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A VERSION OF THE STRONG LAW OF LARGE 
NUMBERS UNIVERSAL UNDER MAPPINGS 

DETLEF PLACHKY 

(Communicated by Miloslav Duchoň) 

ABSTRACT. Let (ft, At P) stand for some probability space, 0 for a separable 
topological space, and (Y, y) for a measurable space. Furthermore, /: Y x 0 —> R 
is some function such that /^ is y -measurable for all d G 0 and {/ : y G y} 
is pointwise equicontinuous. It is proved that for any sequence XltX2i... of 
Y-valued random variables, which is i.i.d. relative to P such that E(\f(Xlt'd)\) 
< oo is valid for any # G 0 , there exists some P-zero set N satisfying 

£ £ f(Xi(w),0) -» E(f(Xlt#))t u G ft \ N, for all 0 G 0 . This result is 
i = l 

illustrated by examples and compared with known uniform versions of the SLLN. 

1. Introduction and main result 

Let (fl,.4,P) be a probability space, (Y, y) a measurable space, and / : 
Y x 6 -» R a function such that f# is ^-measurable for all i? G 0 , where 
6 stands for some non-empty and not necessarily countable set. Then it seems 
quite interesting to inquire, whether the following uniform version of the strong 
law of large numbers (SLLN) holds true: Does there exists for any (w.r.t. P) 
independent and identically distributed (i.i.d.) sequence of Y-valued random 
variables X1,X2,... satisfying E(\f(X1,

fd)\) < oo, d G 0 , some P-zero set 

N G A such that lim £ E / (*»M, t f ) -> E(f(X1}#)) holds true for all u G 

il\N and any d G 0 ? 
Now it will be shown that the following conditions are sufficient: 

1. 0 is some separable topological space. 
2. / : Y x 0 -•> R has the property that {/ : y G Y} is pointwise equicon

tinuous. 

AMS Sub jec t C l a s s i f i c a t i o n (1991): Primary 60A10, 60B12. 
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The pointwise equicontinuity of {/ : y G Y} implies for any tf0 G 0 

and e > 0 the existence of some neighbourhood L7£(I?0) satisfying f{y^0) — e 

< f(y,fl) < f(y^o) + £ > ^ e ^ e ( ^ o ) ' ! / ^ i fr°m which the inequalities 

£ £ / W " M 0 ) - e < £E/(-W>*) < ̂ £ / (^M^o)+^ " e n , 
2=1 2=1 2=1 

i? G U£(i?0), follow. Therefore, the inequalities 

l i m s u p i ^ / ( ^ H ^ o ) - £ < l i m s u P ^ E / ( ^ H ^ ) 
_ v __ n — n-+oo n . 

2=1 

1 " 

< l i m s up-E/(x>)><>+e 

n—>oo Tl . л n—юo Tl . л 

г = l г = l 

n—>oo Tl . 
2 = 1 

are valid for all u G f) and any tf G t7£(i?0), i.e. l i m s u p ^ E f{Xi(uj),'d) — 
I n ->oo i = l 

n 

l imsup^ E / (^ i ( a ; ) ?^o ) < £, tj G fi, i? G c7£(i?0), holds true, which proves 
n—>oo 2=1 

n 

that the function defined by d -> l imsup^ E /O^iv^)?^) > $ £ 0 , is contin-
n—>oo i = l 

uous for all u G fi. By a similar argument the function introduced by i? —> 
n 

liminf ^ E fi^ii^)^)» $ G 0 , is continuous for all u; G -1. Furthermore, the 
n->oo n

 i = 1 

function i? -> E[f(X1^)), i9 G 0 , is continuous. Now the classical SLLN im-
f n 

plies that the set S introduced by ( w , i ) ) e f l x 0 : limsup £ E / ( ^ i M ' ^) < 
^ n - » o o 2=1 

E(f(X^)) or l i m i n f i S / ^ M . t f ) > E(f(Xlt0))} satisfies P(5 t f ) = 0 
n - » o o i = 1 ) 

for all d G 0 . Furthermore, the continuity of the functions d -> 
n 

l i m s u p l E / ( ^ W ^ ) , * "> l i m i n f i £ / ( ^ ) , and i? -> E(f(X1,^)), 
n->oo 2=1 n->oo ^ = 1 

i? G 0 , together with the existence of some countable and dense subset 0 ' of 0 
yields the universal P-zero set TV G A defined by IJ S# of the type described 

by the following theorem. 

THEOREM. Let (fi,*4, P ) denote a probability space, 0 some separable topo
logical space, and (Y, y) some measurable space. Furthermore, let f: Y x 0 -> R. 
6e a function such that f# is y-measurable for any i ) G 0 , and {/ : y G Y} 
25 pointwise equicontinuous. Then for any sequence Xi: f) —> Y , z = 1,2, . . . , 
o/ y-measurable random variables, which are i.i.d. with respect to P and sat
isfy E[\f(X1,

,d)\) < co, i? G 0 , there exists some P-zero set N G A such that 

lim 1 E / ( X - ( a ; ) , i ? ) = ^ ( / ( X ^ i / ) ) is valid for all u <E tt\N and any tie @. 
i=i 
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2. Examples and comparison to known results 

The following first example shows that one cannot drop the assumption that 
{fy

 : y e Y} is pointwise equicontinuous and that the corresponding domain 
O is a separable topological space without introducing some other conditions. 

E X A M P L E 1. (Projections of random vectors) 
First of all it will be shown that the exceptional zero-set occurring in the SLLN 
cannot be empty in general. For this purpose let f2 stand for the interval [0,1) 
with the corresponding Borel a-algebra B([0,1)) and let Xk : fi —> R stand 
for the B([0,1))-measurable random variable denned by Xk(u) = uk, u G ft, 

oo 

k G N, where u = ^ T£ , uk G {0,1}, k G N, is the dyadic expansion 
k=i 

of u, which is unique if there does not exist any j G N satisfying uk = 1, 
k > j . Then the random variables XX,X2,... are independent and identically 

distributed with respect to the probability measure P on B([0,1)) introduced 

as the Lebesgue-measure restricted to #( [0 ,1) ) . Obviously, the set N defined 

by iu G [0,1) : lim " i+ -+"n ^ l ) is not empty. Now let the set Y stand for 

[0,1]T , T being some uncountable set, where the cr-algebra y of subsets of Y 
is introduced as the direct product ® At. Here the cr-algebra At of subsets of 

teT 

[0,1] coincides with B([0,1]) for all teT. The cr-algebra y has the following 
property: For any A G y there exists some countable subset S of T such that 
(yt)teT € A and ys = y's, s e S, for some (y't)teT G Y implies (y't)teT G A, 
i.e. the countable subset S of T determines A. Now if one introduces Q by 
the set consisting of all one-dimensional projections 7rt: [0,1]T —•> [0,1], teT, 
and the function / : Y x 6 -> R by f((yt)teT,nt) = yt = nt((yt)teT), t eT, 
then fn is ^-measurable for all t G T . Furthermore, in connection with the 
Y-valued and y-measurable random vectors Yn: [0,1)T —r [0,1]T defined by 
Yn((ut)teT) = (Xn(ut))teT, n e N, where X n , n G N, has been introduced 
at the beginning of this example, one gets that the exceptional zero-sets Ns 

denned by Uut)teT G [0, if : lim ^(X^uJ + • • • + X n (w,)) ^ ^ } is equal 
to XteTAt, At = [0,1), t e T \ {s}, As = N. Here TV has already been de
fined at the beginning of Example 1 and the underlying probability measure on 
0 At, At = B([0,1)), t e T, is the direct product (g> Pt, Pt = P, t G T, 
teT teT 
P being the Lebesgue-measure restricted to B([0,1)). Now it will be shown 
that for IJ Nt there does not exist any M e (g) At, At = B([0,1)), teT, 

teT teT 

satisfying ( (g) Pt) (M) = 0 and IJ Nt C M. For this purpose one observes 
MGT ' teT 
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T 
that the inclusion IJ Nt C M together with some (ut)tGT e [0, l) results in 

teT 
fat) teT ^ Mr, i.e. M = [0,1)T, which might be seen as follows: Let S denote 
some countable subset of T, which determines M and let fa't)teT be any el
ement of [0,1)T satisfying u't = ut, t e T \ {t0}, and u't e iV, where t0 is 
some element of T \ S. Hence (u;J)tGT G JVto together with Nt c M implies 
fat) teT e M- Finally, |J Nt and XteTBt, where Bt stands for °/Vc, * G T, are 

t 6 T 

disjoint, i.e. 1 1 ^ ^ ® ^ ^ = B([°> X))> t e T> h o l d s t r u e -
teT teT 

The second example results in some application of the preceding theorem. 

EXAMPLE 2. (Power series with random coefficients) 
Let Y and 0 stand for second countable topological spaces and let / : YxQ -» R 
be some continuous function with respect to the corresponding product topol
ogy of Y x 6 . Then there exists for any y eY some neighborhood U(y) such 
that {/ / : y' C U(y)} is pointwise equicontinuous (since otherwise there would 
exist tf0 e 0 , yQ e Y, and eQ > 0 satisfying | /(yn >#n) - / (y n ,# 0 ) | > £0> 
n G N, where (yn)nGN , yn G Y, n G N, and (# n ) n € N , tfn G 6 , n G N, are 
sequences with lim yn = yQ and lim ti = tfQ, which is a contradiction to the 

n—>oo n—>oo 

property of / to be continuous) and a theorem of Lindelof (cf. [2; 1.4.13, p. 12]) 
yields the existence of some countable collection U(yk), k = 1,2,... , satisfying 
oo 
U U(yk) = IJ U(y) = Y. Now the theorem above results in the existence of 

k=l yeY 

some universal zero set with respect to {/ : y G Y} in connection with the 
SLLN, if the cr-algebra y of subsets of Y is chosen as the corresponding Borel 

° ° Ii5ln 

cr-algebra B(Y). In particular, in connection with ]T) l a J V r < °°» 1̂1 < ^o 
n = l 

for some tf0 > 0 and some (an)n G N ~* ^N > o n e m^&^ introduce the continuous 
function / : Y x 6 -> R with Y = {(yn)neN G R* : \yn\ < \an\, n G N} , 

oo 

and O = (-tf0>i?0) denned by /((i/n)neN,<>) = E ^ , (»„)„eN € r , tf € 0 , 
n = l 

where RN is equipped with the product topology and 6 with the relative topol
ogy of R. 
Remark. (Comparison with known uniform strong laws of large numbers) 
In [3; p. 107-111] and [5; p. 854] one might find the following uniform version of 
the Strong law of large numbers: 

P{ lim sup £ £ / ( * . , * ) - - E ( / ( * i , * ) ) = 0 } = 1 
I n - » O O 0 G 0 n i = 1 J 

under the assumption that 0 is some compact and metric space (tacit assump
tion, cf. [3; p. 110]), ti -> /(y,tf), 1? G 0 , is continuous for all y G Y, and there 
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exists some y -measurable function g: Y -> R such that goXx is P-integrable 
and |/(y, tf) | < g(y), y £ Y, i? E 0 . This result might also be derived easily 
by the theorem above together with a version of the theorem of Arzela-Ascoli, 
which might be found in [6; p. 369]. However, there appears the stronger point-
wise equicontinuity assumption for {/ : y eY}. Finally, one might consult [1; 
p. 4], and [4; p. 1308], for a version concerning the existence of some universal 
P-zero set in connection with the SLLN. 
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