
Mathematica Slovaca

Pham Ngoc Ánh; László Márki
A general theory of Fountain-Gould quotient rings

Mathematica Slovaca, Vol. 44 (1994), No. 2, 225--235

Persistent URL: http://dml.cz/dmlcz/131195

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/131195
http://project.dml.cz


Mathematica 
Slovaca 

© 1 9 9 4 
r~, MM / _ ^ ~ . \ .. i ~ «./-.,- rt«r Mathematical Institute 

Math. Slovaca, 44 (1994), No. 2, 225-235 s iovak Acadomy «f S<-Í«M,<-, 

Dedicated to Academician Štefan Schwarz 
on the occasion of his 80th birthday 

A GENERAL THEORY OF 

FOUNTAIN GOULD QUOTIENT RINGS 

PHAM NGOC ANH — LASZLO M A R K I x 

(Communicated by Tibor Katr ihak ) 

ABSTRACT. F o u n t a i n and G o u l d [1] introduced a new generalization 
of classical quotient rings. These new quotient rings have been described for some 
special classes of rings in subsequent papers. In the present paper we develop their 
general theory and compare Fountain-Gould quotient rings with the classical ones. 
It is seen, in particular, tha t for rings with identity the notion of Fountain-Gould 
quotient rings is more restrictive. 

1. Definitions 

In what follows we are going to look at four kinds of quotient rings. Since it 
is important not to confuse them, we recall the definitions of three of them here, 
and take only the notion of classical left quotient rings for known. 

DEFINITION 1. (U t u m i [6]) Let R be a subring of a ring S . We say that 
S is a left quotient ring of R if for all x,y £ S with x ̂  0 there is an a £ R 
sack that ax ̂  0 and ay £ R. 

Notice that a ring is a left quotient ring of itself if and only if it is right 
faithful. 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 16A08. 
K e y w o r d s : Ring, Quo t ient. 
1 This research was supported partly by Hungarian National Foundation for Scientific 

Research, the Grant no. T4265 . 
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DEFINITION 2. If R is a right faithful ring, then by U t u m i [6] it has a 
unique maximal left quotient ring, which we shall call the Uturni left quotient 
ring of It. 

U t u in i 's construction [6] of the Utumi left quotient ring of a right faithful 
ring R, goes back to R . E . J o h n s o n [4] in the nonsingular case. Using 
homological language, this construction is just S = limHoin/?(L, R) , where L 

runs through those left ideals of It for which R is a left quotient ring. This S 
is an abelian group, on which multiplication is defined as composition of partial 
mappings of R. 

DEFINITION 3. An element 6 of a ring R is a group inverse of the element a 
of R if aba = a, bab — b and ab = ba. A group inverse, if it exists, is unique. 
The group inverse of a will be denoted by a& ; in fact, a^ is the inverse of a . in 
the usual sense, in a subring of the form eRe of R, where e is an idempotent. 
Thus (group) inverses are taken with respect to any idempotent, not only an 
identity, element. If R has an identity, and an element a has an inverse in the 
usual sense, then a^ = a - 1 . 

R e m a r k . The unicity of the group inverse is a well-known fact in semi-

oi groups. It is easily seen e.g. as follows. Suppose af , a^ are group inverses 

a, then a* = (a*)2a = (a*)2[aa2(af)2} = [(af )2 a2 a] (a,f )2 = a(af)2 = Of . 

DEFINITION 4. An element a of /? is said to be left square-cancellable if, 
for any x,y E RU {1}, a2x = a2y implies ax = ay. Right square-cancellable 
elements are defined dually; square-cancellable means both left and right square-
cancellable. 

The set of square-cancellable elements of /? will be denoted by S(R). Clearly. 
any element of R which has a group inverse in an over ring of R , must be square-
cancellable in /? . 

DEFINITION 5. ( F o u n t a i n and G o u l d [1]) Let R be a subring of a 
ring Q . We say that R is a left order in Q and Q is a Fountain-Gould left 
quotient ring of R if 

(i) every a £ S(R) has a, group inverse in Q , 
(ii) every q £ Q can be written as q = a^b for some a G S(R) and 

beR. 

By [1; Lemma 2.1], we know that every q G Q can be written as q = a^b 
with aa#b = b, b G R,: one just replaces aftb by (a2)^ab. This will be assumed 
throughout. 
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NOTATION. We denote by £R(a) = [x G R \ xa = 0} the set of left anni-
hilators of a G R. If there is no danger of confusion, then we shall omit the 
subscript R. 

If i? is a left order in Q and a G S(R), then aa# = a#a G Q is idempotent, 
£Q(a) = £Q(aa^) = Q£R(a), Qa = Qaa# , and, for any idempotent e € Q, 
(Q(c) + Qc = Q. Hence 

Q(£R(O) + Ra) = Q£R(a) + QRa = £Q(a) + Qa = £Q(aa#) + Qaa* = Q . 

Furthermore, if b G R, a (E S(i t ) and £(a) C -?(6), then b = a a # b in Q 
because 

Q(6 - O#ab) = (£Q(a) + Qa)(b - a*ab) = (J, 

and writing b - a#ab = c*d with d = cc#d G Qc#d we get d -= 0, hence 
I) = aft ab. 

2. Results 

THEOREM 1. Fel i? 6e a /e/l Order in Q (in the sense of Fountain and Gould). 
Then Q is a left quotient ring of R. 

P r o o f . Take any x i~- 0 and y from Q. We may write y in the form 

y = c#d with cc*d = d, hence (£R(c) + Rc)c*d C i t . Now £R(x) D £R(c) + Re 

would imply £Q(x) D Q£R(x) 2 Q(£R(C) + Re) = Q, hence .r = 0, contrary to 

our assumption. Thus £R(x) 2 £R(C) + Re, and for any r G (£R(c) + Rc) \£R(x) 

we have rx 7̂  0 and rc#r/ G i^, which proves our assertion. 

COROLLARY 1. If R is a left order in Q . then Q is contained in the Utumi 
left quotient ring S of R . 

COROLLARY 2. If a commutative ring R is a left order in a ring Q . then Q 
is also commutative. 

Indeed, this is proven for the Utumi left quotient ring of R in L a m h e k [5] 
in case R has an identity, but the existence of the identity is not needed in the 
proof. 

R e m a r k . If a ring has a Fountain-Gould left quotient ring, then the latter 
is, in general, smaller than the Utumi left quotient ring. Namely, if the ring 
consists of zero divisors only, then the same is true for its Fountain-Gould left 
quotient ring, while the Utumi left quotient ring always has an identity. 
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Since every square-cancellable element of R belongs to a subgroup of Q, 
and thus to a subgroup of S, its inverse is uniquely determined in S. As Q is 
generated by R and the inverses of the square-cancellable elements of R. this 
means that Q is a uniquely determined subring of S. 

Thus we obtain: 

COROLLARY 3. ( G o u l d [3; Theorem 5.9]) If a ring R has a Fountain-Gould 
left quotient ring Q , then Q is unique up to isomorphisms. 

Next we prove that the Common Left Denominator Theorem holds in Fountain-
Gould left quotient rings. 

PROPOSITION 2. (cf. G o u l d [3; Proposition 5.5]) Let R be a left order in 
Q . Then for any a. b £ S(R) there is an r £ S(R) such that (Q(a) n (Q(1)) 

P r o o f . Put e = O^O, / = iftb. Write / — ef in the form x^y. where 
xxfty = y, and put O = xxft, w = e -\- g — ge . By straightforward computation 
we verify that we = e and wf = f. Write w in the form r^s with rr^s = ,s , 
then we have r^rw = w, hence r'^re = r^rwe = we = e. arrd similarlv 
r*rf = / . Thus (Q(r) C (Q(e) n (Q(f) = (Q(a) n (Q(b) . 

PROPOSITION 3. Let R be a left order in Q and p.q G Q be arbitrary 
elements. Then there exist x £ S(R) and y £ R such that p = ;r#y and 
x~ft xq = q . 

P r o o f . Write p and q in the form p = O^b, q = c#d. By Proposition 2. 
there is an r £ S(R) such that ((r) C ((a) n ((c). Put e = r*r, / = O#O . 
O = e^c , then we have ef = f and eO = g. Put h = e -f / — fe. then 
straightforward verification yields hf = fh = f and hg = g . Put O = // — / + O . 
O = h — f -\- aft , then it is easy to check that uv = vu = h arrd E/ = /I1 = a# . 
Write v in the form D = .T^Z writh xxftz = z. then we get 

p = aftb = vfb = vaaftb = vb = xft(zb), 

and 

x&xq = xftxcftd, = x^1 x(gcft)d = xftx(hg)eftd = x^xhcftd 

= x^xvucftd = vucftd = heft d, = c^d, = q . 
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P R O P O S I T I O N 4. Let R be a left order in Q . Then for any a, 6 G S(R) there 

are u G S(R) , v,w G i t sHc/i that a # = H^U ana7 b# = I ^ I / J . 

P r o o f . By Propos i t ion 3, for ( a 2 ) # , ! ) * G Q t h e r e exist x G <S(/?,) a n d 

// G 1? such t h a t (a2)^1 = x^y a n d x'^xb^ = b# . Again by Propos i t ion 3, t h e r e 

exist r G S(R), .s G i? such t h a t xbft = r # s , r^rya = ya. Write x # r # in t h e 

form ?/,#z. Now we have 

^ # __ x#xo# — x^r^s = u^zs, 

c r = (a )rta = xrya = x.r^rya = u^zrya . 

As an i m m e d i a t e corollary t o Propos i t ion 4, we o b t a i n : 

T H E O R E M 5. ( C o m m o n Left D e n o m i n a t o r T h e o r e m ) Let R be a left 

order in Q, then for any p, q G Q there exist u G S(R) , v,w G R such that 

p = vЎv , q = u w . 

This result has been known only in t h e case when Q is regular (see F o u n -

t a i n and G o u l d [1; T h e o r e m 4.3]). 

By induct ion, t h e C o m m o n Left D e n o m i n a t o r T h e o r e m holds for arb i t rary 

finite subsets of Q . 

T H E O R E M 6. A ring R has a Fountain-Gould left quotient ring if and only if 

it satisfies the following conditions: 

(1) for every a G R there is a c G S(R) such that £(c) C £(a) ; 

(2) for every a G S(R) and r G i t , (£(a) + Ra)r = 0 implies r = 0 ; 

(3) for every a,b £ S(R) there exist c G S(R) and x,y G R such that 

£(c) C 1(a) H £(b) , ca = xa2 , cb = yb2 ; 

(4) For every a,c G S(R) and b G R there exist u G S(R) and v,x G R 

such that 

£(u) C £(a) , ?ia = xa2 , xbc = vc2 . 

R e m a r k s . 

1. Condi t ions (1) and (2) are relatively mild; unlike t he case of classical 

quot ient rings, they are needed here because S(R) may contain zero divisors . 

Condi t ion (3) will ensure the common denomina tor proper ty ; it is needed be

cause S(R) need not be multiplicatively closed. Condi t ion (4) is a generalization 
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of the left Ore condition. In fact, if £(u) C £(a) in the quotient ring Q with 
u and a square-cancellable, then u#a = x if and only if ua = irx . Thus 
Condition (4) expresses a^bc^1 = u^v . 

2. By applying Condition (3) several times, we see that this condition holds 
if instead of a, b £ S(R) we start from an arbitrary finite number of elements of 
S(R). Furthermore, x £ Ra, y £ Itb such that ^(c) C £(x)n£(y) can be chosen 
in Condition (3). Indeed, we have £(a) = £(a2), £(b) = £(b2). Apply now the 
condition for a2, b2 £ <S(I?); then wre get ca2 = xa4 , hence (by O £ <S(I?)) CO = 
J;O3 = (xa)a2 , and then c2a = c(ca) = (cx*a)a2 , and similarly c2b = (cyb)b2 . 
Here ^(c2) = ^(c) C £(cxa) (1 £(cyb). 

3. In Condition (4), a, U, x can be chosen so that £(u) C ^(c) n ((x) . 
Indeed, in the same way as above, we first choose u, v, x and then replace1 

them by H2 , uv , ux. Furthermore, U can be chosen from Re as one can see in 
the same way as in the previous remark. 

4. We have two proofs for Theorem 6. One of them is constructive, but it 
requires long pages of computations, hence we prefer giving only a sketch of this 
proof and present a full proof which makes use of the Utunri left quotient ring. 

P r o o f . 

Necessity: Suppose that R has a Fountain-Gould left quotient ring Q. 

(1) Every a £ I2 can be written in the form c&d^ and here £R{c) C 
£Q(c#d) n It = £Q(a) n It = £R(a). 

(2) For a £ S(R) we have Q[£R(a) + Ra) = Q, hence (£R(a) + Ra)r = 0 
implies Qr = 0, which implies in turn r = 0. 

(3) Take any a, b £ S(R). By the Common Denominator Theorem. 
a ^ , b ^ £ Q can be written in the form aft = c^x , h& = c^y with c £ <S(I?). 
x,y £ R. Now we get ca = cafta2 = ccftxa2 = xa2 , and similarly cb = LJr . 
Clearly, £(c) C /!(a) n ^(b). 

(4) Take any a^c £ «S(I2) and 6 £ It. Again, by the Common Denominator 
Theorem, there exist u £ «S(IZ), v,x £ I? such that aftbeft = O^U, a# = H^.r. 
Clearly, £(u) C ^(a). Now we get, as above, ua, = xa2 . Furthermore, u#xbc# = 
a^beft = a^D, hence xbc = uu^xbeftc2 = uu^vc2 = Uc2 . 

Sufficiency: Suppose that It is a ring which satisfies conditions ( l ) - ( 4 ) . 
According to Remarks 2 and 3, we may assume that x £ Ra, H £ Itb. C(c) C 
^'(x)n^(y) hold in Condition (3), and (̂H) C £(v)n£(x) holds in Condition (4). 

Condition (2) implies that It is right faithful, hence it has an Utumi left 
quotient ring S. 
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Next we claim that, for every a £ S(R), i? is a left quotient ring of £(a,) + Ra . 
l ake any x1 y £ i? with x ^ 0. First, we are going to prove the existence of 
an ,s £ i? such that sx ^ 0, sH £ £(a) + Ra. By applying Condition (1) to 
x and y , and then Condition (3) to the elements of S(R) thus obtained, we 
find a b £ S(R) such that £(b) C £(x) D £(y). Now we apply Condition (4) 
to b, a £ *S(i?) and by £ i? and find elements H £ <S(i?), v,w £ R such that 
/j(H) C £(b), H6 = U62 and vbya = H;a2 . From (H — vb)b = 0 and £(b) C ^(;r) 
we get H.x = U6x. Here, ux ^ 0 because, in case Ha: = 0, we would have, in 
view of £(u) C £(6) C ^(x), (£(u) + Ru)x = 0, hence, by Condition (2), x = 0. 
Next, by (HbH — Hja)a = 0, we have HbH £ £(a) + Ra. So, s = U6 does the job. 

Secondly, we apply what we have just proven to sx ^ 0 and s, and find a 
/ £ i? such that tsx -^ 0 and ts £ ^(a) + Ra,. Then r = ts is an element we 
have been looking for, since sy £ £(a) + Ra implies tsy £ £(a) + Ra. 

Since a2 £ S(R), i? is also a left quotient ring of £(a2) + Ra2 = £(a) + Ra2 . 
By [2: Lemma 3.12], we have now £(a) n Ra = 0 = *?(a) n i ta2 . Denote by a # 

the mapping £(a) + Ra2 —» i? which sends x + ra2 to ra, x £ ^(a) . This is 
an i?-homomorphism. hence a# £ £ . In 5 , a £ R can be represented as the 
/?-homomorphism from £(a) + Ra to i? which sends x + ra to ra 2 , x £ ^(a). 
Now it is clear that aa& = a^'a is idempotent on £(a) + Ra2 , hence a lies irr a 
multiplicative subgroup of S with unity aa# = a ^ a , and therefore a# is the 
group irrverse of a in S . 

Thus we have shown that a^ exists in S for every a € S(R). 

For an arbitrary r £ i?, we choose a c £ S(R) such that ^(c) C £(r). Then 
(/(c) + Rc)(cc^r — r) = 0, hence c^(cr) = cc^r = r in S\ irr other words, 
every elemerrt r of i? can be written in S in the form c&cr for any c £ <S(i?) 
satisfying £(c) C ^(r ) . 

Denote by Q the subring of S generated by i? and the set {a^ | a £ <S(i?)} . 
Given any a, 6 £ S(R), Condition (3) and Remark 2 give a# = c#ca(a#)2 = 
r#xa 2 (a^) 2 = c#;r for x £ i?a, and similarly, 6# = c#H. Next, given any 
a, c £ S(R) and 6 £ i?, Condition (4) and Remark 3 yield a#bc# = u#xbc(c#)2 

= u#vc2(c#)2 = H#H. From these observations it follows that every element of 
Q can be written in the form a#b for some a £ *S(i?), b £ i?. 

Thus i? is a left order in Q. 
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S k e t c h of a c o n s t r u c t i v e p r o o f f o r the s u f f i c i e n c y 

of the c o n d i t i o n s i n T h e o r e m 6 

Given a ring R which satisfies these conditions, put 

Qi = {(a,b)\ aeS(R), beR, e(a) C e(b)} 

and 

Q = Qi/~, 

where 

(a, b) ~ (c, d) <=> 3 u G S(R) 3 x, y G R with e(u) C ((a) n £ (c) . 

Ha = .xa2 , uc = He2 , ,rb = yd. 

This ~ can be shown to be an equivalence relation. 

Definition of + : Given (a, b), (c, d) G Q , by Condition (3) and Remark 2. to 
a,ce S(R) we find u G <S(Jt), x,y £ R such that; e(u) C £(a)n^(c)n/(.r)n/(/y). 
wa = xa2 , He = yc2 . Now we put 

(a, 6) - f (c, a7) = (H, xb - f Hd) . 

Definition of •: Given (a, 6), (O, d) G Q, by Condition (4) and Remark 3. to 
a.c G S(R), b e R we find u G <S(it), x,v G I?, such that e.(u) C /(O) n *(./•) 
n f(H), Ha = xa2 , xbc = Dc2 . Now we put 

(a,b)-(c,d) = (u,vd). 

It can be shown that these operations are wTell defined and they turn Q into 
a ring. 

For an arbitrary a G R, by Condition (1), we find a c G <S(1?) such tha: 
e,(c) C ^(a). It can be shown that the mapping a i—> (c, ca) is well defined and 
is an embedding of R into Q. 

Finally, for any c G S(R), (c.c) G Q is idempotent, and (O2,O) is the group 
inverse of (c, c2) = c in Q. Next, given (a, 6) G Q , it is straightforward to cheek 
that (a2, a)(a, b) = (a, 6) in Q . 

R e m a r k . In this proof we use only right square-cancellabilitv of the ele
ments of S(R). Hence this proof shows the validity of the following. 
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PROPOSITION 7. Let S be a set of right square-cancellable elements of a ring 
R such that Conditions ( l ) - ( 4 ) of Theorem 6 are satisfied in R if S(R) is 
replaced by S . Then R, can be embedded in a ring Q such that 

(i) the elements of S have group inverses in Q , 
(ii) every element of Q can be written in the form a*b with a £ S . 6 £ /? . 

This shows, in particular, that Q is a left quotient ring of R. 

THEOREM 8. Let LI be a left order in Q, and f: R —* S be a ring horno-
morphisrn such that, for every a £ S(R) , f(a) has a group inverse f(a)*z in 

5 . Then f can be extended to a homomorphism f: Q —> S if and only if, for 

every a £ S(R) and 6 £ R, £R(a) C £R(b) implies £S(f(a)) C £S(f(b)) . If J 

exists, then it is unique. If f is one-to-one, then so is f . 

P r o o f . Let a £ S(R). Since the group inverses a* £ Q and f(a)~# £ S 

are uniquely determined by a and / , the only possibility to define / is f(aft) = 

/ ( « ) # , and then J(a*b) = f(a)#f(b). 

If / : Q —» S is an extension of / and £R(a) C ^ ( 6 ) for some a £ S(R) and 

6 £ I?, then we have 6 = a^a6 = a a ^ 6 , hence /(6) = f'(a)f'(a)*}'(b), which 
shows that es(f(a))C£s(f(b)). 

Conversely, suppose that £s(f(a)) C £s(f(b)) whenever £R(a) C £R(b) for 
a £ S(R), 6 £ R. We have to show that the / above is well defined. Suppose 
that a^b = c^d in Q. By the Common Denominator Theorem, there exist 
u £ S(R) and x, y £ R such that £R(u) C £R(a)n£R(c), a* = u#x, c* = u*y, 
i.e. Ha = xa2 and uc = yc2 . In the same way as in Remark 2 to Theorem 6, 
we may choose x £ Ra, y £ Rb. Now u^xb = a#6 = c^d = u#yc, hence xb = 
uu^xb = uu^yd = yd. Next, from ua = xa2 we obtain f(u)f(a) = f(x)f(a2) , 
hence 

f(u)*f(u)f(a) = f(u)*f(x)f(af. 

By the assumption, £R(u) C £R(a) implies £s(f(u)) C £s(f(a)) , hence 

f (u)^ f (u)f (a) = f(a). Therefore we have 

/ (» )# = / ( a ) ( / ( a ) # ) 2 = f(u)*f(x)f(af(f(af)* = / ( « ) # / ( x ) 

because x £ i?tt. Similarly, / ( c ) ^ = f(u)^f(y). In view of xb = yd ^ we have 
/(*)/(&) = / ( iv) / (d) , whence / ( a ) # / ( 6 ) = f (u)*f (x)f (b) = f (u)*f (y)f (d) = 
/ ( c ) ^ / ( d ) , as was to be shown. By the Common Denominator Theorem, it is 
clear that / is additive. 
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Finally, a^bc& = u#v with £R(u) C £R(a), v E i tc , means that Ha = j /a J 

and .xbc = vc2 for some x E Ra. Since / takes this over to f(u)f(a) = 
/ ( x ) / ( a ) 2 and f(x)f(b)f(c) = f(v)f(c)\ f(x) G S / ( a ) , / (« ) G 5 / ( r ) . 
Cs(f(u)) C £s(f(a)), we obtain that 

/ ( a ) # / ( 6 ) / ( c ) # = / ( « ) # / ( . ; ) . 

It follows that / preserves multiplication. 

COROLLARY. If R is a left order in Q and a right order in S . then there is 
an isomorphism Q —> S which is the identity on i? . 

P r o o f . Suppose £R(a) C £R(h) for some a E S(R), b E R. Then ai? C 

rR(fR(a)) and bit C rR(£R(a)) . Next, if x G rR(£R(a)) (lrR(a) , then (R(a)x = 

0 = ax , hence (£R(O) + i ta)x = 0, and then .r = 0 by Theorem 6. Condi

tion (2). Therefore rR(£R(a)) + rR(a) is a direct sum. On the other hand, 

we have [aR + rR(a)]S = ai ts ' + rR(a)S = aS + Es(a) and the latter is also 

a direct sum for a has a group inverse. Thus we have S = aS : i's(a) --

[aR, + rR(a)]S C [rR(£R(a)) 0 ^ ( a ) ] ^ = rR(£R(a))S © / '^(a) . This implies 

that aS = rR(£R(a))S 5 65 , whence *?s(a) C £s(b). 

By Theorem 8, the identity mapping of R extends now to a unique embedding 
of Q into S. Here a^ in Q goes to a^ in 5 for every a E S(R), and since S 
is generated by R and the elements of the form afi1, this embedding is onto. 

Finally, we would like to say some words about the relation of classical left 
quotient rings and Fountain-Gould left quotient rings. 

PROPOSITION 9. Suppose that a ring i? has a Fountain-Gould left quotient 
ring Q and an element which is not a zero-divisor. Then Q is also the classical 
left quotient ring of i? . 

P r o o f . Let a / 0 be an element of R, which is not a zero-divisor. Put 
e = aa^' in Q, then £Q(C) = Q£R(a) = 0. Since (q — qe)e = 0 for every q E Q . 
we obtain that e is a right identity in Q. Take now any r E R, r / 0. Then 
by Qa — Qe — Q, we have Q(r — er) = Qa(r — er) = Q(ar — acr) = 0 , whence 
r — er = 0. For any c E S(R), this implies that c# = c(c^)2 = ec(c^)2 = ec^' , 
from which it follows that eq = q for all q E Q . Thus e is an identity of Q . By 
• 1; Theorem 3.4], this implies that R is a classical left order in Q. 

COROLLARY. If a ring R has a Fountain-Gould left quotient ring R and a 
classical left quotient ring S, then Q and S are isomorphic over R . 

[1; Example 3.1] shows a ring which has a classical left quotient ring but 
no Fountain-Gould left quotient ring. On the other hand, a ring which has a 
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Fountain-Gould left quotient ring without identity, cannot have a classical left 
quotient ring. 
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