Mathematic Slovaca

Jiří Rachůnek; Dana Šalounová Direct product factors in GMV-algebras

Mathematica Slovaca, Vol. 55 (2005), No. 4, 399--407
Persistent URL: http://dml.cz/dmlcz/130795

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

DIRECT PRODUCT FACTORS IN $G M V$-ALGEBRAS

Jirí Rachůnek* - Dana Šalounová**
(Communicated by Anatolij Dvurečenskij)

Abstract

G M V\)-algebras are non-commutative generalizations of $M V$-algebras and by A. Dvurečenskij they can be represented as intervals of unital lattice ordered groups. Moreover, they are polynomially equivalent to dually residuated ℓ-monoids ($D R \ell$-monoids) from a certain variety of $D R \ell$-monoids. In the paper, using these correspondences, direct product factors in $G M V$-algebras are introduced and studied and the lattices of direct factors are described. Further, the polars of projectable $G M V$-algebras are described.

1. Introduction

The Łukasiewicz infinite valued propositional logic is one of the most important logics behind the theory of fuzzy sets. It is well known that $M V$-algebras introduced by C. C. Chang in [2] are an algebraic counterpart of the Lukasiewicz logic. Recently the first author in [14] and, independently, G. Georgescu and A. Iorgulescu in [7], have introduced non-commutative generalizations of $M V$-algebras (non-commutative $M V$-algebras in [14] and pseudo $M V$-algebras in [7]) which are equivalent. Here, we will use for these algebras the name generalized $M V$-algebras, briefly $G M V$-algebras.

By A. Dvurečenskij [4], $G M V$-algebras can be considered as intervals in unital lattice ordered groups (ℓ-groups). Moreover, by [14], there is a mutual correspondence between $G M V$-algebras and dually residuated lattice ordered monoids ($D R \ell$-monoids) belonging to a certain variety of $D R \ell$-monoids. At the same time, the ideals of $G M V$-algebras correspond to the convex ℓ-subgroups of the corresponding unital ℓ-groups and also to the ideals of the induced

[^0]$D R \ell$-monoids. These correspondences are used in the paper to studying direct decompositions of $G M V$-algebras. Further, they make it possible to consider direct factors of $G M V$-algebras in the form of their ideals, although ideals, in general, are not subalgebras of $G M V$-algebras. Moreover, projectable $G M V$-algebras are described here.

The necessary results concerning the theories of $M V$-algebras and of ℓ-groups can be found in [3], [9], [6] and in [1], [8], respectively.

2. Basic notions, denotations and relations

DEFINITION. Let $A=(A ; \oplus, \neg, \sim, 0,1)$ be an algebra of type $\langle 2,1,1,0,0\rangle$. Set $x \odot y=\sim(\neg x \oplus \neg y)$ for any $x, y \in A$. Then A is called a generalized $M V$-algebra (briefly: GMV-algebra) if for any $x, y, z \in A$ the following conditions are satisfied:

```
(A1) \(x \oplus(y \oplus z)=(x \oplus y) \oplus z\);
(A2) \(x \oplus 0=x=0 \oplus x\);
(A3) \(x \oplus 1=1=1 \oplus x\);
(A4) \(\neg 1=0=\sim 1\);
(A5) \(\neg(\sim x \oplus \sim y)=\sim(\neg x \oplus \neg y)\);
(A6) \(x \oplus(y \odot \sim x)=y \oplus(x \odot \sim y)=(\neg y \odot x) \oplus y=(\neg x \odot y) \oplus x\);
(A7) \((\neg x \oplus y) \odot x=y \odot(x \oplus \sim y)\);
(A8) \(\sim \neg x=x\).
```

If we put $x \leq y$ if and only if $\neg x \oplus y=1$, then (A, \leq) is a bounded distributive lattice (0 is the least and 1 is the greatest element) with $x \vee y=$ $x \oplus(y \odot \sim x)$ and $x \wedge y=x \odot(y \oplus \sim x)$.

Let $G=(G ;+, \vee, \wedge)$ be a lattice ordered group (ℓ-group) and $0 \leq u \in G$. For any $x, y \in[0, u]=\{x \in G: 0 \leq x \leq u\}$ put $x \oplus y=(x+y) \wedge u, \neg x=u-x$ and $\sim x=-x+u$. Then $\Gamma(G, u)=([0, u] ; \oplus, \neg, \sim, 0, u)$ is a $G M V$-algebra.

By a unital ℓ-group we will mean a pair (G, u), where G is an ℓ-group and u is a strong order unit in G. (Recall that $0<u \in G$ is a strong order unit in G if for any $a \in G$ there is $n \in \mathbb{N}$ such that $-n u \leq a \leq n u$, i.e., the convex ℓ-subgroup of G generated by u is equal to G.) Unital ℓ-groups and $G M V$-algebras are in a very close connection because A. Dvurečenskij in [4] proved that for any $G M V$-algebra A there is a unital ℓ-group (G, u) such that A is isomorphic to $\Gamma(G, u)$.

Definition. An algebra $M=(M ;+, 0, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ of type $\langle 2,0,2,2,2,2\rangle$ is called a $D R \ell$-monoid if $(M ;+, 0, \vee, \wedge)$ is a lattice ordered monoid satisfying the conditions ($x, y, r, s \in M$):

$$
\begin{aligned}
& s+y \geq x \Longleftrightarrow x \rightharpoonup y \leq s \quad \text { and } y+r \geq x \Longleftrightarrow x \leftharpoondown y \leq r \\
&((x \rightharpoonup y) \vee 0)+y \leq x \vee y, y+((x \leftharpoondown y) \vee 0) \leq x \vee y \\
& x \rightharpoonup x \geq 0, \\
& x \leftharpoondown x \geq 0
\end{aligned}
$$

$G M V$-algebras and $D R \ell$-monoids are also in a close connection. Indeed, if $A=(A ; \oplus, \neg, \sim, 0,1)$ is a $G M V$-algebra and if we put $x \rightharpoonup y=\neg y \odot x$ and $x \leftharpoondown y=x \odot \sim y$ for any $x, y \in A$, then by [14], $M(A)=(A ; \oplus, 0, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ is a bounded $D R \ell$-monoid (with 1 the greatest element and 0 the least) satisfying the identities
(i) $(\forall x \in A)(1 \leftharpoondown(1 \rightharpoonup x)=x=1 \rightharpoonup(1 \leftharpoondown x))$,
(ii) $(\forall x \in A)(\forall y \in A)(1 \rightharpoonup((1 \leftharpoondown x)+(1 \leftharpoondown y))=1 \leftharpoondown((1 \rightharpoonup x)+(1 \rightharpoonup y)))$.

Conversely, if $M=(M ;+, 0, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ is a bounded $D R \ell$-monoid with a greatest element 1 satisfying (i) and (ii) and if we put $\neg x=1 \rightharpoonup x$ and $\sim x=$ $1 \leftharpoondown x$ for $x \in M$, then by [14], $A(M)=(M ;+, \neg, \sim, 0,1)$ is a $G M V$-algebra.

Recall that if A is a $G M V$-algebra and $\emptyset \neq H \subseteq A$, then H is called an ideal of A if H is closed under the operation \oplus and $y \leq x$ implies $y \in H$ for any $x \in H$ and $y \in A$. An ideal is called normal if $\neg x \odot y \in H$ if and only if $y \odot \sim x \in H$ for each $x, y \in A$. The normal ideals are exactly the kernels of $G M V$-homomorphisms.

For any $\emptyset \neq H \subseteq A$ we have that H is an ideal of A if and only if H is a convex sub-DR ℓ-monoid of $M(A)$. (Convex sub- $D R \ell$-monoids of a $D R \ell$-monoid M are also called ideals of M.) Further, if M is a $D R \ell$-monoid and I is a convex sub- $D R \ell$-monoid of M, then I is called normal if and only if $x+I=I+x$ for any $x \in M$. One can prove that for a $G M V$-algebra A, an ideal H of A is normal if and only if H is a normal convex sub- $D R \ell$-monoid of $M(A)$. (See [12].) We will use these relations when studying direct decompositions of $G M V$-algebras, because ideals of $G M V$-algebras, in contrast to convex sub$D R \ell$-monoids of $D R \ell$-monoids, need not be subalgebras of $G M V$-algebras.

If A is a $G M V$-algebra, denote by $\mathcal{C}(A)$ and $\mathcal{N}(A)$ the set of ideals and of normal ideals of A, respectively. Analogously, if M is a $D R \ell$-monoid, then $\mathcal{C}(M)$ and $\mathcal{N}(M)$ will denote the set of convex sub- $D R \ell$-monoids and of normal convex sub- $D R \ell$-monoids, respectively. It is obvious that $(\mathcal{C}(A), \subseteq),(\mathcal{N}(A), \subseteq)$, $(\mathcal{C}(M), \subseteq)$ and $(\mathcal{N}(M), \subseteq)$ are complete lattices.

Let $A=\Gamma(G, u)$ be a $G M V$-algebra and let $(\mathcal{C}(G), \subseteq)$ and $(\mathcal{N}(G), \subseteq)$ be the complete lattices of convex ℓ-subgroups and of ℓ-ideals of G, respectively.

Let us consider the mapping $\varphi: \mathcal{C}(A) \rightarrow \mathcal{C}(G)$ such that $\varphi(H)=\{x \in G$: $|x| \wedge u \in H\}$ for any $H \in \mathcal{C}(A)$. By [15; Theorem 2], φ is an isomorphism of $\mathcal{C}(A)$ onto $\mathcal{C}(G)$ and the inverse isomorphism to φ is the mapping ψ such that $\psi(K)=K \cap[0, u]$ for each $K \in \mathcal{C}(G)$. Moreover, by [5; Theorem 6.1], the restriction of φ on $\mathcal{N}(A)$ is an isomorphism between $\mathcal{N}(A)$ and $\mathcal{N}(G)$.

3. Direct factors of $G M V$-algebras

In this part we will deal with direct decompositions of $G M V$-algebras which we will introduce by means of direct decompositions of the induced $D R \ell$-monoids.

DEFINITION. We will say that a $D R \ell$-monoid M is an inner direct product of its convex sub- $D R \ell$-monoids (i.e. ideals) M_{1} and M_{2} if there is an isomorphism φ of M onto the (external) direct product $M_{1} \times M_{2}$ of $D R \ell$-monoids M_{1} and M_{2} such that for each $x \in M_{1}$ and each $y \in M_{2}$ the relations $\varphi(x)=(x, 0)$ and $\varphi(y)=(0, y)$ are valid.

In such a case, we will also write $M=M_{1} \times M_{2}$ and say that M is a direct product of its sub- $D R \ell$-monoids M_{1} and M_{2}.

DEFINITION. If A is a $G M V$-algebra and $H_{1}, H_{2} \in \mathcal{C}(A)$, then A will be called a direct product of the ideals H_{1} and H_{2} if $M=M(A)=M\left(H_{1}\right) \times M\left(H_{2}\right)$, where $M\left(H_{i}\right)$ is the convex sub- $D R \ell$-monoid of M induced by $H_{i}, i=1,2$.

We will write $A=H_{1} \times H_{2}$ and say that H_{1} and H_{2} are direct factors of the $G M V$-algebra A.

Remark.

a) By [16; Theorem 6], if $M_{1}, M_{2} \in \mathcal{C}(M)$, then $M=M_{1} \times M_{2}$ if and only if

1. $M_{1}+M_{2}=M, M_{1} \cap M_{2}=\{0\} ;$
2. $\left(\forall x_{1}, y_{1} \in M_{1}\right)\left(\forall x_{2}, y_{2} \in M_{2}\right)$

$$
\left(x_{1}+x_{2}=y_{1}+y_{2} \Longrightarrow\left(x_{1}=y_{1} \& x_{2}=y_{2}\right)\right) .
$$

Moreover, if $M=M_{1} \times M_{2}$, then $M_{1}, M_{2} \in \mathcal{N}(M)$ and $M_{1}=M_{2}^{\perp}$ and $M_{2}=M_{1}^{\perp}$, where M_{2}^{\perp} and M_{1}^{\perp} are the polars of M_{2} and M_{1}, respectively.

That means, if $M=M(A)$ for a $G M V$-algebra A, then M is bounded (with the least element 0), and hence, for instance, $M_{1}=M_{2}^{\perp}=\{x \in M$: $\left.\left(\forall b \in M_{2}\right)(b \wedge x=0)\right\}$.
b) If A is a $G M V$-algebra and $H \in \mathcal{C}(A)$, then we will not distinguish H and $M(H)$.

Theorem 1. Let A be a GMV-algebra and $H_{1}, H_{2} \in \mathcal{C}(A)$. Then $A=$ $H_{1} \times H_{2}$ if and only if H_{1} and H_{2} satisfy condition 1 .

Proof. Let $A=\Gamma(G, u)$ be a $G M V$-algebra and let $H_{1}, H_{2} \in \mathcal{C}(A)$ satisfy condition 1. If $K_{1}=\varphi\left(H_{1}\right)$ and $K_{2}=\varphi\left(H_{2}\right)$, then (since $H_{1}, H_{2} \in \mathcal{N}(M)=$ $\mathcal{N}(A))$ we get $K_{1}, K_{2} \in \mathcal{N}(G)$. By [16; Proposition 7], $H_{1} \oplus H_{2}=H_{1} \vee H_{2}$ in $\mathcal{C}(M(A))=\mathcal{C}(A)$.

Hence we get:

$$
G=\varphi(A)=\varphi\left(H_{1} \oplus H_{2}\right)=\varphi\left(H_{1} \vee H_{2}\right)=\varphi\left(H_{1}\right) \vee \varphi\left(H_{2}\right)
$$

and since $\varphi\left(H_{1}\right), \varphi\left(H_{2}\right) \in \mathcal{N}(G)$, we have

$$
G=\varphi\left(H_{1}\right)+\varphi\left(H_{2}\right)=K_{1}+K_{2}
$$

Moreover, from $H_{1} \cap H_{2}=\{0\}$ it follows that $K_{1} \cap K_{2}=\{0\}$, thus $G=K_{1} \times K_{2}$ (and so also $K_{1}=K_{2}^{\perp}$ and $K_{2}=K_{1}^{\perp}$).

Let $x_{1}, y_{1} \in H_{1}, x_{2}, y_{2} \in H_{2}$ and $x_{1} \oplus x_{2}=y_{1} \oplus y_{2}$. Since $x_{1} \wedge x_{2}=0=$ $y_{1} \wedge y_{2}, x_{1} \oplus x_{2}=x_{1} \vee x_{2}=x_{1}+x_{2}$ and $y_{1} \oplus y_{2}=y_{1} \vee y_{2}=y_{1}+y_{2}$, therefore $x_{1}+x_{2}=y_{1}+y_{2}$. Hence from $G=K_{1} \times K_{2}$ we obtain $x_{1}=y_{1}$ and $x_{2}=y_{2}$, i.e., H_{1} and H_{2} satisfy also condition 2 for direct factors in M, and therefore in A, too.

The converse implication is trivial.
THEOREM 2. Let $A=\Gamma(G, u)$ be a GMV-algebra and let $G=K_{1} \times K_{2}$ be a direct decomposition of the ℓ-group G. If $H_{1}=\psi\left(K_{1}\right)$ and $H_{2}=\psi\left(K_{2}\right)$, then $A=H_{1} \times H_{2}$.

Proof. Let $a \in A$. Then there exist $a_{1} \in K_{1}^{+}$and $a_{2} \in K_{2}^{+}$such that $a=a_{1}+a_{2}$. Since $0 \leq a_{1}, a_{2} \leq a \leq u$, we have $a_{1} \oplus a_{2}=a_{1}+a_{2}$, and so $a=a_{1} \oplus a_{2}$. Hence $A=H_{1} \oplus H_{2}$. Condition $H_{1} \cap H_{2}=\{0\}$ is satisfied too, and therefore, by Theorem $1, A=H_{1} \times H_{2}$.

The following theorem is now an immediate consequence.
THEOREM 3. If $A=\Gamma(G, u)$ is a GMV-algebra, then $H \in \mathcal{C}(A)$ is a direct factor of A (and also of the $D R \ell$-monoid $M(A))$ if and only if $\varphi(H)$ is a direct factor of the ℓ-group G.
Remark. Let $A=\Gamma(G, u)$ be a $G M V$-algebra, $H_{1}, H_{2} \in \mathcal{C}(A)$ and let A be the direct product of H_{1} and H_{2}. If $u=u_{1}+u_{2}=u_{1} \oplus u_{2}$, where $u_{1} \in H_{1}$ and $u_{2} \in H_{2}$, then u_{i} is the greatest element in $H_{i}, i=1,2$, and thus u_{1} and u_{2} are additively idempotent elements in A, i.e. $H_{i}=C\left(u_{i}\right)=\left[0, u_{i}\right], i=1,2$.

For any $G M V$-algebra A, the $D R \ell$-monoid $M(A)$ induced by A satisfies the condition
$(\mathrm{MV}) \quad x \rightharpoonup(x \leftharpoondown y)=x \wedge y=x \leftharpoondown(x \rightharpoonup y)$.

JIŘí RACHŮNEK - DANA ŠALOUNOVÁ

Hence the sub- $D R \ell$-monoid in $M(A)$ induced by any ideal in A satisfies condition (MV), too. By [13], the bounded $D R \ell$-monoids satisfying (MV) are just those induced by $G M V$-algebras. Therefore A is isomorphic to the direct product of the $G M V$-algebras with underlying sets H_{1} and H_{2}.
(The fact that if a is an idempotent element in a $G M V$-algebra A, then the interval $[0, a]$ can be considered as a $G M V$-algebra was proved in [10], and that the operations in the $G M V$-algebra $[0, a]$ can be expressed explicitly as $x \oplus_{a} y=x \oplus y, \neg_{a} x=\neg x \wedge a$ and $\sim_{\mathrm{a}} x=\sim x \wedge a(x, y \in[0, a])$ was proved in [14].)

Therefore we now get as a consequence the following theorem, which was proved by different methods in [10; Sections 4, 5].

Theorem 4. Let A, A_{1} and A_{2} be $G M V$-algebras. Then A is isomorphic to the direct product $A_{1} \times A_{2}$ if and only if there is an idempotent element $a \in A$ such that $A_{1} \cong C(a)$ and $A_{2} \cong C(\neg a)=C(\sim a)$.

Moreover, the remark after Theorem 3 together with the fact that the idempotent elements in A form a subalgebra $B(A)$ of A which is a Boolean algebra and in which $\neg a=\sim a=a^{\prime}$ for each $a \in B(A)$ (see [14]) imply:

THEOREM 5. The direct factors of a GMV-algebra A form a Boolean sublattice of the lattice $\mathcal{C}(A)$ and also of the lattice of polars in A, which is isomorphic to the Boolean lattice of idempotent elements in A.

Now, we will describe even more exactly the connections between the direct factors of a $G M V$-algebra $A=\Gamma(G, u)$ and of those of the corresponding unital ℓ-group (G, u).

Proposition 6. Let $A=\Gamma(G, u)$ be a GMV-algebra, let $A=H_{1} \times H_{2}$ be a direct decomposition of A and let $K_{i}=\varphi\left(H_{i}\right), i=1,2$. If $a \in A$ and $a=a_{1} \oplus a_{2}$, where $a_{i} \in H_{i}, i=1,2$, then

$$
a_{2} / H_{1}=\left(a_{2} / K_{1}\right) \cap A \quad \text { and } \quad a_{1} / H_{2}=\left(a_{1} / K_{2}\right) \cap A
$$

Proof. Let $x \in A$. Then $x \in a_{2} / H_{1}$ if and only if $\left(x \rightharpoonup a_{2}\right) \oplus\left(a_{2} \rightharpoonup x\right) \in H_{1}$, which holds if and only if

$$
\left.\left(\left(x-a_{2}\right) \vee 0\right)+\left(\left(a_{2}-x\right) \vee 0\right)\right) \wedge u \in H_{1},
$$

hence if and only if

$$
\left(\left(x-a_{2}\right) \vee 0\right)+\left(\left(a_{2}-x\right) \vee 0\right) \in K_{1}
$$

and this is equivalent to

$$
\left(\left(x-a_{2}\right)+\left(a_{2}-x\right)\right) \vee\left(a_{2}-x\right) \vee\left(x-a_{2}\right) \vee 0 \in K_{1} .
$$

Therefore $x \in a_{2} / H_{1}$ if and only if $\left|a_{2}-x\right| \in K_{1}$, which is equivalent to $a_{2}-x \in K_{1}$, that means, to $x \in a_{2}+K_{1}$.

The second equality is analogous.
The direct factors of a $G M V$-algebra are its normal ideals, hence we can construct corresponding factor $G M V$-algebras.

Using Proposition 6 , now we will easily prove the following theorem.
Theorem 7. If A is a GMV-algebra and if $A=H_{1} \times H_{2}$ is a direct decomposition of A, then $H_{1} \cong A / H_{2}$ and $H_{2} \cong A / H_{1}$.

Proof. Let $A=\Gamma(G, u)$ and let K_{1} and K_{2} be as in Proposition 6. Let $\bar{f}: K_{2} \rightarrow G / K_{1}$ be the isomorphism of ℓ-groups such that $\bar{f}(c)=c / K_{1}=c+K_{1}$ for each $c \in K_{2}$. Let $\widetilde{f}=\left.\bar{f}\right|_{H_{2}}$. Let us denote by $f: H_{2} \rightarrow A / H_{1}$ the mapping such that $f(x)=x / H_{1}$ for each $x \in H_{2}$. By Proposition 6, $\widetilde{f}(x)=\widetilde{f}(y)$ if and only if $f(x)=f(y)$ for any $x, y \in H_{2}$. Thus f is a bijection of H_{2} onto A / H_{1}. At the same time, f is a restriction of the natural homomorphism $\nu: A \rightarrow A / H_{1}$ of $G M V$-algebras, hence f is an isomorphism of H_{2} onto A / H_{1}. Therefore $H_{2} \cong A / H_{1}$.

The second assertion is analogous.

4. Projectable $G M V$-algebras

Projectable ℓ-groups form an important class of ℓ-groups. Recall that an ℓ-group G is called projectable if the polar a^{\perp} is a direct factor in G for each $a \in G$. Now we will introduce an analogous notion also for $G M V$-algebras.
DEFINITION. A $G M V$-algebra A is called projectable if $A=a^{\perp} \times a^{\perp \perp}$ for each $a \in A$.

Remark.
a) By Theorem 1, A is projectable if and only if $A=a^{\perp} \oplus a^{\perp \perp}$ for each $a \in A$.
b) If a $G M V$-algebra A is projectable, then every polar in A is a normal ideal in A. Hence by [5], every projectable $G M V$-algebra, similarly as in the case of ℓ-groups, is representable.

In the next theorem, we will show connections between principal ideals and polars in projectable $G M V$-algebras.

THEOREM 8. Let A be a projectable GMV-algebra. Then every polar in A is an intersection of principal (normal) ideals of A generated by elements from the set $B(A)$ of all idempotent elements of A.

JIŘí RACHŮNEK - DANA ŠALOUNOVÁ

Proof. If A is a projectable $G M V$-algebra, then for any element $a \in A$ there is an element $b \in B(A)$ such that $a^{\perp}=C(b)$ and $a^{\perp \perp}=C(\neg b)$. Let $C \subseteq A$ be a polar in A. Then

$$
C=\bigcap_{d \in a^{\perp}} d^{\perp}=\bigcap_{d \in a^{\perp}} C\left(c_{d}\right)
$$

where c_{d} is an element in $B(A)$ such that $d^{\perp}=C\left(c_{d}\right)$. Thus every polar in A is an intersection of principal (normal) ideals generated by elements of $B(A)$ (i.e., an intersection of intervals in the form $[0, x]$ where $x \in B(A)$).

Lemma 9. Let $A=\Gamma(G, u)$ be a GMV-algebra and let $H \in \mathcal{C}(A)$. Then H is the principal ideal $C_{A}(a)$ in A generated by an element $a \in A=[0, u]$ if and only if $\varphi(H)$ is the principal convex ℓ-subgroup $C_{G}(a)$ in G generated by a.

Proof. Let $a \in A, J \in \mathcal{C}(A)$ and $a \in J$. Then obviously $a \in \varphi(J) \in \mathcal{C}(G)$.
Conversely, if $L \in \mathcal{C}(G)$ and $a \in L$ (thus $C_{G}(a) \subseteq L$), then $a \in L \cap[0, u]=$ $\psi(L)$, that means $C_{A}(a) \subseteq \psi(L)=\varphi^{-1}(L)$.

Therefore $\varphi\left(C_{A}(a)\right)=C_{G}(a)$.
Proposition 10. Let $A=\Gamma(G, u)$ be a GMV-algebra. Then A is a projectable $G M V$-algebra if and only if G is a projectable ℓ-group.

Proof. Let $a \in A$. Then $a^{\perp_{A}}$ is the pseudo-complement of the ideal $C_{A}(a)$ in the lattice $\mathcal{C}(A)$, and hence, $\varphi\left(a^{\perp_{A}}\right)$ is by Lemma 9 the pseudo-complement of the convex ℓ-subgroup $C_{G}(a)$ in the lattice $\mathcal{C}(G)$. Therefore $\varphi\left(a^{\perp_{A}}\right)=a^{\perp_{G}}$.

The assertion now follows from Theorem 3.
The following theorem is a consequence of Theorem 8 , Lemma 9 and Proposition 10 .

THEOREM 11. Let (G, u) be a projectable unital ℓ-group. Then every polar in G is an intersection of principal convex ℓ-subgroups (which are ℓ-ideals) of G generated by elements $x \in G^{+}$satisfying the condition $(x+x) \wedge u=x$.

REFERENCES

[1] BIGARD, A.-KEIMEL, K.-WOLFENSTEIN, S.: Groupes et Anneaux Réticulés, Springer Verlag, Berlin-Heidelberg-New York, 1977.
[2] CHANG, C. C.: Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490.
[3] CIGNOLI, R. O. L.-D'OTTAVIANO, I. M. L.—MUNDICI, D. : Algebraic Foundation of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
[4] DVUREČENSKIJ, A.: Pseudo MV-algebras are intervals in ℓ-groups, J. Aust. Math. Soc. 70 (2002), 427-445.

DIRECT PRODUCT FACTORS IN $G M V$-ALGEBRAS

[5] DVUREČENSKIJ, A.: States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327.
[6] DVUREČENSKIJ, A.-PULMANNOVÁ, S.: New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
[7] GEORGESCU, G.-IORGULESCU, A.: Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135.
[8] GLASS, A. M. W.: Partially Ordered Groups, World Scientific, Singapore-New Jersey-London-Hong Kong, 1999.
[9] HÁJEK, P.: Metamathematics of Fuzzy Logic, Kluwer, Amsterdam, 1998.
[10] JAKUBÍK, J. : Direct product decompositions of pseudo MV-algebras, Arch. Math. (Brno) 37 (2001), 131-142.
[11] KOVÁŘ, T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Thesis, Palacký Univ., Olomouc, 1996.
[12] KÜHR, J.: Ideals of noncommutative DRौ-monoids, Czechoslovak Math. J. 55 (2005), 97-111.
[13] KÜHR, J. : A generalization of GMV-algebras, Mult.-Valued Log. (To appear).
[14] RACHŮNEK, J.: A non-commutative generalization of $M V$-algebras, Czechoslovak Math. J. 52(127) (2002), 255-273.
[15] RACHŮNEK, J.: Prime spectra of non-commutative generalizations of MV-algebras, Algebra Universalis 48 (2002), 151-169.
[16] RACHŮNEK, J.-ŠALOUNOVÁ, D.: Direct decompositions of dually residuated lattice ordered monoids, Discuss. Math. Gen. Algebra Appl. 24 (2004), 63-74.

Received November 27, 2003
Revised June 21, 2004

* Department of Algebra and Geometry
Faculty of Sciences
Palacky University
Tomkova 40
CZ-779 00 Olomouc
CZECH REPUBLIC
E-mail: rachunek@inf.upol.cz

** Department of Mathematical Methods in Economy
Faculty of Economics
VSSB-Technical University Ostrava
Sokolská 33
CZ-701 21 Ostrava
CZECH REPUBLIC
E-mail: dana.salounova@vsb.cz

[^0]: 2000 Mathematics Subject Classification: Primary 06D35; Secondary 03G25, 06F05, 06F15.
 Keywords: $G M V$-algebra, $D R \ell$-monoid, ℓ-group, direct factor, ideal, polar.
 The first author was supported by the Council of Czech Government, J 14/98: 153100011.
 The second author was supported by the Council of Czech Government, J 17/98: 275100015.

