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ON G-LATTICES 

HAVIAR ALFONZ 

E. F r i e d in [2] and H. Ska l a in [5] have introduced a class K! of weakly 
associative lattices (called trellises in [5]). In [6] a class K2 of weakly commutative 
lattices (N-skew lattices) is given. In this paper a class of G-lattices is defined, 
which is a generalization of both classes Kx and K2. 

1. Basic definitions and properties 

Definition 1. A trellis (or WA-lattice) is an algebra (L; A , V ) , where A and v 
are two binary commutative operations on L, called meet and join, respectively, 
satisfying the following identities: 

(1) JCA(yvx) = jc and dually 
(2) jcA((jcvy)A(jcvz)) = Jc and dually* 

We obtain the dual identity by changing the operation symbols and reversing the 
sequence of variables (e. g. the dual Identity of JC A(y A Z ) = JCA(zAy) is (zvy)vx 
= (yvz)vx). 

Proposition 1. In a trellis there holds 

(3) (jcAy)AJc=JCA(yAJc) and dually. 

Proof. If follows from the commutativity of the operations A and v . 

Definition 2. An N-skew lattice is an algebra (L; A , V ) , where A and v are 
two binary associative operations satisfying the following identities: 

(4) jcA(yAz) = jcA(z Ay) anddually 
(5) JCAJC=JC and dually 
(6) JC A (JC v y) = JC and dually. 

Proposition 2. (1) and (2) hold in teach N-skew lattice. 
Proof. The verification of (1) is in [6]. The associativity of both operations and 

the identity (6) imply the identity (2). 
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Definition 3. Lef (L ; A, V ) be an algebra, where A and v are two binary 
operations on L called meet and join, respectively. Let us call the algebra 
(L ; A, v ) a G-Iattice (a generalized lattice) if the operations A and v satisfy the 
identities (1), (2), (3), and (4). 

Proposition 3. If an algebra is a trellis or an N-skew lattice, then it is a G-Iattice. 
Proof. It suffices to use Proposition 1 and Proposition 2. 

Proposition 4. For every x, y of a G-Iattice the identities (5), (6) and the 
following identities are satisfied: 

(7) (x Ay)Ax=x Ay and dually 
(8) (x Ay)Ay =x Ay and dually 
(9) x A(xAy) = x Ay and dually 

(10) xAy=x if and only if xvy=y. 

Proof. Proof of (5). Using (1) and (2) we get 

X AX = X A(((X Ax)v(x Ax))vx)=X . 

x vx =x can be proved dually. Proof of (6) follows from (5) and (2). It is obvious 
that (1) and (6) imply (7), (8), and (10). Proof of (9) follows from (4), (3) and (7). 

2. G-ordered set 

Definition 4. A binary relation R is called weakly transitive if 

R.(RnRx)ciR and (RnR').RczR. 

Let L be a non-void set. The identity on L will be denoted by 1L. 

Definition 5. We call a G-ordered set a relational system (L ; R, Ru R2), where 
R, Ru R2 are binary relations on L satisfying the following conditions: 

(a) R is reflexive and weakly transitive 
(b) Ri and R2 are reflexive and antisymmetric 
(c) R^R and R2^R 
(d) l?1 .R~1n.Rn.R~ lclL and R2

lR2nRnR~l c l L . 

Let L ; R, Ru R2) be a G-ordered set, n a natural number and (au ..., an)eLn. 
An element v eL is called a G-lower b o u n d of (au ..., an) if 

v R a] for all je {1, ..., n}. 

An element u eL is called a G-upper b o u n d of (au ..., an) if 

a7 R u for all je {1, ..., n}. 
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Definition 6. An element ieL is called a G-infimum of (au ..., an) if the 
following conditions are satisfied: 

(i) i Ri «i 
(ii) i is a G-lower bound of (au ..., an) 

(Hi) v R i holds for every G-lower bound v of (au ..., an). 

An element s eLis called a G-supremum of (au ..., an) if the following conditions 
are satisfied: 

(J) cinR2s 
()']) s is a G-upper bound of (au ..., an) 

(jjj) s R u holds for every G-upper bound u of (au ..., an). 

Propositions. Let (L; R, Ru R2) be a G-ordered set. If a G-infimum (or 
a G-supremum) of (au ..., an) exists, then it is unique. 

Proof. Assume that li and i2 are G-infima of (au ..., an). Then ixRxau 

i2Rx au ix R i2, and i2R ix are valid. It follows that (iu i2) e R{R~lriRnR~l, 
hence ix = i2 by (d). The verification for G-supremum is analogous. 

The G-infimum of (au ..., an) (if it exists) will be denoted by inf (au ..., an). We 
write sup (au ..., an) for the G-supremum of (au ..., an). 

Proposition 6. Let (L; R, Ru R2) be a G-ordered set. For all a, b eL the 
following conditions hold: 

(e) inf (a, a) = a and sup (a, a) = a 
({) a R b <-> inf (a, b) = a and a R b o sup (a, b) = b 
(g) a Ri b o inf (b, a) = a and a R2 b <-> sup (b, a) = b. 

Proposition 6 follows directly from the Definitions. 

3. GR-lattice 

Definition 7. Let (L;R,RU R2) be a G-ordered set. If each pair of elements of 
L has a G-infimum and a G-supremum, then (L; R, Ru R2) will be called 
a GR-lattice. 

Proposition 7. Let 0l = (L; R, Ru R2) be a GR-lattice. Let us define the 
operations A and v on L in the following way 

(0) a Ab =inf (a, b), a vb =sup (a, b). 

Then (L; A , V ) is a G-lattice. 
Proof. The identities (1) and (2) follow directly from the definitions. Now we 

will verify the identity (4). Let ^ = inf (a, inf (b, c)), /2 = inf (a, inf (c, b)), v{ = 
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inf (b, c), t>2 = inf (c, b). Then ix R vu vx R v2, v2 R vx are true and imply (iu v2) 
e R(RnR~l) and using (a) we get ix R v2. ix R a is evident, hence ix R i2. A 
similar argument shows i2 R ix. From ix Rx a, i2 Rx a, ix R i2, i2 R ix by (d) we 
claim /, = i2. The second identity of (4) can be proved similarly. For the verification 
of (3) it is sufficient to prove (jcAy)AJt = xAy and x A(y AX) = xAy. The first 
identity holds by (f). Using (4) we obtain XA(yAJc) = jcA(jcAy) and by (g) 
inf (JC, inf (x, y)) = inf (x, y), which completes the proof. 

Denote by 0l+ = (L ; A, v ) the G-lattice corresponding to a GR-lattice $l = (L\ 
R, Rx, R2), which operations A, v are defined by (0). 

Proposition 8. Let ££=(L ; A , V) be a G-lattice. Let us define binary relations 
R,RX, R2 on L in the following way: 
(r) a R b <=> aAb=a 
(p) aRxbobAa=a 
(q) a R2b o bva=b. 
Then (L; R, Rx, R2) is a GR-lattice. 

Proof. First we prove the conditions (a)—(d) of Definition 5. (a). From (5) it 
immediately follows that JR is a reflexive relation. If (a, b)eR(RnR~l), then 
there exists such ceL that a R c, c R b, b R c hold. Thus by (r) and (4) we get 
aAb = aA(bAc) = aA(cAb) = aAC = a, which imply a R b. The inclusion 
(RnR~l)R czl? can be proved dually, (b). By (5) it follows that Rx and R2 are 
reflexive relations. We assume a Rxb and b Rx a. Then by (p) and (7) b =a Ab 
= (bAa)Ab = b Aa = a, i. e. i?! is an antisymmetrical relation. A similar 
argument shows that R2 is also antisymmetrical. (c). a Rx b implies that aAb 
= (b Aa)Ab = b Aa = a, hence a R b. R2^R can be proved dually. 

(d). Let a R b, b R a, aRxc, b Rx c be valid; then by (4) a = cAa 
= cA(aAb) = CA(bAa) = CAb = b. The second condition can be proved 
similarly. 

It remains to prove that all pairs of elements of L have both a G-infimum and 
a G-supremum. We will show that 
(s) inf (a, b) = a Ab, sup (a, b) = avb. 

From (9) and (8) we obtain aAbRxa and aAbRb. From x R a and x R b by 
(2) and (10) we get xA(aAb) = XA((xva)A(xvb)) = x, i. e. x R aAb. The 
other equality can be proved in the same way. 

A GR-lattice correspoding to a G-lattice ££ = (L; A , v), and the relations of 
which are given as in the conditions (r), (p), (q), will be denoted by S£*. 

Theorem 1. Let <£=(L; A , V) be a G-lattice and 91 = (L; R, Ru R2) be 
a GR-lattice. Then 

(£*y = £ and (9t+)* = 9t. 

Proof. Let us denote (^*) + = (/; n , u ) , (0T)* = (L ; 5 , Sx, S2). From (0) and 
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(s) it follows that ac\b = mf(a,b) = ar\b. Similarly aub = a vb. By (r) and (0) 
and (f) 

a S b o a/\b = a o mf (a, b) = a o a R b . 

We can prove analogously that SX = RX and S2 = R2. 

Thus, we are justified to speak of a G-lattice without specifying whether one is 
defined by relations or by operations. 

Proposition9. A G-lattice (L; A , V ) is 

a) a trellis if and only if in £* = (L; R, Rx, R2) is R=RX = R2, 
b) an N-skew lattice if and only if the relations R, Rx, R2 are transitive, 
c) a lattice if and only if it is both a trellis and an N-skew lattice. 

Proof, a) Let a G-lattice (L ; A , v ) be a trellis and let there hold a Rx b. By (p) 
b A a = a and so a Ab = a, which implies a R b. The equality R2 = R can be proved 
similarly. Conversely, let R=RX = R2. It is enough to verify that aAb = b Aa, 
avb = bva. Because of 

inf (a, b)Rxa Ainf (a, b)Rb <=> inf (a, b)Ra Ainf (a, b)Rxb 

we have inf (a, 6) = inf (b, a). In a similar manner we obtain avb =bva. 
b) This part follows from [6]. 
c) This is an immediate consequence of the definitions. 

4. Some properties of G-Iattices 

Proposition 10. The elements x, y of any G-lattice satisfy the following iden
tities 

(11) xA(y Ajc)=JCAy and dually 
(12) (xAy)A(yAx) = xAy and dually. 

Proof. The identity (11) follows immediately from (3) and (7). The identity 
(12) holds by (4) and (5). 

Proposition 11. Let (L; A , V) be a G-lattice. If a R b and b R a hold for a, 
b eL, then the following identities are valid: 
(13) x Aa =x Abandavx = bvx for each x eL, 

(14) (a Ax)A(b Ax) = a AX and (xvb)v(xva) = xva for each x eL. 

Proof. By (r) aAb=a and bAa=b, therefore by (4) xAa = xA(aAb) 
= xA(bAa) = xAb. Similarly avx = bvx. Further, (aAx)Ab = (aAx)Aa 
= a AX by (13) and (7), hence (aAx)vb = b by (10). It implies (a Ax)A(bAx) 
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= (aAx)A(((a Ax)vb) A ((aAx)vx)) = a Ax by (6) and (2). The second identity 
in (14) can be proved dually. 

Theorem 2. Let ££ = (L; A , v) be a G-Iattice. A relation = on L defined in the 
following way 

(15) a=b if and only if a Ab = a and bAa=b 

is a congruence relation of ££. 
Proof. It can be easily shown that the relation = is reflexive and symmetric. If 

a = b and b = c, then by Proposition \\ a AC = a Ab = a and c Aa = c Ab = c 
and so a =c. If a =b, then by Proposition 11 xAa = x Ab (hence xAa = x Ab 
too) and a Ax = b AX for all x eL. Similarly a vx = bvx andx va = xvb. This 
completes the proof. 

R e m a r k . From (12) it follows that xAy=yAx, hence the quotient algebra 
££/= is a trellis. Every congruence class (with A and v) is a nest. 

5. Examples 

1. Let Z be the set of all integers. We define binary relations R, R{, R2 on Z as 
follows 

\ R x and —lRx and x R 0 for all x eZ, 

x R x if and only if -p-j is either 1 or a prime number, for x =£ ± 1 and y i= 0, 
\x\ 

x Ri y if and only if x R y and (either xy > 0 or x^O, y =0), 
x R2y if and only if x R y and xy =0. 
Then ( Z ; R, Rx, R2) is a G-lattice. It is neither an N-skew lattice nor a trellis. 

For instance 
( 4 A 6 ) A 1 2 = 2 A 1 2 = 1, 4 A ( 6 A 1 2 ) = 4 A 6 = 2 , 

( _ 4 ) v 6 = 1 2 , 6 v ( - 4 ) = - 1 2 . 

2. Let C be the set of all complex numbers. Define the relations K , R , o n C i n 
the following way 

Cb=dif b^Ozndd^O 
(a, b) R (c, d) if and only if \a\ = \c\ and j d = 0 if b = 0 

U ^ O i f d = 0 

(a, b) Rx (c, d) if and only if (a, b) R (c, d) and ac =0. Let Rx = R2. Then (C;R, 
Ru R2) is a G-lattice which is neither an N-skew lattice nor a trellis. 

3. Let ££ = (L; =) be a trellis (x=y means xAy=x) and A be a finite set 
A = {«„ ..., an}. Let (/,, . . . ,/„) and (gu ...,gn) be rz-tuple mappings of L onto A 
such that 

22 



/«W6A\{/ , (X) / M W } , 

gL(x) _ A\{gx(x), ..., af_,(x)} 

for all x eL, ie{2, ..., n}. Define o n L x A the relations R, Ru R2 as follows 

(x, a,) R (y, ay) if and only if x ^ y , 
(x, a>) R{ (y, ay) if and only if x _iy and there exists an /* 

such that fk(x) = a, and fk(y) = ah 

(x, at) R2 (y, ay) if and only if x _iy and there exists an gh 

such that 0* (x ) = a, and #„ (y ) = ay, 

i, j , k, he {1, ..., n}. Then i?a = ( L x A ; i ? , Ru R2) is a GAattice and 

(x ,a I)A(y,ay) = (xAy, / r (xAy)) , 

(x, a,)v(y, aj) = (xvy, gs(xvy)) 

if fr(x) = a, and gs(y) = ar 

R e m a r k . If !£a is a G-lattice given as in Example 3 and = is the congruence 
relation given by (15) of !£a, then it is possible to show that «_fa/= is a trellis 
isomorphic with 5£. 
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О О—СТРУКТУРАХ 

А. Гавьяр 

Резюме 

В работе определяется понятие О -структуры. Это алгебра типа (2, 2), основные операции 
которой связаны на основном множестве тождествами (1), (2), (3), (4). Каждую О-структуру 
можно рассматривать и как С -упорядоченное множество. 
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