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ABSTRACT. Effective sufficient and necessary conditions are given that the 
equation 

y'(x) +Po(x)y(x) +Pi(x)y(Zi(x)) + • • * +Pm(x)y(^m(x)) = ° 

be globally transformable into an equation of form 

zf(t) + q0z(t) + Qlz(t - rx) + • • • + grnz(t - r m ) = 0 

on the whole interval of definition. 

1. Introduc t ion 

Canonical forms for linear functional-differential equations are defined by 
means of pointwise transformations by F. N e u m a n [1]. These special forms 
may serve for example for the investigation of oscillatory behavior of solutions 
of all equations from certain classes of linear functional-differential equations 
because each global pointwise transformation preserves distribution of zeros of 
solutions of a functional-differential equation and its canonical forms. 

Oscillatory behavior of solutions of functional-differential equations with con
stant coefficients and deviations are studied by M. K. G r a m m a t i k o p o u l o s , 
E. A. G r o v e , . . . [2], [3], [4], for example. 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34-02; Secondary 34K15, 34K05. 
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2. Definitions and preliminaries 

Consider a linear homogeneous functional-differential equation of the first 
order of the form 

m 

y'(x) + ^2Pi(x)y(Ux))=0 (17) 
i=0 

with continuous coefficients p{ G C°(I) on a half-open interval J = [a, b) or on an 
open interval J = (a, 6), —oo < a < 6 < oo, px(x)p2(x) . . . p m ( a ; ) ^ 0 on every 
nonempty subinterval I1 C J ; with ra > 1 deviating arguments ^ G C'1(J), 
£ . : / - * / , d £ . ( z ) / d a ; > 0 on J , £.(x) ^ x on J , i = 1, 2 , . . . , ra , £0 = id7 . 

We suppose that 

lim ({(x) = 6 for i = 1 ,2 , . . . , ra 
x—>b~ 

and 
lim ^ ( x ) = a for i = l , 2 , . . . , r a 

x—>a+ 

in the case that a £ I. 
If all £ • are of the form 

c^(x) = x + c{, ĉ  being constants, 

the equation (17) is said to be with constant deviations and also discrete devi
ations, see, e.g., [1], [5], [7], 

We denote the differential equation (17) by P(y, £ ,£ ; / ) to express explicit
ly the dependent and independent variables and the definition interval of the 
equation. 

Consider two differential equations P(y,£,£; / ) , Q(z,t,ri',J). We say that 
P(y,a;,£; J) is globally transformable into Q(zJt,r]'1J) if there exist a function 
/ £ Cl(J), f(t) / 0 on J and a C1 diffeomorphism h of J onto J (i.e., 
h £ Cl(J), h(J) = J , dh(t)/dt ^ 0 on J ) such that 

z(i) = /(t)y(fc(t)) , (2) 

£ioh = hor]i (3) 

is a solution of Q(zJtJrj;J) whenever y is a solution of P (y ,x ,£ ; J ) . It follows 
immediately that for n-tuples y and z of "linearly independent" solutions of 
the equations P(y, a;,£; J) and Q(z1t1r);J) respectively, there exists a constant 
nonsingular matrix A such that 

z(t) = Af(t)y(h(t)) , teJ. (4) 

The transformation (2), (3) is the most general pointwise transformation of 
equation ( l f ) (see [9], [10]). 
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We use the stationary groups formed by all the global transformations that 
transform a given ordinary linear differential equation into itself. Some re
sults about stationary groups of linear differential equations were obtained by 
F. N e u m a n [8]. The condition that global transformation (2), (3) transforms 
an equation P = P(y, x, £; I) into itself can be equivalently written in the form 
of the vector functional equation 

y(x) = Af(x)y(h(x)) , 

where A is a nonsingular matrix, y is a "fundamental" solution of P . 
From [1], it follows that equation ( l r ) is globally transformable into an equa

tion 
m 

z'(t) + J2qi(t)z(t + Ci) = 0, (5j) 

ci being constant, defined and satisfying conditions for coefficients and devia
tions on the interval J , if and only if the following conditions for the transfor
mation (2), (3) are satisfied 

Vi(t) = t + ci <=> <p(£{(x)) =<p(x) + c{ for 1 = 1 , 2 , . . . , m , (6) 

where 
x = h(t) <=> t = (p(x), 

i.e., (p = h"1 is the inverse function to h. 
The necessary conditions for existence of a common solution (p G C 1 (7) , 

d(p(x)/dx > 0 on J , of the system of functional equations (6) are derived by 
F. N e u m a n [5]; sufficient conditions are also derived for m = 1. 

Using this result F. N e u m a n [1] defined canonical forms for the linear 
functional-differential equation of the n- th order (n > 1). 

In this paper, we use the same methods as F. N e u m a n [1], [5] to obtain 
canonical forms with constant coefficients and constant deviations. The criterion 
that we give is effective, i.e., it is verifiable for considered any equation. 

3. Result 

THEOREM. Suppose that an equation ( l r ) is globally transformable into an 
equation ( 5 j ) . and there exist two solutions y1 ?y2 ^ CX(I) of (17) with the 
nonzero Wronskian determinant, pk 7-= 0 on I for some k G {1, 2 , . . . , m} . Then 
(5 j) is an equation with constant coefficients and constant deviations if and only 
if for every function £ E {^,^2' • • • >£m} ^ e r e exists a function L: I —> R7 

L G CX(I), L(x) •=£ 0 on I such that the relations 

L'(x)/L(x) = p0(x) - Po(ax))e(x),Pi(ax))Z'(x)L(Ux))/L(x) = p.(x), 
ie{l,2,...,m}, 
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are satisfied on I. Moreover, q0(t) = 0 on J = [a1?oo); J = (—00,00) respec
tively. 

P r o o f . We prove the necessary condition. Consider the equation 

m 

z'(t) + q0(t)z(t) + Yjqi(t)z(t + Ci) = 0 (8) 
i=l 

on J and q{(t) = q{ EK. There exists a transformation z(t) = f(t)y(h(t)) such 
that £{(x) = £.(h(t)) = h(t + Ci) if and only if ¥>fc(x)) = ¥>fo(Ml))) = * + <=» = 
</?(x) + ci for iG {1,2, . . . , m} according to the assumption that (1 r) is globally 
transformable into (5j). 

Hence there exist z^(i) = f(t)y-(h(t)), j = 1,2, such that 

z(i) = f(t)y{h(x)) , det [*(*),-.'(*)] = / 2 (^ ' ( i )de t [y(x) ,y ' (*) ] ^ 0, (9) 

and z(t) = (z1(i),z2(i)) is a solution of a vector differential equation 
m 

z'(i) + 9oz(0 + ]T QA* + ci) = ° (io) 
i=l 

on the interval J , 0 = (0,0)T, T is the transpose. 
Now we consider the transformations (deformations) 

z(i + c.) = Bz(t) , i e { l , 2 , . . . , m } , (11) 

where B is a nonsingular square matrix. Then we have 

m 

z'(t + c.) + q0z(t + C{) + J2 9;*(* + ci + cj) 
i=i 

= B ( Z ' ( £ ) + g0z(<) + $ ^ . z ( * + c,.)) = B • 0 = 0 

on J . 
Hence, from (9) and (11), we get that 

z(t + C.) = f(t + Cj)y(h(t + c.)) = f(t + Cj)y (^(x)) 

= Bf(t)y(h(t))=Bf(t)y(x), i.e., 

- ^ - B j ^ - J - B ^ . , 

for every j G {1,2, . . . ,m} according to (6). 
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CRITERION FOR TRANSFORMATION OF FUNCTIONAL-DIFFERENTIAL EQUATIONS 

I f we define functions 

LJ(X) = jrrrl > ie{i,2,...,m}, (13) 
3 f{ij{x)) 

then for every function £ 6 {£i>£2> •' • '^m l there exists a function L(x) = 
f(<p(x))/f(£(x)) such that L: I -> R, L 6 OH-O, L(x) ^ 0 on I. In accordance 
with (12), (13), the vector solution y = (yi,y2)T of the equation 

m 

y'(x) +Po(x)y(x) + J2Pj{x)y(Zj{x)) = ° (14) 

y(£(x)) - BL(x)y(x) , L(x) = f {<p(x)) /f (t(x)) (15) 

on I for every function £ G {^1?^2' • * • >£m}- ^ w e substitute £(.r) into equation 
(14), then we have 

m 

y'(((*)) +Po(t{*))t'{*MtW) = o (i6) 

on J ( / = d / d x ) . 
According to the existence of the transformation of equation (17) into equa

tion (8) on J , we have £ o £ . == £• o£ for every function £ € {£1?£2> • • • >£m} an<^ 
every j £ { 1 , 2 , . . . , m} (see F. N e u m a n [5]). 

Relation (15) describes the stationary group formed by the global transfor
mations (2), (3), and from (15), (16), we obtain 

B I L'y + Ly' +Po(OeLy + ^ ( O ^ M ^ ) ) = 0 
V j=l J 

if and only if 

i/(-0+(po(*(-o)e'(*)+^ = o 

(17) 
on / for every £ € {£a,<!;2,... , £ m } a n ^ the solution y of (14). 

Compare equations (14) and (17). Then 

(po(o^ + x - ^ o ) 2 / + E ( p i ( ^ ' - x ^ - ^ ) ^ ' ) = 0> v*° (18) 
j = i 

holds on the interval I. If we now allow that there exist an interval Ix C J. such 
that p 0 (0£ ' + L'/L - p ^ O o n / j , then from (18) 

v{tj(x)) =m(x)y(x), 
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where m(x) is a continuous function, and on J 1 , the equation (14) becomes 

m 

y'(x) +p0(x)y(x) + Y,Pj(x)m(x)y(x) 

•y'(x) + P0(X) +Y;Pj(X)m(X) 
3=1 

У(x) = 0. 

But this contradicts the assumption that the Wronskian determinant of the 
solutions yx, y2 is a nonzero function on J , and we have P0(£)£' + V jL— pQ = 0, 
and using (18) 

Pj(m'L(ij)/L-pj = 0 , j = l,2,...,m, 

for every function £ € {£-_, £ 2 , . . . , £ m } on the whole interval J since y =£ 0 on J . 
The necessary condition is proved. 

The sufficient condition of the Theorem we prove in another way. We suppose 
that for every function £ 6 {£1?£2, • • • >£m} there exists a function L: J —-> R, 
L 6 ( ^ ( J ) , £(#) / 0 on J , and that (7) is satisfied on J . Then there exist 
transformations 

y(£(x)) = BL(x)j/(x) 

globally converting any equation (17) into itself on the interval J , and £ o ^ = 
ĉ  o £ for every function £ G {£i ,£2 , . • • , £ m } , i G { l , 2 , . . . , r a } . Consider the 
transformation 

y(x) = / (x ) t ; (x ) . (19) 

where / 6 C 1 ( J ) , / ( x ) 7-- 0 on J . This transformation converts any equation 
(17) into an equation 

v'(x)+ (p0(x) + lMyix) + f2Pi(x)l^lv(^x)) =0, (20) 

and we define 
/ ' ( x ) / / ( x ) = - p 0 ( x ) (21) 

on I. Then L ' (x) /L(x) = p 0 (x) -p 0 (£(x) )£ ' (x) = f'(t{x))/f(S(x))-f'(x)/f(x), 
i.e., 

L(x) = c / ( £ ( x ) ) / / ( x ) , c 6 R - { 0 } , (22) 

and we can suppose that 

L(x) = f(£(x))/f(x) > 0, LeC\l), (23) 

on the whole interval J . Moreover, from (7), we get 

pm,fjm=Pi!f m 
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for every function £ G {£i,£2> • • • >£m} o n ^ > * == l j2 , . . . - m . Equation (20) is 
then of the form 

«'(-0 + i > ( * ) ^ 7 ^ ( ^ ) ) =0. (25) 

Now we define a transformation 

Ж(*)) x = lг(í) •<=> t = <p(x) = l Pfc(s): 

/(*) 
ds + ax , (26) 

xo 

where a1 G R, xQ G J and fc G { l , 2 , . . . , m } is fixed, p^ 7- 0 on J . Such 
transformation always exists according to the assumptions of the Theorem. Then 

<p'(x) = \Px(x)f(tk(x))/f(x)\>0 

and 

(¥>(«*)) -¥>(*)) ' 

= k(^(^)/(4(^(^)))^(^)//(^(^))| - |p,(x)/ftfc(x))//(x)| = 0 
by means of (24). Hence <p(£(x)) = <p(x) + c, c e K, and (6) gives 

¥>&(*)) = v(-0 + ct <*=» ^(t) = t + c. , (27) 

and 
Zi(x)=Zi(Kt))=<p-1{<p(x) + c.)=<p-1(t + ci)=h(t + ci) (28) 

for all i G {1, 2 , . . . , m } . 
If we define a transformation 

v(x) = v(/i(t)) = *(*), (29) 

we obtain 

v(Ux))=v(ti(h(t)))=v(h(t + Ci))=z(t + Ci), 1 = 1 , 2 m , 

„'(.-) = (z (^ (x ) ) ) ' = z'(ip(x))<p'(x) = z'(t)<p'(x), 

where 

¥>'(*) = | p f c t o / f o ( - 0 ) l / 0 - ) | = (Pk(z)f(tk(*))/f(x))^Pk(x) 

since (23) implies f{Ck(x))/f(x) > 0 on J . 
The transformation (26), (29) globally transforms equation (25) into 

z ' ( ( ) + |S i7 l i s i g n f t W 2 ( ( + c ' ) = 0 ' (30) 
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qi(t) = qi(fp(x)) = N,(x) := ^ ( ^ ^ (
( ^ signp fc(x), i = 1 , 2 , . . . . m , are 

continuous coefficients of equation (30), 

%(*) = #*(*) = s i S n Pk (^) = e = ± 1 , 

and using (24) 

JV'(?(I)) = 7SW) »(&(.))«-(-)/«.(«.)))'sienp*w 

/ » Pk(x)f(tk(x)) 

holds on I for z = 1 ,2 , . . . , m. Moreover, 

£'(*)> 0, tf*)^*, 

for all £ G {£i>£2, • • • >£m} o n ^ i n accordance with the assumptions for the , 
equation ( l r ) . 

Due to the condition lim£(x) = b for x —> 6~, the n th iterate £[n] of 
£ € {£i,£2> • • • >£m} e x i s t s f ° r a-l positive or negative integers n depending on 
whether £(x) > x or £(x) < x on [a, 6) and 

lim £ [n](x) = b for £(*) > x , lim cj[n](£) = b if £(x) < x . 
n—+00 n—> —00 

Hence 

N^O*)) -. ^ ( { . - - . ( x ) ) = • • • = # , (*) , x € J , 

gives 
Ni(x) = Ni(6-)GR, 

i.e., < (̂£) = N^x), i = 1, 2 , . . . , ra, are constant functions. 

Repeating arguments given by F. N e u m a n [1] we can prove that <p(I) = 
[a1,oo) in the case I = [a, 6), and <p(I) = (—00,00) in the case / = (a, 6) 
according to the assumptions 

lim £i(x) = a for i = 1,2, . . . , r a . 
X—+CL+ 

The Theorem is proved. D 

EXAMPLE. The equation 

y,{x) + fy(x) + ^ y ( ^ ) + fty (x3 ) = °' 
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x G I = ( l ,oo) ; a,b,c G K, be 7-: 0; is globally transformable into an equation 
with discrete deviations (see [5]). Then 

L'(x)/L(x) = o ( l / x - £'(x)/£(x)) <*=» L(x) = k(x/£(x))a , k 6 R - {0} , 

and the conditions (7) are equivalent to 

b x 1 / 4 x - 1 ! 2 2 - 1 ( x 1 / 2 x - 1 ! 4 ) a _ bx1!2 c x 5 / 2 x - 1 / 2 2 ~ 1 _ _ _ _ _ _ _ _ _ _ _ 

x 3 /2 l n a . i / 2 ' ( x a . - i / 2 ) a ~ x 3 l n x ' lnx 1 ! 2 ( r a - i / 2 ) a ~ h 7 ^ ' 

6x3!23x2 ( x ^ x - 3 ! 2 ) " _ bx1!2 cx153x2 ( x 3 x - 9 ) a _ cx*_ 

lnx ' x 9 l n x 3 
(xx~3) c3 ln x° inx lnx 3 (xx~ 3 ) a 

x € I . The given equation is globally transformable into an equation with con
stant coefficients and discrete deviations if and only if a ==- 3; 6, c E K - {0}. We 
have the corresponding transformations 

y(x) = f(x)v(x) , v(x) = v(h(t)) = z(t) , 

where 

f'(x)/f(x) = - p 0 ( x ) = - 3 / x <*=* / (x ) = M/x3 , M € R - {0} ; 

x = h(t) <=> t = <p(x) = J\pk(s)f{(ik(s))/f(s)\ ds + ax, 

XQ 

x0 E / , a ^ R , fc E {1 ,2} , 

аnd 

<p(x) = / P l ( s ) Ms3 

XQ м-ІШÏ 
ds + 

X 

aг = J bs1/2 x 3 

s 3 In s s3/ 2 
ds + a-, 

ЖQ 

ІП. s m s 
ds + a x = |b | ln ln x + a 2 , a 2 E 

жo 

for example. 
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