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Math. Slovaca 33,1983, No. 3, 257—268 

GENERATION OF OPERATION-INVARIANT 
CLASSES OF SETS 

HORST MICHEL 

Classes of sets with invariance under certain operations play an important role in 
measure theory and related fields. Given a set X and a class % a SP(X) it is a typical 
problem to find the smallest class 5Fa2P(X) containing % and being invariant 
under one or several operations defined on %. It is well known that the class % of 
open intervals in X = R1 generates in this way the class 9 of the Borel sets in R1 

that is invariant under countable union and complementation and of course & is 
the a-algebra generated by %. 

There are several techniques to "construct" such classes. One of them consists in 
the repeated and possibly transfinite addition of sets that arise from elements of % 
applying the desired operation(s). In some interesting cases (e.g. generated 
algebras) it is sufficient to repeat this procedure of enlarging % at most as often as 
finite ordinals exist and in other cases (e.g. generated a-algebras) this repetition 
has to be done more frequently. These differences can be explained in two ways. 
The first is connected with the kind of complication of the operation(s). There is, 
e.g., a stronger demand on a system % to be invariant under a countable than under 
a finite union and therefore "in general" the first operation requires more steps 
than the second. A further reason is connected with the cardinality of X: in the case 
that X is finite there is no difference between the algebra and the a-algebra 
generated by a class % c 9>(X). 

In the present paper we wish to clarify this generation of operation-invariant 
classes of sets with regard to the number of the steps mentioned above. This seems 
to be of interest since non-standard classes of sets like a-classes (as important for 
quantum mechanics; see e.g. [1], [8]), a-algebras SFc&(&(X)) of sets of 
configurations (as important for random fields; see e.g. [9]) and others become 
more and more important. 

We consider general mappings T: 9>(&(X))->9>(9»(X)) that cover the most 
interesting set operations and introduce notions of isotony and expansiveness of T 
being essential for our purposes. The condition of m-boundedness (see sect. 4) 
turne out to be essential for the (ordinal) number of steps in the transfinite 
sequence 
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«, T(«), r(«),..., Ta(«),..., 
to get T-invariance. In preparation for these results we consider the possibility of 
reducing invariance under several operations Tu ..., Tn to only one operation T 
that is needed to justify a further restriction to this case. 

1. Notations 

If X is a set, let 9(X) denote the class of all subsets. In this paper we consider 
mappings T defined on the class 9(9(X)) of all subsets %c9(X) into itself. 
Every such mapping 

T: 9(9(X))^>9(9(X)) 

is called a class transformation. Important class transformations are set operations. 
For some of them we introduce fixed notations: 

v(») = {| jE i | f i€N;E1 , . . . , £ , , €«} , 

Vd(%) = \ \jEi\neN', Eu •••> Ene% and pairw. disj.l , 

v a (« )= v(*)u{Qe | -S . , E2, ... e »} , 

A(«) = { n E , | n € N ; E 1 , . . . , E n € « } , 

C*(&) = {Ec |Ee&} with EC = X\E, 

C(«) = {E, E c |Ee&}, 

D(g)=&u{E\F |E, F e £ } , 

! ( « ) = « 

with arbitrary % e ^(^(X)) in all cases and v, vd, v0, A, C*, C, D play the role of 
T in (1). Obviously there are class transformations defined without set operations 
for the variable %y e.g. the transformations Tv, Tc with 

Tv(g) = gu í | Jß ì ' 
l E s I 

Tc(«) = P(X)\*. 

A class transformation is called isotonic if 

%,®&<3>(<3>(X)), %<=.&=>T(%)cT(&) 
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and expansive if 
&e^(^(X))=>&c=T(&). 

Then v, vd, va, A , C, D are isotonic and expansive. C* is isotonic but not 
expansive. Tv is expansive but not isotonic (take e.g. X = {1, 2, 3}, % = {{1}, {2}}, 
y = { { l } , { 2 } , { 3 } } f t h e n « c = - y a n d T v ( « ) = { { l } , { 2 } f { l , 2 } } , TV(^) = {{1}, 
{2}, {3}, {1, 2, 3}}). Tc is neither isotonic nor expansive. 

Concerning the fixed set X all class transformations T: g>(9>(X))^>g>(9>(X)) 
form a semigroup with composition TXT2 defined by TXT2(%) = TX(T2(%)). E.g. the 
special relations 

A V = V A , A C * = C * V , V C * = C * A , C*C=CC* = C (2) 
v d c v , C*cC 

are easily proved. 
Tk denotes the A;-fold power of T and, more generally, let a be an ordinal, then 

the a-fold power Ta of T is defined with transfinite induction by 

Ta(%)=T(\jTfi(%)). (3) 
\0<a / 

If a is isolated and T is expansive, then (3) reduces to 

Ta(<%)=T(Ta-l(%)). 

UT=T (i.e. T(T(%)) = T(<S) for all %z9>(<3>(X))) is valid, then T is called 
idempotent. v , vd, va, A, C are examples of idempotent class transformations. 
More generally it may be that Tk+l = Tk is fulfilled, even in the case of set 
operations and k>2. The following theorem gives an example. 

1.1. Theorem. The class transformation T=vC fulfils T 3 = T2. 
Proof. First of all we show 

( V C ) 2 = V A C . (4) 

Replacing % by v(%) in C(&) = guC*(&) we have from (2) the equation 

Cv(%)= v ( g ) u C * v ( ? ) = v ( g ) u A C * ( g ) 

and then taking C(%) instead of g we obtain with 

V C V C ( & ) = V ( V C ( £ ) U A C * C ( & ) ) = 

= v ( C ( g ) u A V ( ^ ) ) = V A C ( ^ ) 

equation (4). From (2) we get 

C v A C ( g ) = V A C ( g ) u C * V A C ( g ) , 
C * V A C ( g ) = A v C * C ( & ) = V A C ( & ) 
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and therefore 

C V A C ( ^ ) = V A C ( _ ) . (5) 

Applying (4), (5) and (2) we conclude 

V C ( V C ) 2 = V ( C V A C ) = V ( V A C ) = V A C = ( V C ) 2 . 

This proves the theorem. 
The semigroup of all class transformations allows the ordering 

T, ^ T2o(% € 3>(0>(X)) => Tx(%) cz T2(«)). 

Concerning this ordering there exists an upper bound class transformation Te for 
every class transformation T that is defined by 

Te(%) = T ( « ) u S , (« c 3>(X)). 

Obviously Te has the properties 

T ^ T \ T' expansive => Te ^ T \ 
T isotonic ==> Te isotonic. 

2. Invariant classes of sets 

2.1. Definition. Let % e &(&(X)) and Tbe a class transformation on X. % is said 
to be T-invariant if 

T(&)c_g. (6) 

The set of all T-invariant % in &(&(X)) will be denoted by _*X(T) or _*(T). 
We mention some elementary facts concerning this definition. For any T the set 

-*(T) is nonvoid since T(_?(X)) c_ _P(X). If T is expansive, then (6) is equivalent to 
T(%) = %. Since T(%) c % iff T ( « ) u 8 c «, we have equality of T- and T'-invari-
ance: ^ (T ) = ^ (T e ) . Every idempotent T gives rise to T-invariant classes: 
S*= T(«) fulfils T(&)= & for all » e 3P(0>(X)). For many cases it is important to 
have invariance of a class % under several class transformations T,, ..., T„. In this 
case Ti...T„(3?)c_g is obvious for isotonic Tu •-, T„_, and therefore 

^(T 1 )n . . .n^(T n )c=^(T 1 . . .T f i ) 

holds. For the converse of this implication we have 

2.2. Theorem. If TXy ..., Tn are expansive and Tx, ..., Tn-X are isotonic, then 

<fi(Tx...Tn)cz<fi(Tx)n...nHT„). 
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Proof. For fixed i it follows with expansiveness for T,, ..., T_i that 

T l(»)czT l- IT,(«)c=.. .czT l . . .T l(8?) 

and with isotony for Tx, ..., Tn-X and therefore also for the products Tx...Ti+k 

(k = 0, ..., n — i — l) we have 

Tx...Ti(%)<=Tx...TiTi+x(%)cz...c=Tx...Tn(%). 

If %z3>(Tx...Tn), the theorem follows from T(£)<= Tx...Tn(&)c= % and i being 
arbitrary in {1, ..., n). 

It should be remarked that theorem 2.2 is only sufficient and does not cover all 
important cases. In this respect we prove only 

2.3. Theorem. Ler T„ T2: &(<3»(X))-> <3»(@(X)); then either of the conditions 
(a) Tx is isotonic and Tx =1 and T2 is expansive, 
(b) Tx is idempotent and expansive and T2 is isotonic and T2= I is sufficient for 

% e 3>(TX T2) 4> g e J>(Tx)nJ>(T2). 

Proof, (a) is sufficient since 

r i ( » ) c T , T 2 ( « ) c ? 
T2(%) = Tn

xT2(%) = Tr\%) c « 

and in the case of (b) we have 

T2(«)c_T,T2(«)czS? 

and therefore 
T , ( » ) = T 1 T 2 ( » ) c = * . 

2.4. R e m a r k . As an application of theorem 2.3 it is possible to characterize an 
algebra % of subsets of X not only by " v ( « ) = « and C*(%)=%" but also by 
"C*v(&) = &" or by u v C * ( ? ) = r . Similar results hold for a-algebras: 
"vaC*(%) = %". Of course theorem 2.2 is also applicable to the description of 
algebras by only one equation. But then the nonexpansive C* must be extended to 
the expansive class transformation C and one has then v C ( _?)=_? and for 
a-algebras vCTC(^) = % respectively. 

3. Generation of T-invariant classes 

If % is not T-invariant, then it is important to construct a (minimal) T-invariant 
class _F containing %. It is well known in measure theory this problem frequently 
appears if suitable classes of sets are desired for defining measures on them. 
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3.1. Lemma. If (2Fa)tei is a family of classes 3Fa e 3P(0>(X)) and T is isotonic, 
then 

r(^)crja ,(a6/)-»r(n^)c=n^' 
\ a e / / a e J 

Proof. With the isotony of T we have 

\ « e / / 

for each a0el, therefore T ( n &a) <= f] T(3Fa) and from the assumption the 
\ael 1 ael 

lemma results. 
This lemma and the above mentioned fact of T(3P(X))cz3P(X) for all class 

transformations T yield 

3.2. Theorem. Let %e<3>(2P(X)) and T an isotonic class transformation. Then 
there exists a unique M e 3P(3P(X)) with 

%czM, (7) 

T(M)czM, (8) 

&c=<£, T(<$)cz<g^>Mcz<§. (9) 

Proof. For the uniqueness of this M it is sufficient to show (7), (8) for MxnM2\i 
the properties (7), (8), (9) are valid for Mx, M2. Then apply (9) with C§-^MX resp. 
(&^>M2 and conclude Mx\jM2cMxnM2 and therefore Mx = M2. But (7) is obvious 
for MxnM2 and (8) follows from the isotony of T. For the existence of such an M 
we define 

M = n{&\<£c&, T(&)c&}. 

Then of course (7) holds and by lemma 3.1 and 

T ( n { ^ | & c = ^ , T(9)c9)<zc\{9\Vc9, T(&)cz&} 

(8) is true. (9) is a direct implication of the definition of M. 

3.3. Definition. For every % e 3P(3P(X)) and every isotonic class transformation 
T the class M e 3P(3P(X)) in the theorem 3.2 is said to be the T-invariant class 
generated by %. Notation: M = MT(%). 

It is interesting to know whether there is a difference between MT(%) and 
MT*(%). The last class is defined very well since Te is isotonic if T is. 

3.4. Theorem. For every % e 3P(3P(X)) and every isotonic class transformation 
T one has 

MT(%) = MT<(%). 

262 



Proof. Note the equality of the sets 

{ ^ e ^ ( ^ ( X ) ) | & e r r a n d T ( ^ ) c = ^ } 
and 

{ ^ e ^ ( ^ ( X ) ) | & e r r a n d Te(3F)a&} 

being essential in the definition of MT(%) and M^^). 
3.5. R e m a r k . This theorem enables us to replace the isotonic T by the isotonic 

and expansive Te whenever MT(%) is required. This is of importance because 
expansive class transformations are better to handle as we shall see below. 

4. Generation of T-invariant classes with m -bounded T 

First we recall some important facts of the set theory. If X is a well-ordered set, 
its order type will be denoted by X. Every ordinal a, )3, ... is the order type of 
a well-ordered set. a) is the order type of N with the natural order. Q is the smallest 
ordinal greater than every countable ordinal. The power d of an ordinal a is the 
power of one of the well-ordered sets X with order type a. X denotes the power of 
the set X. 

An infinite ordinal a is said to be initial iff 

P<a^>j3<a 

holds. In this sense (o and Q are initial. With 

P(a) = {0|j3 initial, fi< a) 

the ordinal i(a) = P(a) is said to be the index of a. It is easy to prove i((o) = 0, 
i(Q) = \ and 

a i < a 2 --> i ( a ! ) < i ( a 2 ) . 

For every ordinal (i there exists an initial ordinal a with j8 = i(a). Every initial 
ordinal is denoted by (oa where i((oa) = a. Then (o = a)0, Q = (ot. The powers of 
initial ordinals are the alephs: 

tta = (da, (a ordinal). 

For these powers the important theorem of Hessenberg ([4], p. 593) 

K« = K«, (a ordinal) 
holds. 

As it is well known T-invariant classes with expansive T containing a given % 
may be constructed by forming the possibly transfinite sequence 

? c T ( ? ) c f ( ? ) c . . . c r ( ? ) c . , 
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T(\jTr(%))=UTr(%) (10) 
\y<cu a / y<toa 

with (oa being the initial ordinal of Ka. 
Proof. Note first that Ka-boundednes implies 

T ( U T ^ ) ) = u ( T ( ^ 0 ) | ^ 0 6 ^ a ( u T>(9))\. 
\y<cu-, / I \y<c_»a / J 

Since by hypothesis T is expansive, (10) is verified by checking 

u {T(« 0 ) |«oeyK a ( U n ^ ) ) ) c = U T*(«). (11) 
l \y<c_»a / ) y<toa 

For £ 0 e 0V,. ( U Ty(^)l there exists an index set I with / < K a and a representa-

tion 

g 0 = { E t | t e I } with EteT^(^), y t <o , a ; (lei). 

Further let C = (y_) l6 / be the family of all indices yt occurring in the above 
representation of &0. If C* denotes the set built by wellordering the family C, we 
have further on 

YeC*^>Y<(*>a 

and C * ^ / < K « and therefore, since a is isolated, 

C*^K«-_. (12) 

Now let y0 be the smallest ordinal above C* ([6], p. 234) and put 

* = ( y o - i if y i s i 
ly0 otherwi 

isolated, 
otherwise. 

In the first case y* belongs to C* and we have y* = y0 — 1 and in the second case 

with W(Y*)= U W(y); W(y)^Ka__ for all Y*C* and (11) we have 
YeC* 

W(Y*) *S C* • «„_, = K__, •«„_,-- «„_„ 

the latter equality by Hessenberg's theorem, and again y* < K_ is valid. Therefore 
we have 

y*<K_ 
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in both cases. From this it follows that Y*<coa and 

Y* + K(Da, (13) 

since a)a is a limit ordinal like every initial ordinal is. For <?0 we check the 
implications 

%0 = {EL\ieI}cz\jT^(%)= U r(V)c \JT*(%) 
i e / yeC* y^y* 

and 

T(^0)CIT([JT"(^))^T( U T*(%)) = rm+l(%), 
VysSy* / \ y < y * + l / 

where the sign of equality comes from (3). But considering (13) this is equivalent to 
(11) and the theorem is proved. 

4.5. Corollary. If a is a limit ordinal and T: 2P(5P(X))^>2P($P(X)) is expansive 
and tta-bounded, then (10) holds with a)a+1 instead of coa. 

Proof, a + 1 is isolated and T especially Ka+i-bounded. The rest follows from 
4.4. 

4.6. N o t a t i o n . To simplify the following we write 

[«]={ a if a is isolated, 
a + 1 if a is a limit ordinal. 

Then summarizing our considerations we conclude 

4.7. Theorem. Let X be a set and T: @(@(X))^>g>(2P(X)) isotonic, expansive 
and tta-bounded. Then with 

§ = min { r j ^ ^ K j and 0 = (o[min (a, §)] 

for every %cz&(X) the T-invariant class MT(%) as defined in 3.3 is 

MT(%) = T*(%). (14) 

Proof. Isotony of T shows MT(%) to be correct and expansiveness of T makes 
lemma 4.4 applicable. To prove (14) we show (8) and (9) with M = T^(%), since 
(7) is obvious by expansiveness of T. The hypothesis and 4.2 imply Kmin (a. ^-bound-
edness and with 5 = min(a, £), lemma 4.4 and corollary 4.5 it follows that 

T ( U T*(V))= U T*(V). (15) 
\y<co[ j / Y<">[6] 

From (15) we get 

T(T^(%)) = T(T( U T * ( « ) ) ) = T ( U T - ( & ) ) - T ^ ( & ) , 
\ \y<Gu[(5] ' ' \y<«j[6] ' 
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such that (8) is valid. To prove (9) we check 

« c « , T(^)c=«-^>Ta(^)c=« 

for every ordinal a by transfinite induction: T°((&) = <SczcS is assumed; if 
T0(&)c=« is proved for all )3<a, we get 

T"(S) = T ( U T"(f )) cr T(«) c «. 
\p<a / 

Then we put a = c0[0] and (9) is obvious in our case. 
4.8. Remarks. 1. The proof of 4.6 shows that even 

MT(%)=\3V(%) 

is true and this is somewhat stronger than MT(%)= T^(%). 
2. As remarked after theorem 2.3 a a-algebra % of subsets of X is characterized 

by vaC(%) = %. The class transformation T= vCTC is Ki-bounded as it is easily seen 
with 4.1, therefore we have with theorem 4.7. 

•^v0c(2)=(vcyw 

3. For an algebra we get with 4.7. 

MvC(%) = (vCr«(%). 

But here theorem 1.1 gives an essentially sharper result MwC(%) = (v Cf(%). We 
conclude that theorem 4.7 does not give the strongest result even in the case of 
arbitrary %c5P(X). The reason is rather obvious: our method of proving 
lemma 4.4 (and therefore theorem 4.7) was essentially based on Hessenberg's 
theorem, being not valid for finite cardinals. Nevertheless it would be of interest to 
investigate, whether there is a modification of the notion of m-boundedness, 
covering those cases also. 
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КОНСТРУКЦИЯ СИСТЕМЫ МНОЖЕСТВ ИНВАРИАНТНЫХ 

ОТНОСИТЕЛЬНО ОПЕРАЦИЙ 

НОГБ! М1сЬе1 

Р е з ю м е 

Статья посвящена построению систем множеств инвариантных относительно некоторых 

(множественных) операций Т,, ..., Тп и содержащих заданную систему множеств %. Случай 

нескольких операций связаны со случаем одной операции (теор. 2.2 и 2.3). С помощью 
определяемого условия т-ограничности операции Т (опр. 4.1) получаем оценку длины (часто 

трансфинитно) последовательности %, Т(%), Т 2(^), ..., которая необходима для 
Т-инвариантности. 
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and assuming Ta(%)= Ta< (%) for a ^ a0 and a certain ordinal a0 (for the definition 
of Ta(%) see sect. 1 above). Of course a0 will depend essentially on T. In case of an 
algebra according to theorem 1.1 and the remark following theorem 2.3 a0 = 2 is 
possible and in case of a ring P. R. H a l m o s ([2], p. 23) proved a0=a)0 if T is the 
operation of finite unions of differences of sets, i.e. T= vD. For a-algebras with 
the operator T=vC one can prove a = (ox ([7]; p. 32 problem 4.d). Of course 
such properties were known much earlier. For a-algebras (to be exact: Borel sets 
in metric spaces) see e.g. [3], p. 305 and for generated algebras sd(%) K. J a c o b s 
([5], p. 1.1.3) proved &(%)= v AC(%). In the following we consider the reasons 
for the different lengths of the transfinite sequences. We examine especially their 
dependence on the power of X and on the properties of T. 

By £Pm(%) we denote the system of all subclasses %0cz% with a power less than 
m. 

4.1. Definition. If T is a class transformation, m a cardinal and 

9m(%) = {%0cz%\%0<m} 

the set of all subclasses %0cz% with a power less than m, then T is said to be 
m-bounded if 

T(%) = u{T(%0)\%0cz&m(%)} for all % e9(9(X)). 

At a first glance m-boundedness seems to be a very special property, but we have 
the 

4.2. Theorem. Every expansive T: &(&(X))-+g>(9>(X)) is 22*-bounded. 
Proof. Independently of the special T every class %0cz%czSP(X) fulfils 

%0^¥(X) = 2k<22k and therefore with m = 2 2 * % itself is found in 

u{T(%0)\%0e&m(%)} 

and the boundedness is obvious. 
4.3. Example s , (a) Especially for T= v we have at least K0-boundedness: an 

arbitrary E e v(%) is of the form E = {jEt, (E{ e %) and therefore E e v(%0) with 
i = i 

some ? 0 6 ^ J ? ) . For finite X we even have boundedness from theorem 4.2. 
(b) Similarly for T= v„ and infinite %0 we have <f0<Ki and therefore only 

Ki-boundedness is attainable if X is infinite. 
The boundedness-property in theorem 4.2 is derived from X only, but the 

examples show that a more restrictive boundedness is possible. In any case the 
following theorem can be formulated. 

4.4. Lemma. Let a be an isolated ordinal and T: <3»(g>(X))-*9>(9>(X)) 
expansive and tfa-bounded, then 
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