtain

$$
k \cdot n_{1}(T) \geq k \cdot\left(n_{1}\left(T_{1}\right)+n_{1}\left(T_{2}\right)\right)-2 k \geq n(T)+2 k-(2 k+1) \gamma_{k}(T)
$$

As $k \cdot n_{1}(T)=n(T)+2 k-(2 k+1) \gamma_{k}(T)$, we conclude that

$$
k \cdot n_{1}(T)=k \cdot\left(n_{1}\left(T_{1}\right)+n_{1}\left(T_{2}\right)\right)-2 k=n(T)+2 k-(2 k+1) \gamma_{k}(T),
$$

which implies that in (1) and (2) we have equalities and $n_{1}(T)=n_{1}\left(T_{1}\right)+$ $n_{1}\left(T_{2}\right)-2$. Thus, by induction, $T_{1}, T_{2} \in \mathcal{R}$. Moreover, if $e=u v$ was the edge we removed from T to obtain T_{1} and T_{2}, then $d_{T_{1}}(u)=d_{T_{2}}(v)=1$. It follows that $d_{T_{1}}(u, x)=2 k \bmod (2 k+1)$ for any $x \in \Omega\left(T_{1}\right)$ and $d_{T_{2}}(v, y)=2 k$ $\bmod (2 k+1)$ for any $y \in \Omega\left(T_{2}\right)$. Hence $d_{T}(x, y)=2 k \bmod (2 k+1)$ for all $x, y \in \Omega(T)$ and thus $T \in \mathcal{R}$.

By Lemmas 15 and 17 we have the following:
Theorem 18. If T is a tree, then

$$
k \cdot n_{1}(T)=n(T)+2 k-(2 k+1) \gamma_{k}(T)
$$

if and only if T belongs to the family \mathcal{R}.

REFERENCES

[1] HENNING, M. A.-OELLERMANN, O. R.-SWART, H. C. : Bounds on distance domination parameters, J. Combin. Inform. System Sci. 16 (1991), 11-18.
[2] LEMAŃSKA, M. : Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24 (2004), 165-169.

Received September 21, 2004
Revised December 20, 2004

Department of Discrete Mathematics
Faculty of Applied Physics and Mathematics
Gdańsk University of Technology
Narutowicza 11/12
PL-80-952 Gdańsk
POLAND
E-mail: gardenia@mif.pg.gda.pl magda@mif.pg.gda.pl joana@mif.pg.gda.pl

[^0]: 2000 Mathematics Subject Classification: Primary 05C05, 05C69.
 Keywords: distance k-domination number, tree.

