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MODULAR AND METRIC MULTILATTICES 

t MILAN KOLIBIAR* — JUDITA LIHOVÁ** 

(Communicated by Tibor Katriňdk) 

ABSTRACT. A metric multilattice, which is shown to be a generalization of Birk-
hoff's metric lattice, is defined. A metric multilattice is modular, and a directed 
modular multilattice of locally finite length is metrizable. 

1. Basic notions 

Let (P, < ) be a partially ordered set. Given a G P , denote by [a) = {x G 
P : x > a } , (a] = {x G P : x < a). If a, b G P , a < b, then the set [a) fl (b] 
will be denoted by [a, b] and it will be referred to as an interval. P is said to be 
of locally finite length if all bounded chains in P are finite. 

For a, b G P we denote by a V b and a A b the set of all minimal elements 
of [a) fl [b) or all maximal elements of (a] fl (b], respectively. P is said to be a 
multilattice (cf. [1]) if for any a, b, u, v G P such that u G (a] fl (b], v G [a) fl [b), 
the sets (a A b) fl [u), (a V b) fl (v] are not empty. A multilattice M is modular 
(cf. [1]) if, whenever a,b,c E M, (a A b) H (a A c) ^ 0, ( a V i ) n ( a V c ) / 0, 
b < c, then b = c. 

If L is a lattice and a,b E L, then the symbols aVb and aAb have the usual 
meaning. 

2. Metric multi lattice is modular 

DEFINITION 2.1. By a metric multilattice we mean a multilattice M in which 
a metric d is given which fulfils the conditions: 

M l . a < b < c implies d(a, b) + d(b, c) = d(a, c), 
M2. if u G a A b, v £ aV b, then d(a,b) = d(u,v). 
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LEMMA 2.2. Let a, b, u, v be elements of a metric multilattice M with a 
metric d, u E a A b and v E a V b. Then d(H, a) == d(b, U). 

P r o o f . Suppose d(H, a) < d(b, v). Using M2 , the triangle inequality and 
Ml we get d(u, v) = d(a, b) < d(a, u) + d(H, b) < d(b, v) + d(H, b) = d(H, U), a 
contradiction. The assumption d(it, a) > d(b, U) leads to a contradiction analo
gously. • 

THEOREM 2.3. A metric multilattice is modular. 

P r o o f . Let a, b, c, H, U be elements of a metric multilattice such that 

u E (a A b) n (a A c) , u G ( a V ( ) ) n ( a V c ) , b < c. 

Using Ml and 2.2 we obtain 

d(b, c) + d(c: v) = d(b, v) = d(it, a) = d(c^ v) , 

which implies d(b,c) = 0. Hence b = c • 

3. Directed modular multilattice of locally finite length is metrizable 

The following statement is a consequence of [1; 4.5]. 

THEOREM 3.1. A modular multilattice of locally finite length fulfils the condi
tion 

(JD) if a <b, then all maximal chains in [a,b] have the same length. 

In what follows, the symbols /(a, b), /(b, a) will be used to denote the length 
of maximal chains in the interval [a, b] of a modular multilattice of locally finite 
length. 

By [1; 4.741], we have: 

THEOREM 3.2. If a, b, u, v are elements of a modular multilattice of locally 
finite length such that u E a A b and v E a V b, then /(H, a) = /(b, v). 

COROLLARY 3.3. Let a, b, V\, v2 be elements of a modular multilattice of 
locally finite length such that a A b ^ 0 . iq,U2 E a V b . Then /(a, v\) + /(b, v\) — 
l(a,v2) + /(b,U2). 

P r o o f . Take any u E a A b. By 3.2, we have 

/(a, vi) + Z(b, vi) = l(u, b) + /(H, a) = /(a, U2) + Z(b, v2) . 

20 



MODULAR AND METRIC MULTILATTICES 

THEOREM 3.4. A directed modular multilattice of locally finite length is 
metrizable. 

P r o o f . Let M be a directed modular multilattice of locally finite length. 
Define a function d on M X M by 

d(a, b) = l(a, v) + l(b, v), 

where v is an element of a V b. According to 3.3, this function is well defined. 
It is easy to see that d is symmetric and that for elements a, 6 G M, one has 
d(a, b) = 0 if and only if a = b. To prove the triangle inequality, take a,b,c G M, 
v\ G a V 6 , v2 £ bV c, w £ v\M v2 and v G (a V c) D (w]. We are going to show: 

l(a,v) + l(c,v) < l(a,vi) + l(b,v\) + l(b,v2) + l(c,v2). 

Choose u G (vx AU2)n[b), p G (r>i V v) n (w], q G (u Vv2) fl (to], r G (vi Au)n [a ) 
and s G (v A ^ ) D [c) (see Fig. 1). Using 3.2, we obtain l(r, v) = l(v\,p), 
l(s,v) = l(v2,q), l(v\,w) = l(u,v2) and l(v2,w) = l(u,v\). 

Therefore 

l(a, v) + l(c, v) = l(a, r) + l(r, v) + l(c, s) + l(s, v) 

= l(a, r) + l(vi, p) + l(c, s) + l(v2, q) 

< l(a, r) + l(vi, w) + l(c, s) + l(v2, w) 

= l(a,r) + l(u,v2) + l(c,s) + l(u,vx) 

< l(a, v\) + l(b, v2) + l(c, v2) + l(b, Vl) 

= l(a, Vl) + l(b, vx) + l(b, v2) + l(c, v2). 

The condition Ml is trivially satisfied. As to M2, if u G a A b and u G a V t , 
then d(a, b) = l(a, v) + l(b, v) = l(a, v) + l(u, a) = l(u, v) = d(u, v) by 3 .2 . This 
completes the proof. • 
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4. Metric lattices 

DEFINITION 4.1. (cf. [2]) By a valuation on a lattice L, we mean a real-valued 
function v defined on L, satisfying 

VI. v(x) + v(y) = v(x V y) + v(x A y). 

A valuation is positive if 

V2. x < y implies v(x) < v(y). 

A lattice with a positive valuation is called a metric lattice. 

Applying Definition 2.1 to the case of lattices Ave obtain another definition of 
a metric lattice: 

DEFINITION 4.2. Metric lattice is a lattice with a metric d satisfying: 

LI. a < b < c implies d(a, b) + of(b, c) = d(a, c), 
L2. d(a, b) = d(aAb,aVb). 

We are going to make clear the relation between these two definitions. In [2], 
it is proved that, if v is a positive valuation on a lattice L, then the distance 
function d defined by d(x, y) = v(x V y) — v(x A y) is a metric. It is easy to see 
that this metric satisfies also LI and L2. Hence, if a lattice is metric in the 
sense of 4.1, then it is metrizable in the sense of 4.2, too. Now we are going to 
prove the converse. 

In 4.3-4.13, L will be a lattice, and d a metric on L satisfying LI and L2. 
We will construct positive valuations on L. 

Take any fixed element of L and denote it by 0. We will use the symbols O+ 

and a~ for a V 0 and a A 0, respectively. Define a function v0 on L by 

v0(a) = d(0 ,a + ) - d(a~,0). 

We are going to show that Do is a positive valuation on L. Let us remind that, b} 
2.3, the lattice L is modular, and 2.2 ensures that, if [H, a], [b, v] are transposed 
intervals, then d(u, a) = <i(b, v). We will use these facts. 

LEMMA 4.3. The function v0 satisfies V2 . 

P r o o f . Let x < y. Then x~ < y~ < 0 < x + < y+, and the modularity 
of L yields that either x~ < y~ or a:+ < D+. Hence d(y~, 0) + d(0, x + ) 
d(y~, x+) < d(x~,y+) = d(x~, 0) + Li(0, H+), which implies 

v0(x) = d(0, x + ) - d(x~,0) < d(0, D+) - d(y~, 0) = v0(y) . 

• 
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LEMMA 4.4. If x,y e L, then 

d((x A y)~, x~) = d(y~, x~ V y~) and d(x+, (x V y)+) = d(x+ A y+, y+). 

P r o o f . Evidently, [(x A y)~, x~] , [y~, x~ V y~] and [x+ A y+, ?/+] , 
[a;+, (x V y)+] are couples of transposed intervals. D 

LEMMA 4.5 . If x,y e L, then 

d(x~ Vy~, (xV y)~) = d((x A y) V x~ V y~, (xAy)V(xV y)~) . 

P r o o f . We will show that the intervals [x~ V y~, (x V y)~] and 
[(x A y) V x~ V y~, (x A y) V (x V y)~] are transposed. It is clear that 
(xAy)Vx~Vy~V(xVy)~ = (x Ay) V (xVy)~ . Further, using the modularity of 
L, we get ((x Ay)V x~ V y~) A(xV y)~ = x~ V y~ V (x Ay A(xV y)~) = x~ Vy~ V 
((xAy)A(xVy)AO) = (x~Vy~)v((xAy)AO) = (x~Vy-)V(x~Ay~) = x~Vy~. 

D 

Analogously, it can be proved: 

LEMMA 4.6. If x,y e L, then 

d((x V y) A (x A H)+, (x V y) A x+ A y+) = d((x A y) +, x+ A y+) . 

LEMMA 4.7. If x,y e L, then 

d((x A y) V x~ V y~, (xAy)V(xV y)~) = d(x~ V (y A x+), (x V y) A x+ A y+) . 

P r o o f . It is sufficient to show that the intervals 

[ 0 Ay)V x~ V y~, (xAy)V(xV y)~] , [x~ V (y A x+), (x V y) A x+ A y+] 

are transposed. Due to the modularity of L, we have ((x A y) V (x V y)~) V 
(x~ V(yA x+)) = (xAy)V ((x V y) A 0) V (x A 0) V (y A (x A 0)) = ((x V y) A 0) 
V (y A (x V 0)) = ((y A (x V 0)) V 0) A (x V y) = ((0 V y) A (x V 0)) A {x V y) = 
(x V y) A x+ A y+. Using again the modularity of L several times we obtain 
((xAy)V(xVy)~)A(x~V(yAx+)) = ((xAy)v((xVy)A0))A((xA0)v(yA(xV0))) = 
(((xAy)V0)A(xVy))A(((xA0)Vy)A(xV0)) = ((xAy)VO) A(xVy)A((xAO)Vy) A 
(x V 0) = ((x Ay) V 0) A ((x A 0) V y) = (x A y) V (0 A ((x A 0) V y)) = 
(x A y) V ((x A 0) V (y A 0)) = (x A y) V x~ V y~ . D 

LEMMA 4.8. If x,y e L, then 

d((x A y) V x~ V y~', y~ V (x A y+)) = d((x A y) V (x V y)~, (x V y) A x+ A y+) . 

The Proof is obtained by interchanging the roles of x and y in the previous 
proof. 
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LEMMA 4.9. If x,y e L, then 

d(x~ V (y A a;+), (x V y) A x+ A y+) = d((x A y) V z " V y~, y - V (a: A y+)) . 

P r o o f . It is clear that 

x A y + < (y~ V z) A y+ = y~ V (x A y+) < x V y " , 

x+ A y < (x~ V y) A x + = x~ V (y A x+) < x " V y . 

Further (a: A y+) V (a:+ A y) = ((x A y+) V y) A a:+ = ((y V a:) A y+) A a;+ = 

(xVy)Ax+A y + , which implies (y~ V(a?Ay+)) V (x~ V(yAa;+)) = (a;Vy)Aa:+Ay+ 

and analogously (xVy~)A(x~ Vy) = x~ V (y A (a: V y - ) ) = x~ \J (y~ \J (x Ay)) = 

(xAy)\/x~Vy~ implies (y~ V(a;Ay+)) A(x~ V(yAz+)) = (x/\y)\/x~ Vy~ . Hence 

the intervals [(x Ay) Va;~ Vy~, y~ V(a? Ay+)] , [x~ V(y Aa;+), (x Vy) Ax+ Ay+] 

are transposed and the proof is complete. • 

Using successively 4.5, 4.7, 4.9, 4.8, 4.6 and taking into consideration the 

fact that (x A y) V (x V y)~ = (x\/ y) A(x A y)+ we obtain (see Fig. 2): 

LEMMA 4.10. If x,y e L, then d(x~Vy~, (xVy)~) = d((x Ay)+, x+ A y + ) . 

c+ Л w+ 

(æ V y) Л .r+ Л y 

(x Лy)V x Vy 

(ж Л î/)^ 

a = y~ V (ж Л г/+ ) = ( Î / ~ V x) Л y+ 

6 = (ж Л î/) V (ж V t/)~ = (æ V t/) Л (x Л */) + 
c = x~ V (y Л ж+ ) = (x~ V y) Л a + 

( г V y ) -

x V y~ 

Figure 2. 

LEMMA 4 . 1 1 . The function v0 satisfies the condition V I . 

P r o o f . Take any x,y ' L, and let us calculate vo(x \/ y) + vo(x A y). By 

the definition of v0, we have 

Vo(xVy)+v0(xAy) = d(0, (xVy)+)-d((xVy)~, 0 ) + d ( 0 , (xAy) + ) -ci((xAy)~, 0) . 
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In view of L I , we have 

d ( 0 , ( x V y ) + ) = d ( x " , ( x V y ) + ) - d ( x - , 0 ) , 

d((x V y ) - , 0) = d((x V y ) " , y + ) - d ( 0 , y + ) , 

d(0, ( x A y ) + ) =d ( iy - , (x A y) + ) - d ( y " , 0 ) , 

d((x A y ) " , 0) = d ( ( x A y ) ~ , x + ) - d ( 0 , x + ) . 

Consequently 

^o(^V?/) + i;o(a:Ai/) 

= d (x" , (x V y) + ) - d(x" , 0) - d((x V y ) " , y + ) + d(0, y + ) + d(2/", (x A y) + ) 

- d(y", 0) - d((x A y ) " , x + ) + d(0, x + ) . 

(*) 
But d (x" , (x V y) + ) = d((x A y)~, (x V y) + ) - d((x A y)~, x " ) = 
d((x A y ) " , (x V y) + ) — d(y" , x~ V y~) , and analogously d((x A y)~, x + ) = 
d ( (xAy)" , ( x V y ) + ) - d ( x + , ( xVy) + ) = d ( ( x A y ) " , ( x V y ) + ) - d ( x + A y + , y + ) 
by LI and 4.4. Further d((x V y ) - , y + ) = d(y~,y+) — d(y~, (x V y)~) and 
d(y~, (x A y) + ) = d(y~, y + ) — d((x A y ) + , y + ) , again by L I . SubstitLiting into 
(*) and arranging we obtain v0(x\/y)+v0(xAy) = d(0 ,x+ )—d(x", 0 )+d(0 ,y + ) — 
d ( y - , 0 ) + d ( y " , ( x V y ) - ) - d ( y ~ , x~ Vy") - d((x A y ) + , y + ) + d ( x + A y + , y + ) . 
Now, since d(y~, (x V y)~) — d(y~~, x~ V y _ ) = d ( x _ V y" , (x V y)~), 
d((x A y ) + , y + ) — d(x + A y + , y + ) = d((x A y ) + , x + A y + ) by L I , using the 
definition of v0 and 4.10, we get v0(x V y) + v0(x A y) = v0(x) + v0(y). This 
completes the proof. D 

In view of 4.11 and 4.3, we have 

COROLLARY 4.12. The function v0 is a positive valuation on L. 

COROLLARY 4.13. Let v0 be as above, and let t be any real number. The 
function vt defined on L by vt(a) = v0(a) + t is a positive valuation on L. 

The proof is straightforward. 

We have obtained: 

THEOREM 4.14. Let L be a metric lattice in the sense of Definition 4.2. Then 
L is a metrizable in the sense of Definition 4.1, too. Moreover, for any x G L 
and t G R there exists a positive valuation v on L with v(x) = t. 

P r o o f . Denote by 0 the chosen element x and take vt as above. Then vt 

is as we need. D 
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COROLLARY 4.15. Definitions 4.1 and 4.2 are equivalent. 

Given a metric d on L satisfying LI and L2, we can take some of the 
above constructed positive valuations and the corresponding distance function. 
What can be said about the relation between these two metrics? And what 
about the relation between a positive valuation ^ o n L and a positive valuation 
v\ corresponding to the distance function of v? The answers are given in the 
following theorems. 

THEOREM 4.16. Let d be a metric on a lattice L satisfying LI and L2 . Then 
d is the distance function of any of the above valuations. 

P r o o f . Take any one of the above valuations, say vt. Denote by dt the 
distance function of vt. Then for any x, y ' L we have 

dt(x, y) = vt(x Vy)- vt(x A y) 

= v0(x Vy)+t- v0(x Ay) - t = v0(x V y) - v0(x A y) 

= d(0, (x V y)+) - d((x V y ) " , 0) - d((), (x A y)+) + d((x A y)~, 0) 

= (d(0, ( x V y ) + ) - d ( 0 , ( *Ay)+) ) 

+ ( d ( ( x A y ) - , 0 ) - d ( ( x V y ) " , 0 ) ) 

= d((x A y)+, (x V y)+) + d((x A y ) " , (x V y)~) . 

Due to the modularity of L, we have (x A y) V (x V y)~ = (x A y)+ A (x V y) and 
denoting this element by z, we can see that the intervals [(x A y)+, (x V y)+] , 
[z, x V y] are transposed, and so are [(x A y)~, (x V y)~] , [x A y, z]. Hence 
d((x A y)+, (x V y)+) = d(z, x V y) and d((x A y)~, (x V y)~) = d(x Ay, z). 
Therefore we have dt(x,y) = d(z, xVy) + d(xAy, z) = d(xAy, xVy) = d(x,y). 

D 

THEOREM 4.17. Let v be any positive valuation on a lattice L, and d its 
distance function. Let vt correspond to d as above. Then v and vt differ at 
most by a constant, i.e. there is a real number g such that vt(a) = v(a) + g for 
every a E L. 

P r o o f . Let a G L. Then vt(a) = v0(a) + t = d(0,a+) - d(a~,0) + t = 
v(a+) - v(0) - v(0) + v(a~) + t = v(a V 0) + v(a A 0) - 2U(0) + t = v(a) + 
v(0) - 2U(0) + t = v(a) + t - v(0) = v(a) + vt(0) - v(0). It is sufficient to set 
g = vt(0)-v(0). D 
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