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ABSTRACT. Let .A/f* (R) denote the set of all 2-sided equivalence (associate) 
classes of non-singular n x n matrices over a given principal ideal domain R. For 
various domains R arising in algebraic number or function theory, asymptotic 
estimates are obtained for the average or the tota l number of classes of large 
"norm" or "degree" in A4*ri(R) . 

1. Introduction 

Let Mn(R) denote the ring of all n x n matrices with entries in a given 
principal ideal domain R. In the theory of integral matrices (cf. N e w m a n [6]), 
special attention is frequently paid to the set Ain(R) of all (2-sided) equivalence 
classes A of matrices A in Afn(it), under the relation ~ such that A ~ B if 
and only if A = UBV for some units U, V in Mn(R). 

Usually this is done when R satisfies certain finite norm conditions as speci­
fied below, and in this paper we shall also confine attention to the subset Mn(R) 
of all equivalence classes of non-singular matrices in Mn(R). 

The finite norm conditions to be imposed on R are: 

(VI) for every element a ^ 0 in i t , the norm, N(a) := card ( i t /a it) < oc; 
(1.2) for every integer k > 1, the total number 

R(k) := # { Non-associate a G R: N(a) = k} < oo . 

Given condition (1.1), which implies N(ab) = N(a)N(b) by [6; p. 4], it will 
be useful later to note that (1.2) is then equivalent to: 

(.1.3) The multiplicative semigroup GR of all associate classes a of non-zero 
elements a E R forms an arithmetical semigroup in the sense of [2], 
under the extended norm N(a) := N(a) . 

AIMS S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 15A33, 15A36, 15A54, 11M4V 
! 1H12. 14G10. 

K e y w o r d s : Equivalence class of matrices, Non-singular matrice , Finit norm condition. 
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Under the above conditions on 12, it is sometimes useful to consider the 
formal zeta function 

oc 

CR(3)= £ N(a)-* = j2mk-*. 
a£GR k=l 

Now define a norm function || || on A4n(R) by 

\\A\\ = \\A\\=N(det(A)), 

and formally write 

oc 

CR)(S)= Y, \\A\r = Y,R{n)(k)k~°-
A£M+}(R) k = l 

where 
RW(k) = #{AeM;t(R): \\A\\ = k}. 

The main aim of this paper is to derive asymptotic estimates for the average 

— Yl R^n'(k) or for R(n\k) itself under certain extra assumptions about R. 
x k<x 

which are always satisfied if R happens also to be 

(i) the ring of all algebraic integers in an algebraic number field A'. or 
(ii) the ring of all integral functions in a given algebraic function field A" 

in one variable over a finite field ¥q , 

respectively. 

Our arguments will make use of: 

(1.4) LEMMA. The non-singular matrix zeta function 

C{
R

)(s)=(R(s)(R(2s)...CR(ns). 

P r o o f . By the Smith Normal Form Theorem (cf. [6; p. 26]). every non-
singular matrix A in AIn(R) is equivalent to a diagonal matrix of the form 

S(A) — diag[Oi, flitto,---, OiO2 .. . an] . 

where the a., ^ 0 in R are unique for A up to associates in R. Hence 

(ietUl) = a.\'a"~[ . .an . 
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I t fo l lows t h a t 

oc 

CJr'W = Y1*{A 6 Mn(R) : p | | = k}k~> 
k=l 

OC 

= Yl #((5i' • • •. O e GJ : N(anan-l ...an) = k}k~' 
fc=i 

= ( £ *(«.)-")( £ Ar(a2)-("-^)..f £ % ) - ) 

= C«MCfl((n-l)s)-.-Ci.(s), 
recalling the multiplicative property of jV and the definition of || || above. 

(1.5) COROLLARY. When R — 7L, the non-singular zeta function for matrices 
of rational integers 

4n)(*) = C(s)C(2T.C(nT 
where ((s) is the Riemann zeta function. 

This special case has been used previously by B h o w m i k [1]. We also note 
two further corollaries: 

(1.6) COROLLARY. If the principal ideal domain R is the ring of all algebraic 
integers in a given algebraic number field, K, then 

CR
n)(s) = CK(sKK(2s)...(K(ns), 

where CK(*>) i>s the Dedekind zeta function of K. 

(1.7) COROLLARY. If Rq == ¥q [t] is a polynomial ring in an indeterminate t 
over the finite field ¥q with q elements, then 

cS^ПO-v-T1 

r = l 

P r o o f. This corollary is a consequence of Lemma 1.4 and the fact that the 
special domain Rq — ¥q[t] has zeta function 

oc 

Ci<,>)=£9m-<r"" = (1-c71-T1-

N o t e . Although a theory of generalized, semi-diagonal "Smith normal 
forms" has been developed for matrices over an arbitrary Dedekind domain R 
(cf. N a r a n g & N a n d a [5]), this paper will confine attention to the simpler 
diagonal forms available in the case of a principal ideal domain. 
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2. Rings of algebraic integers 

In this section, it will be assumed that the principal ideal domain R is also 
the ring of all algebraic integers in a given algebraic number field K. We then 
have: 

(2.1) THEOREM. The numbers 

Rtn\k) = #{AeMn(R): \\A\\=k} 

have asymptotic mean-value 

n 

lim ^ f i ( n ) ( fc) = ^ n ^ ( r ) -
x —> oc X *-—^ -- --

k<x r=--2 

where CK(S) is ^ie Dedekind zeta function of K and AK > 0 is a constant. 
More precisely 

YR(n){k)= (AKf[CK(r))x + p(x), 
k<x ^ r=cx. ' 

where 

( 0(x") if[K:Q]>3, 

p(x)=l O(x^logx) if[K:Q]=3, 

(O(^x-) if[K:Q]<3, 

tmth v = rlK = l- 2/(1 + [K : Q]) . 

P r o o f . Under the present assumptions on R, the zeta function 

oc 

(«.(*) = (K(S)= J2K{m)m~°> 
m = 1 

where K(m) = R(m) is the number of ideals of index m in /?,. Then a theorem 
of Weber and Landau states that 

] Г R(m) = J2 K(m) = Aкx + 0(x") 

m<x m<x 

where AK > 0 is an explicit constant (cf. L a n d a u [4]). Furthermore, by some 
results on isomorphism classes of finite /^-modules treated in [2; Chapter •");. the 
matrix zeta function 

Cn\«) = CK(»KK('2S) .. .<;K(n») 
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can be re-interpreted as the "zeta function" of the category T of all finite 
R-modules whose indecomposable direct summands have the form R/Pm for 
some prime ideal P in R and some m < n. In order to deduce the present 
theorem on ^ R^n\k), it is then possible to invoke the following theorem of 

k<x 

[2; Chapter 5]: 

(2.2) THEOREM. Let a — (ki,k2,.. .) be an arbitrary finite or infinite in­
creasing sequence of positive integers, and let Ta denote the category of all 
finite R -modules whose indecomposable direct summands have the form R/P7n 

for some prime ideal P in R and some m 6 {Aq, k2l... } . Let Ta(k) denote the 
total number of isomorphism classes of R -modules of cardinal k in Ta. Then 
the zeta function 

<г° (s) := X ; Ғ a ( k ) k ~ * = ЦCк(кѓs) for Re(s) >k^. 
к=ì i>l 

Furthermore 

J2ғn(к) = UкүicмкAx1'^+P(x), 
h<V ^ 7 > 9 ' к<x ч i>2 

where 

( 0(x^k-) if [K : Q] > (k2 + k,)/(k2 - Aq), 
P(x) = \ _i 

[ 0(x£Jtk2 ) otherwise (e > 0 arbitrary). 

In addition, if Aq = 1, then 

_ ( 0(x^ log x) if [K : Q] = (k2 + l)/(k2 - 1), 
P(X) ~ { OfV/fc) if [K . Q] < (k2 + l)/{k2 _ 1}. 

rriieorem 2.1 follows from Theorem 2.2 on consideration of the special se­

quence (\n = ( 1 , 2 , . . . , n) for which Aq = 1, k2 — 2, since the identity (/ (s) ~ 

(K(*)(K(2S) • • • CA'(^S) then implies that R^n\k) = Tan(k). By way of exam­

ple, we note that the further special choices R = Z, Z[V—T] or Z[>/2] yield: 
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(2.3) C O R O L L A R Y . 

(i) 

#{AeM*(Z) : | d e t ( A ) | < x } = f I J C W J a r + O 

where C(s) is the Riemann zeta function. 

(ii) 

#{AeM*n(Z[^]): |det(A)|2<x} 

where C./irr(s) is the Dedekind zeta function of Q ( \ / - 1 ) • 

(ÜІ) 

# { i Є M*n(Z[V2}) : N(det(A)) < x} 

1 0 8 ( 1 +^ň^>y+ o<^ 
r. — 9 / 

V2 r = 2 

where here N{a + b\T2) = \a2 - 2b2| (a, 6 G Q), arid C ^ * ) ls thi 

Dedekind zeta function of Q(v / 2) • 

R e m a r k . With the aid of special estimates involving the Riemann zeta 
function, B h o w m i k [1] has directly given a sharpened version of part (i) of 
Corollary 2.3. 

3. P o l y n o m i a l a n d a lgebraic funct ion r ings 

Next suppose that the given basic principal ideal domain R is also the prin­
cipal order in some algebraic function field K' in one variable / over a finite 
field Fq with q elements. (The simplest example here is the polynomial rin.2; 
Rq =Fq[t] inside K'q = Fq{t).) 

For a general domain R in the present case, the zeta function CH('S) 1akes a 
simplified form (cf. [3; pp. 13/14], say): Firstly 

C11U) --•- y\R(k)k~" ---. V JVrini}q-
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where R#(m) = R(qm) is the number of associate classes in GR (or ideals 
in R) of norm qm (or degree ra); here R(k) = 0 if k is not a power of q. 
Secondly, it can be proved that 

P(y) 
CR(S) = zR(y) 

i -qy 

where y = q ,s, and P(y) is a polynomial in y with rational integer coefficients. 
This leads (cf. [3]) to a formula of type 

R#(m) = ARqm + O(i), AR = P(q~1) > 0 . (3.1) 

It now follows that every element a / 0 in fl has the norm of the form 
N(a) = qc)(a\ where d(a) may be called the degree of a, and similarly, the 
norm of an equivalence class A £ A4*(R) may be re-written as 

p | | - \\A\\ = qd{A) = qd{A) , 

where 0(A), d(A) may be called the q-degrees of A, A respectively (not to be 
confused with the ordinary degree n of A). In terms of the present notation, 

we may then re-write C/"(s) z~ CR(S)CR(^S) • • • CR.(ns) m the form 

oo 

4n)(«) = 4n)(») = EJ2( ,"(9 ,B)»m 

rn=0 W-2) 
= ZR(y)ZR(y2)...ZR(yn). 

Now consider 

(3.3) T H E O R E M . AS m —• oo 

R{n){qm) = #{AeM*n(R): fl(A)=m}=^nZ(n)gw + Ol 

///. pa.rticular, for Rq = ¥q[t\ . 

< ' ( ' D = ( IT1-'>_r)) 9m+0(qm/2). 

«Г/2) 
r = 2 

n - 1 

P r o o f. By the formula for CRy('s) hi the proof of Corollary 1.7 above, the 
ond statement follcYws from ihe first. 
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Now, note that Z(n)(y) = Fx(y), where Fr(y) := f ] ZR(yr). If F2(y) = 
T—i 

OO OO 

E ftm!/m, F3(y) = E &m?/m, then the equation F2(y) = ZR(y2)F3(y) and 
?n=0 m=0 
(3.1) imply that 

| O J = | Yl R*(k)brn-2k\=0( Yl <lk\bm--2 
0<k<m/2 0<k<m/2 

= o (,•»/- Y, \bm-2k\q-
(m-2k]'2) = o(,"'/2) 

^ 0<fc ' 

since F3(q~~1/2) converges absolutely. Thus 

m 

_ * > _ - * = F^q-1) - ~l 0{q-k'2) = ^(g-1) + 0(g""'/2) . 
/c=0 fc>m 

It then follows from (3.1) and the equation F\(y) = ZR{y)F2{y) that 

m m 

R(n)(qm) = £ R*(rn - k)ak = £(A f ig
m- f c + 0(l))ak 

k=0 k=0 
m , m v 

=A/^x;^'l"fc+o(E'lfc/2) 
k=0 ^ k=0 ' 

= ARF2(q-1)qm + 0(qm'"2). 

The conclusion of Theorem 3.3 can be considerably sharpened if desired: 

(3.4) THEOREM. For all sufficiently large m, 

n 

R(n)(qm) = #{_4 e Ml(R) : d(A) = m} = Y^k(m)qm/k . 
k=l 

•where 

ak(m) = \AR^-2^lhin,k I I z«(e27r,/"'/A f - ' / f r : 
h=0 r = l 

r^k 
n 

In particular. a.i(m) — AR \\ ZR{q"r) as before, and ak(ni) -~ Oi ! 
? - = 2 

rn --> oo . 
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P r o o f . The zeta function 

( n ) = P(y) P(y2) P(y*) 

R {V> (l-qy) ( l - w 2 ) ' " ( l - « » » ) 

has a partial fraction decomposition which can be expressed in the form 

n k — 1 Л*)лл - n(.л ^J2J2 c{k,h) 

k=l h=0 

where Q(y) is a polynomial, and c(k, h) is a constant which can be evaluated 
by THospitaPs rule: 

c(M)= Hm {l-qí/ke-^h/ky)Z^(y) 
n§ y sy — L / K c±Z7T 1 ti I K 

n 

= lP(q-l)~[ZR{e^ihr/k
q-

r/k). r = l 
r^k 

If we now expand (l — q1/k e~27rih^h y)~ as a power series within a suitable 
disc, we obtain 

oo oo n k-1 

J2 R{n) (qm)ym = Q(y) + Y, £ ~Z c(fc> h)im/k e~2n'mh/k ym • 
r n = 0 r n = 0 / [ , _ ! ^ = 0 

This leads to the stated formula for i?(n)(^m) when m > degQ(H). 

(3.5) COROLLARY. For Rq = F<~[;>] and any m > 1, 

* = i 

uj/iere 
fe-i n 

«fc(m) = - L ^ e - 2 ^ i h m / f c T T ( l - e 2 ^ i / i r / f c g 1 - r / f c ) ~ 1 , 
h = 0 r = i 

n - 1 

and <5i(m) = f ] U " 9 r ) _ 1 as befor^ Sjc(m) = 0(1) as m -> oo . 
r = l 
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