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ON ^-CONVERGENCE AND ^-DENSITY 

E U G E N KOVÁČ 

(Communicated by Pavel Kostyrko) 

ABSTRACT. We study tp-convergence (a special type of summabil ity method 
introduced in [SCHOENBERG, I. J.: The integrability of certain functions 
and related summability methods, Amer. Math. Monthly 66 (1959), 361 375]), 
ip-density of subsets of integers (which is equivalent to the <p-convergence of 
the set's indicator function) and 3 -convergence (convergence according to the 
ideal of all sets with <p-density zero in the sense as defined in [KOSTYRKO, P. 

SALAT, T. WILCINSKY, W.: I-convergence, Real Anal. Exchange 26 
(2000-01), 669 686]). We analyze the relation of (p-density and other types od 
densities, in particular asymptotic, logarithmic, and uniform density. We prove 
the following properties: 

• y?-density can a t ta in only values 0 and 1 (whenever it exists). 
• If (p-density exists for a set, then asymptot ic and logarithmic densities 

also exist and a t ta in the same value. 
• There is a set with <p -density zero which does not have uniform densi ty 
• There is a sequence which is (^-convergent, but the sequence of its abso

lute values is not. 
• 3 -convergence is strictly weaker t h a n ^-convergence. 

1. Introduct ion 

In [12], S c h o e n b e r g , motivated by studying integrability of generaliza
tions of the Dirichlet function introduced a special type of summability method, 
called if -convergence. According to his definition, a sequence ( . r n ) ^ = 1 of real 
numbers ^-converges to £ G R if 

ro—>-oo 71 
d\n 

}™L-^z2v(d)xd = Ç> 

where if denotes the Euler function. S c h o e n b e r g also studied its basic prop
erties and showed that (^-convergence is weaker than classical convergence and 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 40G99; Secondary 40D25, 11N37, 
11R45. 
K e y w o r d s : statistical convergence, summability , (^-convergence. 
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EUGEN KOVAC 

stronger than statistical convergence. In addition, E r d o s in [3] provided an 
example of a sequence which is not convergent, but is cp-convergent. 

In this paper we use (^-convergence to define if -density of sets of positive 
integers as a ip-limit of the set's indicator function. We study the relation of 
(/^-density to other types of densities, in particular asymptotic density, logarith
mic density and uniform density. We show that (p -density can attain only values 
0 and 1, and its existence implies also the existence of asymptotic density and 
logarithmic density, but not the existence of uniform density. Later we analyze 
the ideal generated by all sets with (^-density zero and study the convergence 
according to this ideal in the sense introduced in [6]. We show that this type of 
convergence is strictly weaker than (^-convergence. 

The rest of the paper is organized as follows. In Section 2 we recall some well-
known facts and notations. In Section 3 we illustrate the general approach how 
to create densities and ideals using infinite matrices. In Section 4 we introduce 
S h o e n b e r g ' s (p-convergence and study its basic properties. In Section 5 we 
introduce </?-density. Sections 6 and 7 contain the main results of this paper. 
In Section 6 we analyze the relation of (p-density to other types of densities. In 
Section 7 we study the ideal of all sets with (p -density zero and the convergence 
according to this ideal. 

2. Definitions, notation, and preliminaries 

Recall some well-known facts and notations. 

2.1. Asymptot i c density. 
Let i C N . If m, n G R, then A(m, n) denotes the number of elements of 

set A n [ra, n] . Then we define 

J/ A\ T • rM1,™) J, A\ ,. -4(1,n) 
d(A) = hm inf , d(A) = hm sup v ' 

and the numbers d(A), resp. d(A) we call the lower, resp. upper asymptotic 
density of the set A. If, in addition, d(A) = d(A) = d(A), then we say that the 
number 

d(A) = lim ^ ^ (2.1) 
n->oo n 

is the asymptotic density of the set A. 

2.2. Logarithmic density. 
For A C N w e define 

5(A) = \immfjl— V - , 6(A) = lim sup y ^ - Y " - , 
a£A,a<n a£A,a<n 
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and the numbers 6(A), resp. 6(A) we call the lower, resp. upper logarithmic 
density of the set A. If, in addition 5(A) = 6(A) = 5(A), then we say that the 
number 

S(A) = lim -+- V ì , 
n-+oo ln?г —•' a 

a £ A , a<n 

is the logarithmic density of the set A. 

2.3. Uniform density. 

Another type of density we focus on, is the uniform density, introduced in [1]. 
For j E N denote 

a- = min A ( m + l , m + j ) , a*7 = m a x A ( m + l , m + j ) , (2.2) 
•I m>0 m>0 

where maximum and minimum are taken for m E Z , m > 0. In [1] it is shown 
that the numbers 

ot A _ aj 

u(A) = lim —r , resp. u(A) = lim —-
j->oo j j^-oo j 

exist. We call them the lower, resp. upper uniform density of the set A. If, 
in addition, u(A) = u(A) = u(A), then we say that the number u(A) is the 
uniform density of the set A. 

2.4. Relations between densities. 

It is well known that for an arbitrary set A C N the inequalities 

0 < u(A) < d(A) < 5(A) < 6(A) < 2(A) < u(A) < 1 (2.3) 

hold. Therefore, if u(A) exists, so does also d(A) and d(A) = u(A); if d(A) 
exists, so does 6(A) and 5(A) = d(A). In particular, if u(A) = 0, then also 
d(A) = 0; if d(A) = 0, then also 5(A) = 0. It is also well known that the 
converses do not hold. As an example of a set which has asymptotic density but 
does not have uniform density we can consider the set 

B= \J {10* + 1 ,10^+2, . . . , 10^+k} (2.4) 
k=i 

for which d(B) = 0, but u(B) = 0, u(B) = 1. 
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2.5. Propert ies of the set of all prime numbers. 
Let 

P = {Pi < P2 < ' ' * < Pk < ' • • } 
be the set of all prime numbers. We will use this notation further. It is wTell 

known that J ] p~l = +00 and the series Yl P~2 converges. This implies 

n ( i - i ) = ° ' ° < n ( i - ^ ) < 1 - (--3) 
p<EP pGP F 

It is also well known that the latter product is equal to 6/TT2 . In addition, 

8(F) = d ( P ) =H(P) = 0 . (2.6) 

A proof of the equality d(F) = 0 directly follows from the prime number theorem 
(see [9; p. 217]). This directly implies 8(F) = 0. A proof of H(P) = 0 can be 
found in [1]. 

2.6. Euler function (p. 

If n is a positive integer, then (f(n) denotes the number of elements from 
{1, 2 , . . . , n} coprime to n. It is well known that if n = p^p^2 .. -p^m is the 
prime number decomposition of n > 1, then 

V(n)=n(l-j-)(l-j-)...(l-j-) (2.7) 

and (f(l) = 1. It is also well known that the function <p is multiplicative, i.e., 
if n1,n2 G N are coprime, then ( ^ ( n ^ ) = (f(nx)(f(n2). Another important 
property of the Euler function is the equality 

n = ~l<p(d), (2.8) 
d\n 

also known as the Gauss Theorem. See, for example, [9; pp. 48 50] for further 
details. 

2.7. Mobius function ji. 

For any positive integer n define 

(I if n = 1, 

џ(n) 
0 if p2 I n for some prime number p, 

(-l)r if n = qxq2 • • • qr , where qvq2,...,qr 

are pairwise different prime numbers. 

Obviously, the function /1 is multiplicative and 

-]dti(d) = (l-q1)--.(l-qr), (2.9) 

d\n 

where n = q^1 • • • qr

r is the prime number decomposition of n. See, for example, 
[9; pp. 111-113] for further details. 
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2.8. Statistical and uniform statistical convergence. 

Using asymptotic and uniform density, we can define two types of conver
gence: statistical and uniform statistical convergence. The concept of statistical 
convergence was introduced in [12] and [4], and developed in [2] and [11]. 

Let (xn)™=1 be a sequence of real numbers and £ £ M. We say that this 
sequence statistically (resp. uniformly statistically) converges to the the number 
£ if d(A£) = 0 (resp. u(Ae) = 0) for every e > 0, where A£ = {n e N : 
\xn — £| > e}. Then we also say that the sequence {xn)™=1 3d-converges 
(resp. 3u-converges)1 to the number £, and we write 3d-\\m.xn = £ (resp. 
3U-Y\mxn = £).2 The number £ we call the statistical (resp. the uniform sta
tistical) limit of the sequence (xn)™=1. 

From (2.3) it is obvious that if the sequence {xn)^=1 uniformly statistically 
converges to the number £, then it converges to £ also statistically. The converse 
is not true; consider the sequence (xn)n^=1 such that xn = x s ( n ) for all n = 
1,2,. . . , where B is the set from (2.4) and \B denotes the characteristic function 
(indicator) of the set B. 

2.9. Ideals. 

A more general type of convergence covering also statistical and uniform 
statistical convergence can be obtained using ideals on the set of positive integers. 
We say that a non-empty family of sets 3 C 2N is an ideal if it has the following 
two properties: 

(1) Heredity: If B G 3 and A C B, then Ae3. 
(2) Additivity: If A,B G 3, then AuB e3. 

We call the ideal 3 non-trivial if N ^ 3. Moreover, we say that the ideal 3 is 
admissible if it is non-trivial and it contains all finite subsets of N. 

In the following we provide some examples of ideals: 

(1) If A C N, then 2A is an ideal. For A ^ N it is non-trivial, but it is not 
admissible. In particular, for A = 0 we have an ideal 2A = 20 = {0} . 

(2) The family of all finite subsets of the set N is an admissible ideal. We 
denote it 3*. It is obvious that 3, C 3 for every admissible ideal 3. 

(3) The family of all sets with asymptotic density (resp. uniform density) 
zero is an admissible ideal; we denote it 3d (resp. 3u). Using the above 
results, it is obvious that 3U C J ^ . In addition, the set B from (2.4) is 
an element of 3d \ 3U, so 3U is proper subset of 3d. 

1 Similarly we can define 35 -convergence using logarithmic density. 
2 In literature, the notation lim s t a t x n = £ is more common than 3 d - l i m x n — £. 
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In the above examples we mentioned also some relations between ideals. In 
summary, we get 

3 / C 3 t t C 3d C 2 F (2.10) 

Based on the above, we know that all inclusions are strict. 

2.10. ^ - convergence . 
Let 3 be an ideal, (xn)n

<Ll a sequence of real numbers and £ G M. We say 
that this sequence 3 -converges to the number £ if 

4 e - { n € N : \xn - £| > e} € 3 
for every e > 0. The number £ is then called the 3-limit of the sequence (^n)^° x 

and we write 3 - l imx n = £. 
The notion of 3-convergence was introduced in [6], where its basic properties 

are also proved. For our purposes, it is enough to know that if 3 is admissible 
ideal, then 3-limit is unique. Moreover, if 3X, 32 are two admissible ideals such 
that 3X C 3 2 , then 3X-Yvmxn = £ implies 32- l im:rn = £. Since every admissible 
ideal 3 contains the ideal 3f, then lim x = £ implies3 3 - l imx = £. See [6] 

•! n—»oo 

for more details. 
If we consider ideals 3d, resp. 3U , then 3d -convergence, resp. ^-convergence 

is equivalent to statistical, resp. uniform statistical convergence. This is reflected 
also by the notation. 

Now we state and prove a proposition about 3-convergence of sequences of 
zeros and ones, which we will use later. 
PROPOSITION 2 .1. Let 3 be an admissible ideal and ( e i 17 (#n)£° i is a 
sequence of zeros and ones such that 3-\imxn = £. then £ G {0,1}. 

P r o o f . Using the assumption, we have A£ = {n G N : \xn — £| > e] G 3 
for each e > 0. If £ £ {0,1}, choose e = min{ | |£ | , ^ | 1 -£ | } > 0. If xn = 0, 
then \xn - £ | = |£| > | | £ | > e, so n G A£. If xn = 1, then |a,n - £| = |1 - £| > 
2II ~~ £1 -̂  £ ' a n d so n G A£ . We obtained A£ = N, which means that N G 3. 
However, this is a contradiction with the non-triviality of the ideal 3. • 

2.11. Infinite matrices and summabil i ty methods . 
Recall the notion of matrix summability methods as described in [10] and [5]. 

Let 

' ~~ V/nk)n,k=l 

( ^ l l * 1 2 

^21 ^22 

^nl ^n2 

1/c 

2k 

• \ 

vnk 

V : 

(2.П) 

ì 
3 This is based on the fact tha t 3*-convergence is equivalent to classical convergence. 

334 



ON (^-CONVERGENCE AND (^-DENSITY 

be an infinite matrix whose elements are real numbers. Further, we will simply 
denote a sequence (xn)n

G
=1 as x , i.e., x = (xn)n

<
=1. For n = 1,2, . . . construct 

the following series 
oo 

2/„ = £ W V (2-12) 
k = l 

Whenever all these series converge, we obtain a new sequence y = (yn)n
<

=1 and 
we write y = T x . If, in addition, lim y = £, then we say that the sequence 

n-»oo 

x is T -summable (summable by matrix T) to the number £. Then, the number 
f is called T -limit of the sequence x; write T-lim.Tn = f. Moreover, we say 
that the matrix T is regular if every convergent sequence x is T-summable and 
T- l imx^ = lim xn. 

n n-»oo n 

The following lemma (known as the Toeplitz Theorem) contains necessary 
and sufficient condition for regularity of a matrix (see [5; p. 43, Theorem 2]). 
LEMMA 2.2. Matrix T = (tnk)n

<>
k=1 is regular if and only if the following three 

conditions hold: 
(1) There exists M > 0 such that for every n = 1,2, . . . the following 

inequality holds: 

J2\tnk\<M; 
k=i 

(2) lim tnk = 0 for every k = 1, 2 , . . . ; 
n—> oo 

oo 
(3) lim E í n * = -

n—юo k=l 

R e m a r k 2.3. An interesting question is whether there is a matrix by which 
every sequence of real numbers is summable. The answer to that question is 
negative. S t e i n h a u s in [13] proved a stronger result that for any regular 
matrix T there exists a sequence of zeros and ones which is not summable by 
matrix T . 

3. Densities created by matrices 

In this section we study the relation between infinite matrices and ideals. Let 
T = (tnk)n

<>

k=1 be non-negative4 regular matrix. Let A C N be an arbitrary set 
and XA l^s characteristic function. Then, the series 

h^(A) = J2tnkXA(k), n = l,2,..., (3.1) Jn) 

fe=l 

4This means that all its elements are non-negative real numbers. 
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converges. This we obtained using the condition (1) from Lemma 2.2. Moreovei. 

from the condition (3), we get lim /i^ (N) = 1 for every n G N. 
n->oo ' 

DEFINITION 3 .1 . Let T = (trik)n°k=1 be a non-negative regular matrix and 

A C N. Denote h{
T

 ](A) as in (3.1). If the limit 

» / hT{A)= lim h£'(A), 
n—»oo ' 

exists, then the number hT(A) is called T-density of the set A. 

R e m a r k 3.2. Obviously, hT(A) is only another notation for T - l i m \ {(n) 

E X A M P L E 3.3. If we consider matrix T to be 

(3.2) 

Í1 1 0 0 0 0 . . . 

2 
i 
2 0 0 0 . . . 

1 
3 

1 
3 

1 
3 0 0 . . . 

1 1 i 1 0 
1 4 4 4 

A 

we obtain the asymptotic density.5 The matrix Td is in the literature usualh 
called the Cesaro matrix. 

R e m a r k 3.4. According to Remark 2.3 for every non-negati\e regular matrix 
T there exists a set which does not have T-density. If wTe consider a sequence 
(xj->)n> i °f z e r o s a n d ones which is not summable by matrix T, then the set 
{n G N : xn = 1} does not have T-density. 

The following proposition describes basic properties of densities defined 
above. Its proof is routine and we leave it out. 

PROPOSITION 3.5. Let T = (tnk)n
<)

k=1 be a non-negative regular matrix and 

A, B C N. Then the following statements hold: 

(1) If hT(A) exists, then 0 < hT(A) < 1. 
(2) IfACB and hT(A), hT(B) exist, then hT(A) < hT(B). 
(3) IfACB and hT(B) = 0, then also hT(A) = 0. 
(4) / / hT(A) = hT(B) =0, then also hT(AuB) = 0. 
(5) If hT(A) exists, then also hT(N\A) exists, and hT(A)-\-hT(N\A) - 1. 

R e m a r k 3.6. The last proposition directly implies that the family of sets 3h = 
{A C N : hT(A) = 0} is an ideal. In addition, the condition (2) from Lemma 2.2 
implies that 3hT is admissible. 

5 Similarly we can obta in the logarithmic density. 
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DEFINITION 3.7. Let T be a non-negative regular matrix and hT be T-density. 
Then we say that the ideal 3h = { A C N : ^ T ( ^ ) = 0} 1S created by the ma
trix T . 

Using the ideal 3h , wre can also define 3h -convergence. Here, we can ask 

about the relation of T-summability and 3h -convergence. 

THEOREM 3.8. Let T = (tnk)n
<)

k=1 be a non-negative regular matrix, x = 
(,cn)n° 1 be a sequence of real numbers, and £ £ R. Then, the following state
ments hold: 

(1) If T-l im \xn — i\v — 0 for some p > 0 , then 3h - l imx n = £. 
(2) If the sequence x is bounded and such that 3h -\\mxn = £, then 

T - lim \xn — £|p — 0 for each p > 0. 

P r o o f . We will prove each part separately. 

(1) For e > 0 denote A£ = {n e N : \xn - f | > 6:} and let 

oo 

^ = E*nfcl^-^lP for n=l,2,.... 
k=l 

Using the assumption, we get lim zn = 0. Obviously, 0 < hT (A£) for every 

n 1 ,2 , . . . . Using the following sequence of inequalities we get an upper bound: 

h(T](A)=~tnk= ~tnk 
keA£ k: \xk-^\>e 

- — V t ЄP 

~ єp Z- nk^ 
k: \xk-ţ\>є 

- ~£P /-- ^nk\Xk ~ £1 
k: \xk-І\>є 

1 °° 1 
- TpÁ-^^nk \Xk ~ £1 ~ Tp~Zn-c-p / , j nK \ K ^> I pp 

k 1 

Altogether, we have 0 < h{
T\A£) < zjev, and so hT(A£) = lim h{

T
](A ) = 0. 

This means that A£ G 3h for each e > 0, and therefore 3h - l imx n = £. 

(2) Let L > 0 be such that \xn\ < L for every n = 1 ,2 , . . . . For p > 0 
denote Lp = (L + |C|)P - Then, obviously |xn - £|p < Lp for ra = 1, 2 , . . . . In 
addition, from the regularity of the matrix T and from the condition (1) from 

oo 

Lemma 2.2, we obtain that Yl \tnk\ — ̂  f° r s o m e M > 0. 
k=i 
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Denote A£ and zn in the same way as in the previous part. According to the 

assumption, we get lim /W (A ) = 0. The non-negativeness of the matrix T 
n—>-oo ' 

implies 0 < zn for every n = 1, 2 , . . . . An upper bound for zn is obtained using 
the following inequalities: 

Zn — 2-^tnk\Xk £1 -t=\p 

k=l 

k:\xk-£\>e k:\xk-£\<e 

< £*„*-> + ̂ " 
k: \xk-£\>e 

= Lph%\Ae) + Me*. 

Taking n —•> oo, we get 

0 < lim inf zn < lim sup zn < Mev , 
n-+oo n—>oo 

which holds for every e > 0, and hence lim z = 0. 
n—>oo 

The proof is complete. 

THEOREM 3.9. Let T = {tnk)n^k=l be a non-negative regular matrix. Then for 
each sequence x = {xn)n

<L1 of real numbers and for each £ E R, the following 
statement holds: If T - l i m | x n — £\ = 0, then T - l i m x n = £. 

P r o o f . For any K eN we can write 
K K K 

Y,tnkXk = J2tnk(xk - 0 + ̂ t n k . 

D 

k=i к=l k=l 

Since the series Yl tnk\xk — (\ converges, so does also the first term on the right-
k=i 

hand side (for K -> oo). The second term converges because of the regularity 
of the matrix T , using the condition (1) from Lemma 2.2. Therefore the limit 
of the right-hand side, and also of the left-hand side, exists and the following 
equality holds: 

oo oo oo 
YstnkXk=^2tnk(xk-0+ZJ2tnk, 
k=l k=l k = l 

for n = 1,2,... . Hence 

£í„fcZfc-£ < £<„*(**-£) 
k=l к=i 

oo 

+ IÍI 7 Jnk 
k=l 

<£*„*Ҝ-ei + lei • £*„*- ! 
k=l k=l 
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For n -> oo, the right-hand side converges to 0 . Therefore also the left-hand side 
oo 

converges to 0. We obtained lim Yl tnk
xk = £> which means T - l imx = £. 

D 

COROLLARY 3.10. Let T = (tnk)n
<>k=i be a non-negative regular matrix. Then 

for every bounded sequence x = (xn)n=:1 of real numbers and ( G R , the follow
ing statement holds: If 3h -lima;n = £ ; then T- l im .rn = £ . 

P r o o f . The statement is a direct corollary of Theorem 3.8.(2) and the 
previous theorem. • 

Remark 3.11. The converse statement to the statement from the previous 
theorem does not hold, for example, for the Cesaro matrix Td from Example 3.3 
and the sequence ((—l)n) . We can easily check that T d - l im (—l) n = 0, but 
T, - l im | ( - l ) n -0 | = T,-nirml = l. 

4. (p-convergence 

In this section we study a special matrix summability method also called 
(p-convergence. It was introduced by S c h o e n b e r g in [12]. To define it, con
sider the infinite matrix <3> = ((/>nk)n k=1 such that 

f -4--1 if k|n, 

In [12], S c h o e n b e r g proved that the matrix <fr is regular and he called the 
$-summability a (p -convergence. 

DEFINITION 4 . 1 . Let x = (xn)n
<

=1 be a sequence of real numbers and ( G R . 
We say that this sequence cp-converges to the number £ if $-lim.Tn = £, i.e., 
if lim yn = £, where 

v „ 4 E ^ ^ (4-2) 
d\n 

The number £ is then called the ip -limit of the sequence x and we write 
(p-\imxn = £. 

From the regularity of the matrix $ we obtain that lim xn = £ implies 
n-»oo 

(p-\imxn = £. The following example shows that the converse is not true. We 
introduce a sequence which is cp-convergent, but is not convergent. The problem 
to find such sequence was formulated by Salat and Strauch as problem 6090 in 
AMM 1976, p. 385. The following example contains the solution submitted by 
E r d o s in [3]. 
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E X A M P L E 4.2. Let P = {px < p2 < • • • < pk < . ..} be the set of all primes. 

Let 

c" = {o 
1 if n = 2 • 3 • 5 • • • pk , 

otherwise. 

Then the sequence x = (xn)n
<)

=1 is not convergent, but it is (^-convergent. See 
[3] for details. 

The following lemma contains an interesting result about convergence of cer
tain subsequences of a (/?-convergent sequence. Its proof can be found in [12; 
Theorem 2]. 

LEMMA 4.3. Let x = (xn)n
<)

=1 and £ E __ 6e such that (p-\imxn = £. and let 
ini)i^i be an increasing sequence of positive integers. Then, 

l i m i n f - ^ - - > 0 (4.3) 
i-+oo n • 

implies that 

. i m xn< = £ • 
z—>oo z 

The previous theorem can be used as a criterion whether a sequence is not 
^-convergent. We illustrate it on the following example from [12; p. 367, Re
mark 1]. 

EXAMPLE 4.4. Consider the sequence (xn)^=1 such that xn = Xp(n) > n ~ 
1,2,. . . . Then 

and since 

Lemma 4.3 implies that this sequence is not (^-convergent. 

Now we focus on the relation between (/?-convergence and 3-convergence, 
where 3 is an admissible ideal. The following theorem contains a sufficient con
dition for 3 so that every (^-convergent sequence is also 3-convergent. Its proof 
is a generalization for the proof for the ideal 3d in [12]. 
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THEOREM 4.5. Let 3 be an admissible ideal containing every set S = {n1 < 
n2 < - - - < ni < . . . } C N such that 

lim - - - - - - - = 0 . (4.4) 
z—>-oo n • 

Then for every sequence (xn)n
<)

=1 of real numbers and for every £ G R the 
following statement holds: If (p-limxn = £, then 3-l imirn = £. 

P r o o f . For e > 0 consider the set A£ = {n G N : \xn — f| > £ } . It 
is sufficient to prove that A£ G X If A£ is empty or finite, then obviously 
A G 3 , because 3 is admissible ideal. Further assume that A£ is infinite and 
let A£ — {n1 < n2 < • • • < n{ < . . . } . Then the equality lim x — £ does not 

z—>oo r 

hold. From Lemma 4.3 we obtain 

l i m i n f ^ = 0 . 

We will prove by contradiction that the condition (4.4) holds. Otherwise, 

u)(n) 
lim sup ^-^- > 0 , 

2—>oo T^i 

and there is a subsequence (nf
i)

(^zl of the sequence (ni)
<^1 such that 

l i m i n f ^ > 0 . 
2->oo n\ 

Then, from Lemma 4.3, we get lim x , — £. This is contradiction, because the 
2—>CO * 

definition of A£ implies that \xn, — £\ > e for each i G N. So, we have proved 

that the condition (4.4) holds. Therefore, by assumption, A£ G l D 

The following lemma says that the ideal 3d fulfills the sufficient condition 
from the previous theorem. Its proof can be found in [12; Lemma 2, Theorem 3]. 
The lemma implies that every (p-convergent sequence is also statistically con
vergent. 

LEMMA 4.6. If S C N. S = {n1 < n2 < - - • < n- < . . . } is such that 
lim (p(n-)/n- = 0. then d(S) = 0. 

i->oo 

COROLLARY 4.7. Let (xn)n
<)

=1 be a sequence of real numbers and £ G 1 . If 
(/9-limxn = £, then also 3^-lim.xn = £. 
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5. (^-density 

In this section, we focus on a particular type of density based on p -conver
gence. To define it, we use the approach from Section 3. Consider the matrix 
$ as defined in (4.1). This matrix is non-negative, regular and has finite rows 
(i.e., each row contains only a finite number of non-zero elements). Let A be 
an arbitrary subset of N and let XA: ^ ~~̂  (0> 1} ^ e its characteristic function. 
Denote 

d?)(^) = i E ^ d ) ^ W . n-1,2,.... (5.1) 
d\n 

DEFINITION 5 .1 . Let i C N . Denote d^(A) as in (5.1). If the limit 

d^A) = lim d^(A) = lim i- ^ W X A W (5-2) 
^ n—>-oo ^ n—»>oo U --—-*/ 

d\n 

exists, then the number d (A) is called the p-density of the set A. 

In other words, (^-density is the same as $-density, and obviously also the 
same as the (^-limit of the sequence {xA(n))n=i' Basic properties of ^-density 
are given by Proposition 3.5. 

E X A M P L E 5.2. Let P be the set of all prime numbers. Consider the set 

JS = {2 < 2 - 3 < - - - < 2 - 3 - - - p i f e < . . . } . 

Example 4.2 shows that d (E) = 0. Therefore E is an infinite set with (/^-density 
zero. 

Now, we examine the image of cp-density. Consider first the sets of ip-density 
zero. According to Proposition 3.5, the family 3 = [A C N : d (A) = 0} of 
all sets with (^-density zero is an ideal. Note that 3 is just another notation 
for the ideal 3h in the sense of Definition 3.7. 

For asymptotic density it can be shown that, for each t G [0,1], there is a 
set A C N such that d(A) = t. However, a similar statement does not hold for 
ip-density, as the following theorem shows. 

THEOREM 5.3. If A C N is such that d (A) exists, then d (A) G {0,1}. 

P r o o f . Consider a sequence (xn)n=:1 such that xn = XA(U) ^or n — 
1,2, . . . . Then p-\\mxn = d (A), and from Corollary 4.7 we get that 3^-l imx^ 
= d (A). In addition, (xn)n=:1 is a sequence of zeros and ones which, according 
to Proposition 2.1, means that d(f(A) G {0,1}. • 

COROLLARY 5 .4. Let A C N be such that d (A) exists. Then either d (A) = 0 
(i.e., Ae3^) ord^(N\A) = 0 (i.e., N \ A G 3 J . 

342 



ON (^-CONVERGENCE AND (^-DENSITY 

6. The relation of ^-density and other types of densities 

In this section we explore the relation of tp -density and other types of densities 
introduced in Section 2. We show that if a set has (^-density, then it has also 
asymptotic density (therefore also logarithmic density) and they are equal. This 
statement was proved already by S c h o e n b e r g in [12]. Moreover, we show 
that there is a set which has asymptotic, logarithmic and uniform density, but 
it does not have (^-density. We also construct a set which has <p -density, but 
does not have uniform density. This construction was first time introduced in 
author's Master's Thesis [7]. 

THEOREM 6.1. Let A e N be such set that d (A) exists. Then d(A) also 
exists and d(A) = d (A). 

P r o o f . Consider a sequence (xn)n

<_1 such that xn = X^( n ) f° r n — 
1,2,... . Then </?-limxn = d (A). Moreover, Corollary 4.7 yields 3d-Y\mxn = 
d(p(A). Then, using Example 3.3 and Theorem 3.8, we get Td- lim \xn - d (A)\ 
= 0. In addition, Theorem 3.9 yields 

n 

lim — У^ x- = T . - lim x„ = d л (A). 
„-юo n -^ г d n ^ v J 

i=l 

According to the definition of the sequence (xn)n

c

=l, the term on the left-hand 
side is equal d(A). Thus we obtain that d(A) exists and d(A) = d^(A). • 

COROLLARY 6.2. Let A G N be such set that d (A) exists. Then 5(A) also 
exists and 5(A) = d (A). 

COROLLARY 6.3. The following statement holds: 3^ C 3d C 3d . 

E X A M P L E 6.4. We introduce a set which has uniform density (and therefore also 
asymptotic and logarithmic density), but does not have (/?-density. Consider the 
set P of all prime numbers. According to (2.6), the equality 5(f) = d(P) = 
u(F) = 0 holds. Moreover, according to Example 4.4, the set P does not have 
(/?-density, which means that none of the following inclusions 3d_\3^, 3S C 3^ , 
3U C Jv holds. 

THEOREM 6.5. There exists a set B such that d (B) = 0. but u(B) does not 
exist. 

P r o o f . First we construct a sequence (zk)
(^_1 of positive integers using 

the following steps. For k = 1 define zx = 7. If we have constructed the 
numbers z1,...,zk_1 (k > 2), we define mx(k) = 1 and using induction, we 
construct the numbers ra-^fc),... ,mk+l(k). Having constructed the numbers 
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ra1(fc),...,ra^fc) (where i < k), there exists a positive integer mi+\(k) such 
that rai+1(fc) > ra^(k) and 

m i+i(/e)-l 

n (I-£)<F--
j=mi(k) J 

Moreover, for z = 1, 2 , . . . , k denote 

mi+1(k)-l 

ai(k) = 1 1 Pj = ^( f t lr 'miW+l ' ' 'Pm i+i(A)-l ' 
j=mi(k) 

Then 
t / i \ \ mi+1(k)-l 

a.(k) 1JL V p 7 J k-2k' [ } 

*v } j=rm(k) y j 

Then, for all positive integers i, / such that 1 < i < I < k, the equality 
(a{(k), at(k)) = 1 holds, where (6, c) means the greater common divisor of 
integers b, c. According to the Chinese reminder theorem, there exists a positive 
integer zk such that 

zk=i (mod a{(k)) for i = l ,2 , . . . , f c , (6.2) 

and 

% > ^ _ i • (6-3) 

Then, for every z = l , 2 , . . . , f c w e have a{(k) \ zk — i, which implies 

<f(zk ~ 0 < ^(Q»(fc)) . _ J _ r f i 4x 

z f c - i " 0<(fc) < f c - 2 * - ^ j 

Having constructed the sequence {zk)k^=l, consider for every fceN the set 

Bh = {zk-i: * = 1,2 fe}. (6.5) 
Using (6.4), we obtain 

n k-2* 
oo 

Now, define J? = |J JBfc. We can easily see that for a- , a-7 from (2.2), the 
k=i 

equalities a- = 0 , a J = j hold for every j G N. Then u(B) = 0, u(B) = 1, 
which means than the set B does not have uniform density. 

Consider a sequence (xn)n
<

=1 such that xn = XB(n) ^or n = 1,2, . . . • We 
will show that (f-limxn = 0, i.e., 

n 
d\n 
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For given n G N (n > z1), there is unique k G N such that 

zk<n< zk+1 . (6.8) 

Then we can rewrite (6.7) as 

k-i 

yn = \ E E ^ ) ^ + i E vWxd + \ E ¥>(<*)*<. < (6-9) 
i = 1 d£Bi,d\n dEBk,d\n d£Bk + 1,d\n 

where xd — 1 for d G L>. For each of the above sums we will find an upper 
bound. Using (6.5) and (6.6) for i = 1. 2 , . . . , k we get 

d£Bi,d\n deBi d=Zi-i (6.10) 

= 1 j rf < *i 1 

rc z • 2Z ~ n 2l ' 

Moreover, using (6.3) we obtain 

£l < £*=! < _ L for i = l , 2 , . . . , k - l , (6.11) 

which yields 

-- y y(d)xd < -^. -i < _L_ . JL . 
deBi,d\n K L 

Then we get an upper bound for the first sum from (6.9): 

ig Erf^g-^.J,^. (6.12) 
t = l d£Bi,d\n i=l / c _ i * * 

Moreover, using (6.10) and (6.8) we obtain an upper bound for the second sum 
from (6.9): 

1 £ V(d)xd <^-±<±. (6.13) 
d£Bk, d |n 

Now consider the third sum from (6.9). Obviously, if d \ n for some d G Bk+l , 
then necessary d = n. In this case 

1 y mXd _z^__< — ? _ ^ , ( 6 . 1 4 ) 
n - ^ ^v ; d n ~ (k + l)-2k+l ' v ; 

dGB fc + i , d | n v J 

because n G I?fc+1 • Otherwise, i.e., when d\n for all n G I^fc+1, the above sum 
is equal to zero. 
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Now, to find an upper bound for yn, we just consider upper bounds for the 
sums from (6.9). Using the inequalities (6.12), (6.13), and (6.14), we obtain 

1 _1_ 1 
" Vn ~ zk_x

 + 2* + (fc + 1) • 2^+i • 

At the same time, (6.8) implies that if n —> oo, then k —>• oo and also zk -> oo. 
Therefore the right-hand side of the last inequality goes to zero when n -» oo. 
This means that lim y = 0, and therefore (/?-lima; = 0, which concludes the 

n—)-oo 

proof. • 

7. The ideal of all sets with (/^-density zero 

In this section we analyze in detail the ideal 3 = {̂ 4 C N : d (A) = 0 } . 
We start by considering those subsets of N for which (4.4) holds. Their close 
connection to ip-convergence was indicated in Section 4. Later, we analyze the 
relation of 3 -convergence and (^-convergence. 

THEOREM 7 .1 . Let S C N. S = {nx < n2 < • • • < n• < . . . } be such set that 
liminf (p(n-)/n- > 0. Then, for every set A G 3 , the set A n S is finite. 

i—»oo ^ 

P r o o f . Denote xn = XA(U) for n = 1, 2 , . . . . If d (A) = 0, then, using 
Lemma 4.3, we get lim x„ = 0 . Since (x„ ) ^ is a sequence of zeros and ones, 

n->oo ni rii'i—J. 

there exists i0 G N such that xn. = 0 for any i >i0. Therefore, ni <£ A, which 
means that the set A n S is finite. D 

For an arbitrary e > 0 denote F£ = {n G N : ip(n)/n > e}. Let 3S be the 
family of all sets S C N for which the following statement holds: For any e > 0, 
the set 5 f l F £ is finite. Obviously, S C N is an element of 3S if and only if 5 
is finite or /S is infinite, S = {n1 < n2 < • • • < ni < ... }, and 

l im fVL- iim -^- = o. 
n—>-oo,nES n i—>-oo n -

Now we examine the relation of the ideal 3 and the family of sets 3S. 

PROPOSITION 7.2. The family of sets 3S is an admissible ideal. 

P r o o f . The family 3S contains all finite subsets of the set of all positive 
integers, so it is non-empty and if it is an ideal, it is also admissible. 

Let S G 3s, S' C S. Then for each £ > 0 w e obtain S' n F£ C S n F£, which 
is a finite set. Therefore also S' G 3 5 , which proves the heredity. 

Now, consider sets S, S' G 3 5 and an arbitrary e > 0 . By assumption the sets 
S n F ; , S'nF£ are finite. Therefore, also the set (SuS')nF£ = ( S r n F J U ( 5 , n F £ ) 
is finite, which yields S U Sf e3s and proves the additivity. • 
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THEOREM 7.3. The ideal 3 is a subset of 3S, but 3S is not a subset of 3 . 

P r o o f . Let A G 3 . If A is finite, then A G 3S. Now consider A to be 
infinite, and let A = {nx < n2 < • • • < n{ < ...}. Obviously, 

0<^<±^(d)xA(d) = d^(A). 
^ ^ din, 

For i -^ oo, the right-hand side converges to 0, so lim v , ( n , ) / n , = 0 and 
i—>oo 

AG3S. 
Now we provide an example of a set which is an element of 3S\3 . Let P 

be the set of all prime numbers. For any k G N denote 
Bk = {2^3^---pa

k
k: ava2,...,ake{l,2}} (7.1) 

OO 

and let B = \J Bk. Then for every k G N and for every n G Bk: 
k=ï 

¥>(») MX-ł)-^)-n V -V\ d/ V pk 

Thus 

lim ^ = 0. 
n—>-oo,n~B n 

Now we will show that d (B) does not exist. Consider n = 2 • 3 • • -pk for 
some k G N. Then 

fc d|2-3-P f c 

= 2 - 3 1 - - p f c [ ( 2 - 1 ) + ( 2 - 1 ) ( 3 - 1 ) + --- + ( 2 - 1 ) - - - ( ^ - 1 ) J ' 
which implies that d^n^ (5) —>• 0 for n —r oo, n = 2-3 • • -p ,̂; see also Example 5.2. 

Now consider n = 2 2 • 3 2 • • • p\ . Then 

4 П ) ( I ? ) = 2 2 21 „2 £v>(<0XB(n) 
1 ' Ó "Pk J l02 ,2...„2 -.2--3--P2 

^ 2--3- l--Pg E ^ ) 
2 6 Pk d£Bk 

k K d'\23--pk 

= 2TF^-(1-5)(1-5)-(1-s)(1 + 2 ) ( 1 + 3 ) - < 1 + " « ) 

= K ) K ) - " K T 
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Above, for d G Bk , we expressed (p(d) = d- (1 — 1/2) • • • ( ! — l/pfe) = d! -2 • • -pk • 
(1 - 1/2) • • • (1 — l/p f e), where d' = d/(2 • • -p^) is an arbitrary divisor of 2 • • -pk . 
We also used that £ d! = (1 + 2)(1 -f 3) • • • (1 +pk). Thus d ^ ( £ ) cannot 

d'|2-3-pfc 

converge to 0 when n —r oo, n = 22 • 32 • • -p\ , because of (2.5). 
The above results imply that lim d^(B) does not exist, and so the set B 

does not have (D-density. • 

Now we analyze the relation of 3 -convergence and (/?-convergence. Refor
mulating Theorems 3.8 and 3.9 we obtain the following theorem. 

THEOREM 7.4. Let (xn)n
<!=1 be an arbitrary sequence of real numbers and 

£ G M. Then: 

(1) If (p-\\m\xn-£\ = 0 , then 3^ - l imx n = f. 
(2) If (xn)n°=1 is a bounded sequence such that 3 - l imx n = £, then 

cp-\im\xn - £| = 0. 
(3) If ip - lim \xn — £| = 0 . then ip - lim xn = £. 

As we can see, for each bounded sequence, 3 -convergence implies (/?-conver
gence. Now we will prove that the converse does not hold. 

THEOREM 7.5. There exists a bounded sequence (xn)n^
>_1 such that (p-\imxn 

= 0 . but <p-lim|xn | does not exist. 

P r o o f . For k = 1, 2 , . . . denote 

Bk={2^T*---pa
k»: a 1 , a 2 , . . . , a f c G { l , 2 } } , 

analogically as in (7.1). Further let 

B+ = { 2 ^ 3 Q ' . - - p ^ € B f c : 2 | a , + a 2 + • • • + ak} , 

Bk- = {2QW---pa>eBk: 2 { a 1 + a 2 + ••• + a f e } , 

OO OO 

and denote B+ = \J Bk and B~ = |J Bk . Consider the sequence (xn)n° l 
k=l k=l 

such that 
1 if n G B+ , 

X „ = < - 1 i f n G B " 

0 otherwise. 

In the proof of Theorem 7.3 we have also proved that cp- lim \xn\ does not exist. 
Now we will show that (p-\imxn — 0. 

For a positive integer n let k(n) G N be the greatest integer such that n is 
divisible by first k(n) primes. In case 2\n let k(n) = 0 and 2 a i 3 Q 2 • • -pQfc = 1. 
Then there is a unique dn G N such that n — 2 a i 3 a 2 • • 'Pk(n

n)dn, where 
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« 1 } a 2 , . . . ,ak G {1,2} and if ai = 1, then p\ \ n. In other words, c^ = 
min{2,max{a G Z : a > 0, p\ | n}} for any i = 1,2,..., k(n). In this 

case also denote 7rn = 2 a i 3 a 2 

Let y = $ x , i.e., (4.2) holds. Then 
Pk(n) ' 

Уn = ІY, f(d)xd = j--^Y, <p(d)xd 
d\n d\n 

(7.2) 

n n i = l d|7rn,dG_3. 

Obviously, d | 2ai3a2---pai for any d | n such that d £ B{. Consider an 
arbitrary n' G -9i and let n' — r\- • • rf r-+ 1 • • • ri, where ( r l 9 . . . , r{) is some 
permutation of primes 2 , 3 , . . . , ^ . For simplicity assume that rx < • • • < rl 

and rl+1 < • • • < r •. Now, if d \ n', d e B{, then d = rx • • • r • • d', where d' 
is some divisor of rx- • -rr Obviously, this defines a bijection between the sets 
{d G N : d | n ' , d G J3J and {d' G N : d' | r-_ • • - r - } . Moreover, £d = (-l)*li(d') 
and </?(d) = (rx - 1) • • • (ri - l )d ' . Further we obtain 

J2 <p(d)xd = rr • • • rt (l - I-) • • • (l - 1) £ dV^'X-l)^ 

_ ( r i _ i ) . . . ( r . _ i ) . ( r i _ i ) . . . ( r i _ i ) . ( _ i ) * - ' 

= ((r. - 1) • • • (r, - I ) ) 2 • (r J + 1 - 1) • • • (r, - 1) • ( - 1 ) - ' . 

In the second equality we used (2.9). For simplicity denote k — k(n). Then 

1 k 

d\n :|7r„, deB i 

лC 

= ^г У " ( 2 - l ) a i (3 - 1)Q 2 • • • (PІ ~ l ) Q i 

- » ѓ=_l 2 a i 3 

fc 

-E('-èГO-iГ-(»-^Гяif^ 
sëгЗïг+ЫЭí'-.)---^) 

i = l 
Pi+Г--Pk 

_.(__ + _____ + ... + I ) + TT (i _ 1 ) 
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^ + . + .W---)H>-á) 

For k = 1,2,... denote 

p * 

^ 2 pfe 11 v Iv 

and we obtain that qk—*0 for k —> oo. Thus 

1 
,2/J < l~Qk{n) ' 

and if n —> oo, then either d -» oo or fc(n) —> oo. This means that lim H = 0, 

and therefore cp - lim xn = 0 . D 

COROLLARY 7.6. There is a bounded sequence of real numbers (xn)n
<

=1 such 
that cp - lim xn — 0. but 3 - lim xn does not exist. 

P r o o f . Consider the sequence (xn)n
<

=1 from the previous theorem. If 
3 -limxn = £, then using Theorem 7.4 we obtain cp~lim\xn - £| = 0, and 
also ip-limxn = ĉ . This means that £ = 0, and therefore (^-lim|.Tn| = 0, 
which is a contradiction with the choice of the sequence (xn)n

<Ll. • 
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