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ABSTRACT. On a bounded strongly pseudoconvex domain D in C n with a 
piecewise smooth boundary, we prove tha t the d-Neumann operator N can 
be extended as a bounded operator from Sobolev (—\) -spaces to the Sobolev 
( I ) - spaces . In particu lar, N is a compact operator on Sobolev (—\)-spaces. 

0. Introduction 

Let D be a bounded pseudoconvex domain in Cn with the standard Her-
mitian metric. Let 8 be the maximal extension of the Cauchy-Riemann operator 
on the space L? q\(D) of square integrable (r, q) -forms (0 < r < n , 0 < q < n) 

and d* its Hilbert space adjoint. The 8-Neumann problem consists in proving 
existence and regularity for the solutions of the equation 

n<p = ip, n = 88* + 8*8. 

The d -Neumann problem has been studied extensively when the domain D has 
smooth boundary (see [1], [3], [10], [14], [15], [17], and [18]). If D has smooth 
boundary and has a C°° -plurisubharmonic defining function on dD, B o a s 
and S t r a u b e [2] showed that the 8-Neumann operator is bounded on Sobolev 
(,s) -spaces with «s > 0. If D is bounded domain with piecewise smooth strongly 
pseudoconvex boundary, H e n k i n , I o r d a n and K o h n [12] and M i c h e l 
and S h a w [19] showed that the 9-Neumann operator is bounded from L? , (D) 

to H? x (D) by two different method. If D is a bounded pseudoconvex Lipschitz 
domain with plurisubharmonic defining function on dD, M i c h e l and S h a w 
[20] showed that the 8-Neumann operator is bounded on Sobolev (\)-spaces. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 35F15, 32W05. 
K e y w o r d s : extension operator, <9-Neumann operator, strongly pseudoconvex. 
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S t r a u b e [23] has extended the subelliptic estimates of TV to domains with 
piecewise smooth boundaries of finite type. Other results in this direction belong 
to B o n a m i and C h a r p e n t i e r [4], E n g l i s [9], and E h s a n i [6], [7], 
and [8]. In fact, the main aim of this work is to establish the following: 

THEOREM. Let D d Cn be a bounded strongly pseudoconvex domain with 
piecewise smooth boundary. For each 0 < r < n, 1 < q < n — 1, the 3-Neumann 
operator 

N•• LU)(D) ^ L^q)(D) 
satisfies the following estimate: for any tp G L2

r \ (D), there exists a constant 
C > 0 such that 

||iv</>lli(z»<CIMI-i(D), (o-i) 
where C = C(D) is independent of </?; i.e., N can be extended as a bounded 

— i i 
operator from H,2JD) into H? AD). In particular, N is a compact operator 

onLfrq)(D) and H~}q)(D). 

In this paper we shall apply M i c h e l and S h a w technique [19] with suitable 
modifications required. The plan of this paper is as follows: In Section 1 we first 
recall the L2 existence theorem of the d-Neumann operator on any bounded 
pseudoconvex domains. In Section 2 we prove a priori estimates on each smooth 
subdomain. In Section 3 we prove the main theorem. 

1. Preliminaries 

Let D be a bounded domain of C n . We express a (r, q)-fovm <p on D as follows: 

¥> = lL ^ArBqdzAr Adz3*, 
Ar,Bq 

where Ar = (av..., a r ) ; 1 < a1 < • • • < a r < n, Bq = ( /3 1 , . . . , 0q); 1 < 0X < 
''' < Pq < n. We denote by C^q)(D) the space of differential forms of class 
C°° and of type (r, q) on D. Let 

C^D^W\u-- V€C(~9)(C)} 
be the subspace of C (~g) (D) whose elements can be extended smoothly up to 

the boundary 3D of D. For ip,^ £ Cff(D), we define 

M)= E \ e , \ 7 , \f\2 = (f,<p), 
Ar,Bq 

(<p,i/>) = J(<p,1>)dv, \\<pf = (<P,<P), 

318 



THE (9-NEUMANN OPERATOR ON STRONGLY PSEUDOCONVEX DOMAIN 

where dv is the Lebesgue measure. Let C£,rg)(D) be the subspace of C?% AD) 

whose elements have compact support in D. The formal adjoint operator $ of 

is defined by : 
(tiip,ip) = (<p,Bip) 

for any ip e C™^(D) and ip e C^rq_^(D). It is easily seen that 8 is a closed, 
linear, densely defined operator, and 8 forms a complex, i.e., 82 = 0. We de
note by i(r>g) (D) the Hilbert space of all (r, q) forms with square integrable 
coefficients. Let 8: L2

rq_^(D) -» L2^rq^(D) be the maximal closure of the orig
inal 3; thus a form ip G L? AD) is in the domain of 8 if and only if 8cp is 
defined in the sense of distributions, belongs to F? ,-^AD). Then 5 is a closed, 
linear, densely defined operator, and forms a complex, i.e., 82 = 0. We denote 
the domain and the range of 8 in L?r^(D) by dom, A8) and Rang/ j(9) 
respectively. The adjoint operator 

5*: Llq)(D)-> Lf^iD) 

of <9 also a closed, linear, densely defined operator. Hence, cp is in the domain 
of d* if there is a ip e L? ±AD) such that for any x € dom/r.g_;n(9) H 
^ _ 1 } ( ^ ) , we have 

v?.#x) = W>,x>-

We then define 8*ip = ip. Clearly, 8* also forms a complex. 

DEFINITION 1.1. A domain D _ Cn is said to be strongly pseudoconvex with 
C°° -boundary if there exist an open neighborhood U of 3D and a C°° function 
A: U -» R having the following properties: 

(i) DHU= {zeU: \(z)<0}. 

(») £ So^C^>^)ICI2; 
a,t3=l 

zGU , C = (C1,-..,Cn) £ C n and F(^) > 0. 
(iii) The gradient VA(z) = ( ^ , *$jp,..., f ^ , ^ ) ^ 0 

for * = ( ^ , . . . , 2 n ) GU; za =xa +\ya. 

DEFINITION 1.2. Let K> be a bounded domain in C n . The boundary dD of 
D will be called piecewise smooth strongly pseudoconvex if there exists: 

(i) A finite open covering {V-}k-=l of an open neighborhood V of dD. 
(ii) C2 -strongly plurisubharmonic functions g •: V- -» R, j = 1 , . . . , k, such 

that the following conditions hold: 
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(a) A point z G V1 U • • • U Vk belongs to D if and only if, for e\ery 

1 <j < fc, z$ Vj or Qj(z) < 0 . 

(b) For every collection of indices 1 < j 1 < • • • < j m < k we have 

dp. A • • • A dp. ± 0 for all z G V] n • • • n V- . 

Let HS(D), 5 > 0, be defined as the space of all u\D such that u G Hs(Cn), 
where Hs(Cn) = Hs(R2n) is the Sobolev space of M2n . We define the norm of 
II5 (-D) by 

\\u\\s{D)=mi{\\v\s{Cn): veHs(Cn), v\D = u} . 

Let C^° (D) be the space of C°° -functions with compact support in D and 
HS(D) be the completion of C0°°(F>) under the HS(D)-norm. When s - 0, 
since C0°°(L>) is dense in L 2 ( D ) , it follows that H$(D) = H°(D) = L2(D). If 
D is a Lipschitz domain, then C°°(D) are dense in HS(D) in the H5(Z))-norm. 
If 5 < \, we also have C^°(D) is dense in HS(D). Thus 

H'(D) = Щ(D) for s < -J-. (1.1 
- 2 

We define H~S(D) to be the dz/aZ of H^(D) when 5 > 0 and the norm of 
H S(D) is defined by 

i i / i i - ' » ' - m p & 

where the supremum is taken over all functions g G C^°(D). 

We use Hf AD) to denote Hilbert spaces of (r,q) -forms with HS(D) -coef

ficients and their norms are denoted by || • \\s{D) • 

2. A priori estimates 

In this section we prove a priori estimates on each smooth subdomain of D. 
We then prove the estimates on each smooth strongly pseudoconvex domain with 
good control of the constants in each subdomain. Let D = dd* + d*d be the 
Laplace-Beltrami operator from L2

r AD) to L2

{r AD) such that dom, >(D) — 

{ ^ G d o m ( r ^ ( 9 ) n d o m ( r ? g ) ( 9 * ) : 5(/>Gdom ( r^+ 1 )(9*) a n d 9 V G d o m ( r g 1 } ( 9 ) } . 

Let Ker ( ? v 7 ) (D) = {</> G dom ( r q)(d) n dom ( r > g ) (3*) : 0<p = 0 and 9*<p = 0} . 

Then D is a linear, closed, densely defined self-adjoint operator from L? , (D) to 

L2

{r s (D). Following H o r m a n d e r L2 -estimates for 9 on any bounded pseudo-

convex domains, one can prove that D has closed range and Ker ( r ) ( D ) = {0}. 

The 9-Neumann operator N is the inverse of D. The following L2 -existence of 

N on D is proved in H o r m a n d e r [13] and S h a w [21; Proposition 2.3]. 

320 



THE <9-NEUMANN OPERATOR ON STRONGLY PSEUDOCONVEX DOMAIN 

PROPOSITION 2.1 . Let D be a bounded pseudoconvex domain in Cn , n > 2. 
For each 0 < r < n and 1 < q < n, there exists a bounded linear operator 

N--L2^q){D)->Llrq){D) 

such that 

(i) Rang ( r >, )(.V) C d o m ( r ( ? ) ( D ) ,UN = NU = I on d o m ( r ( ? ) ( D ) . 

(ii) For any ip G L2

rq) {D), ip = dd*Nip + 5*dN<p. 

(iii) Let 8 be the diameter of D. The following estimates hold for any ip G 

L'lAD): J{r, ) K 

\\N<p\\<^-M, 

II^H^/^IMI. 

eS2, 
|ә*ад<^/-^-iи 

The following lemma is proved by M i c h e l and S h a w [19]: 

LEMMA 2.2. Let D be a bounded domain in Cn with a piecewise smooth 
strongly pseudoconvex boundary. Then, there exists an exhaustion {D^}^° l of 
D such that we have the following conditions: 

(i) {DK}C^=1 is an increasing sequence of relatively compact subsets of D 

arid IJ DK = D. 
K-\ 

(ii) Each {DK}(^=1 has a C°° plurisubharmonic defining function A^ . such 
that 

£ s S f c ^ -Cilc|2 for zedD^ c G c"' 
a , /3- l 

where cx > 0 is a constant independent of K . 
(iii) There exist positive constants c2, c3 such that c2 < |VAJ < c3 on 0DK, 

where c2 . c3 are independent of K . 

Lemma 2.2 implies that D can be approximated by a family of strongly 
pseudoconvex domains with smooth boundaries which are uniformly Lipschitz. 

By using the identity of Morrey-Kohn-Hormander which is proved in C h e n 
and S h a w [5; Proposition 4.3.1], we prove the following lemma: 
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LEMMA 2.3 . Let D and {DK}K^=1 be the same as in Lemma 2.2. There exists 
a constant c4 > 0 such that for any cp e C?£ JDK) fl dom, ^ ( d * ) , 0 < r < n, 
1 < q < n — 1. we have 

EE 
Ar,Bq k=l 

дЧ>Ar 

дzk 

/ + j Ы2dsк<c,(ш\2

Dк + \Ш\2

DJ, 
9DK 

where dsK is the surface element on dDK and c 4 is independent of n. 

P r o o f . Since |VAJ / O o n a neighborhood W of dDK, then the function 
rjK = A^/|VAJ is defined on W. We extend rjK to be negative smoothly inside 
F) . Then 77 is a defining function in a neighborhood of _0 such that r? < 0 

rv ' rv ^^ *— rv ' rv 

on DK, rjK = 0 on <9Z"K and IVTTJ = 1 on W. The following identity is proved 
in H o r m a n d e r [13] or in C h e n and S h a w [5; Proposition 4.3.1]: for any 
tpeC°?q)(DK)ndom{r,q)(5*), 

\\9<P\\Í + l |d>||2
D EE 

Ar,Bq k=l 

д(PAr 

дzk 

---/ / dzadz^^Ar°iBq-1 

ArBq.1a,0=ld

J

DK 

By simple calculation, for each z E dDK and ( G C n , we have 

^ A r л З B , _ ! d s « -

(2.1) 

a,/3=l 

Then, if ~~~ #^"C a = 0, it follows from Lemma 2.2(ii) and (iii) that there exists 
oc=l 

a constant c1 > 0 independent of K such that on <9_9 ,̂ 

d2x Eя^ғcVгcjci^ 
a,/3=l 

Since (/? E Cҷ JDK) fl doiri/ N ( 5 * ) , it follows that </? verifies the Neumann 
condition 

n ox 

___ ^ f VA-ISB,.! = 0 on d o K for each Ar,_?__,_. 
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Substituting these into (2.1), we have 

\d(PArE " 2 n 

EE 
Ar,Bq j = l 

дźi 
ӘDK 

+ c. / и 2 dS/t < iiðиľr,к + надiь,, • 

Then, the lemma is proved by taking c 4 = l / m i n { l , c 1 } . • 

PROPOSITION 2.4. Let D and {D^^ be the same as in Lemma 2.2. There 
exists a constant c 5 > 0 such that for any ip G C^q)(DK) n dom ( r ^(<9*), 
0 < r < n , l<q<n-l, 

Moreover, if <p e Cfcq)(DK) n d o m ( r ( ? ) ( D j , 

\Ш <c5\n 
|2 

(2.2) 

(2.3) 

where c 5 zs independent of (p and K . 

P r o o f . Let z G <9F̂  and u be a special boundary chart containing z. 
From K o h n [16; Proposition 3.10] and C h e n and S h a w [5; Lemma 5.2.2], 

the tangential Sobolev norm ^ ||| DJ (p\\\£_1, and the ordinary Sobolev norm 
3 = 1 

| (p\\£ are equivalent for ip G dom(d) D dom(<9*) where the support of ip lies in 
uilDK, DJ <p = dcp/dxj (j = l , 2 , . . . , 2 n ) , and e > 0. Then, from F o i l a n d 
and K o h n [10; Theorems 2.4.4, 2.4.5], it follows that there exist a neighborhood 
w C u of z and a positive constant c6 such that 

IMI \{DK) -$ C6 

n 

E 
^ , - 9 ^ = 1 
Ľ 

д(p ArBa 

дV 
+ l lv l l^ + / M 2 ds^ (2.4) 

dDK 

for (/? G ̂ w r q)(w fl Z?^) fl dom ( r | ( D J . Since 23 K is a Lipschitz domain, then 
c6 depends only on the Lipschitz constant. Also from Lemma 2.2, {DK}(^=1 

is uniformly Lipschitz, then the constant c6 can be chosen to depend only on 
the Lipschitz character of dDK, which is independent of K. Now cover dDK by 
finite charts {wi}™=l such that this conclusion holds on each chart and choose 

m 

i/jn so that D* - IJ wi C w0 C w0 C DK. Then, the estimate (2.4) holds for all 
i=l 

(p G C^rq)(w0). Using a partition of unity subordinate to {iv\}™ 0 , the estimate 

(2.4) becomes 

.5) 
V ^ w = i °* 8 D K

 7 
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for any (p £ C^q)(DK) n dom( ,(#*), c6 is independent of K. It follows from 
Proposition 2.1 that 

y\\k<^fm\\iK+\\B^wij. 
Then, by using Lemma 2.3 and (2.5) and by taking c5 = c6(^j- + c4) , the 
inequality (2.2) is proved. Also 

ll^llk + ll^vlli,.. < lin^ll^Jlvlli>, 
whenever y e C^q)(DK) n dom ( rv7)(DJ. Then, (2.3) is proved, too. • 

THEOREM 2.5 (RELLICH THEOREM). Let D be a bounded domain in Cn 

with Lipschitz boundary. If sx > s2 > 0, the inclusion HSl(D) <-» HS2(D) is 
compact. 

The description, the construction and the properties of the linear extension 
operator P follows from [22; Chap. VI]. Also it is evident that: 

THEOREM 2.6. Let D be a bounded open subset of Cn with Lipschitz bound
ary; then for every s > 0 there exists a continuous linear extension operator P 
from HS(D) into Hs(Cn) such that Pg\D =g, Pg is C°° on Cn \D, and 

\\Pg\\s^)<c\\g\\a(D) 

for some constant c independent of g. 

3. The proof of the main theorem 

Let D and {DJ^ be the same as in Lemma 2.2 and NK denote the (/-Neu
mann operator on L2

{rq)(DK). To prove the main theorem, it suffices to prove 
(0.1) for any cp e C^q)(D). By using the boundary regularity for NK which was 
established by K o h n [15], we have NK<p e C^q)(DK)ndom{rq)(DK). By using 
(iii) and (ii) in Proposition 2.1, we have 

\\NM\DK<^MDK<^\\<P\\D, (3.1) 

\\9NM\DK + \KNM\DK < 2\/*£\\<p\\D < 2jŽĚ\\<p\\D , 
V q (3.2) 

and 

\mNKtp\\2
DK + mdNK<p\\k = \\V\\2DH < Ml. (3.3) 
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Let us extend NK(p to all of D by setting NK(p = 0 in D \ DK, thus by the 
Rellich and Sobolev lemmas we can choose a subsequence (still denoted by N ip) 
converging weakly to some element ip G F? ^(D) and dip G L? +1)(D). In view 

of (3.1), (3.2) and (3.3), we can assume that NKip, dNK(p, B*NK(p, d*dNK(p, and 

ddKNK(p converge weakly to some elements ip, ipx, ip2, ips and ip4 of L? , (D), 

respectively (here again extending dNK(p etc. by zero on D\DK). We claim 

that ip G d o m ^ ^ d ) fl d o m ^ ^ d * ) and dip = ipl, d*ip = ip2. Indeed, for any 

uedom^^^nL^^D), 

\(1>,du)D\= lim \(NK<p,du)DJ= lim K^TV^, _)DJ 
At—rOO K.—r CO 

(3-4) 
<2y^iMUMi0. 

Thus ^ G dom/ r q\{d*) . The proof for d is the same. Using the same arguments 

as in (3.4) we obtain ipx G dom(d*), ip2 G dom(<9) and d*ipl = ip3, 9 ^ 2 = ip4. 
Thus -0 £ dom(D) and Dip is the weak limit of DKNK(p = ip; that is, ip = Nip 
and NK(p -» 1V</? weakly in F2. Then, from (1.1), we have 

H^(D) = H2(D). 

Then it follows from the Generalized Schwartz inequality (see F o 11 a n d and 
K o h n [10; Proposition (A. 1.1)] or C h e n and S h a w [5; p. 340]) that 

\(hJ)DJ<\\hh2{DJf\U2iDK) 

I —.1 

for any h G H2
rq)(DK) and / € H{r

2
q)(DK). By using (2.2), there exists a 

constant c5 > 0 such that for any (p G C™q)(DK) n d o m ( r ^ ( D j , 0 < r < n 

and 1 < q < n , 

IMI|(_,„) < (kiWdvWl, + WM\2
DK) = C5(<P,DK<P)DK 

^ C 5 lNi (X)K) l l D i eVl l - i (D 1 , ) . (3-5) 

where c5 is independent of <£ and n. Substituting NK<p into (3.5), we have 

WNK<Ph(Dn) < C B l P ^ V l l - i d , . ) = c 5 | |v | |_ i ( D„) , (3.6) 

where c5 is independent of (/? and K. It follows from Theorem 2.6 that there 
exists a linear extension operator 

PK: HHDK) ^ HHC1) 

such that for each <p € H2 (DK), PK<p = <p on DK and 

l l p ^ l l i ( o . ) < C 5 | | ^ | | I ( _ , K ) (3.7) 
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for some positive constant c5 . The constant c5 in (3.7) can be chosen indepen
dent of K since an extension exists for any Lipschitz domain (see E. S t e i n [22] 
or G r i s v a r d [11; Theorem 1.4.3.1]). By applying PK to NKip componentwise 
and by using (3.6) and (3.7), there exist a positive constant C independent of 
K such that 

IIIV^II 1(D) < H I V ^ U l ^ ) < C- IK^Ix^) < OMI_i(D„) • 

Let P be the extension operator of Theorem 2.6 applied to D. Since DK -> D 
converges uniformly, then P —> P converges uniformly also. Also since lim N tp 

= Nip, then lim P N' (p = PNip = Nip. Then (0.1) is proved by taking the 
K—>00 

limit in the above inequality. Thus N can be extended as a bounded operator 

from H-^(D) to H^g){D). 
_ 1 

To prove that N is compact, since N is bounded from H,2AD) into 
i 

H? N(-D), and by Theorem 2.6, the inclusions 

H^(D) ^ L2(D) ^ H~^(D) 

and 

H*(D) ^ H~i(D) 

are compact; since a composition of a bounded and a compact operator is com
pact, the compactness of N on H~^(D) and L2(D) follows. 
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