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ON ESTIMATION IN RANDOM FIELDS 
GENERATED BY LINEAR STOCHASTIC 
PARTIAL DIFFERENTIAL EQUATIONS 

JAROSLAV M O H A P L 

(Communicated by Milan Medved') 

A B S T R A C T . A stat ionary random field with a rational spectral density function 
is often associated with a stochastic partial differential equation (SPDE). The 
question motivating this study is whether and how knowledge of the S P D E may 
simplify the statistical analysis of the associated random field. 

1. Introduction 

A linear stochastic partial differential equation (SPDE) is described by the 
relation 

Ve(d)c = ae, (1) 

where Ve(d) is a formal linear partial differential operator, c and e are gener
alized random fields, or equivalently, distribution-valued processes and 6, a are 
unknown parameters. In general, the problem is to estimate 0 and a and to find 
criteria for goodness of fit between the model and observed data. This article 
explains the mathematical meaning of (1), the relation between the solution of 
(1) and the random field models used in statistics and how the solution of (1) is 
applicable for the analysis of spatial data, in particular for parameter estimation. 

A classical example motivating study of SPDE's is in [17] ( W h i t t l e , 1962). 
In the analysis of a wheat yield data set, W h i t t l e used the equation 

dt^\{dl^ + dl2i)-9^ + aZ (2) 

with Z interpreted as a zero-mean white noise. The solution £ of (2) was claimed 
to be a random field with spatial covariance function described by a modified 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 62M30; Secondary 60G60. 
K e y w o r d s : maximum likelihood, spatial process, generalized random field, Gauss process, 
Schwartz distribution . 
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Bessel function of the second kind, order zero: 

Re>a(x) = ^K0(\x\V29), (3) 

where x G l 2 and | • | is the Euclidean norm of x. We recall that RQ^(X ~v) — 
E0(j€(t,x)C(t,y) for each t > 0 and pair x,y e R2 . The covariance is derived 
from (2) heuristically by means of the Fourier transform method. W h i t t l e 
assumed that the wheat yield depends on the fertility of the soil. The random 
variable £ = £(£, x,cu) denotes the amount of nutrients in a unit of soil at time 
t and location x = (x^x2). The event u from a probability field is usually 
omitted in the notation. Equation (2) says that the change in the amount of 
nutrients during a time increment on the left is proportional to the change of the 
concentration gradient along the xx and x2 axes minus a specific discharge due 
to the consumption of nutrients by the wheat plus a random term describing 
the unequal distribution of the nutrients caused by heterogeneity of the soil 
structure. The magnitude 6 of the discharge as well as variability of the soil 
inhomogeneities determined by o must be estimated. Many other applications 
using SPDE's may be found in [13] ( N a m a c h c h i v a y a , 1988). 

The heuristic approach used in W h i t t l e ' s paper has at least two disad
vantages. A random field with covariance function (3) has an infinite variance, 
because KQ(x) behaves as — ln(|x|) for small x. Consequently, £ cannot be a 
Gaussian process. Second, the trajectories of £ are not differentiable and there
fore do not satisfy (2). Hence, compared to ordinary autoregressions, equation (2) 
does not provide any residuals and as a tool for study of the process is useless. 
The next section outlines a way how to by-pass the differentiability problem. 

2. The general linear SPDE 

A linear SPDE obtained from physical considerations has form 

Y,H(e)^(x)dx = oZ(dx), (4) 

\k\<P 

where x G (—co,co)d, dk = d^/d^ ... d*d are mixed partial derivatives, 
k1,..., kd and p are non-negative whole numbers, |k| = kx -f • • • -F kd < p , 
k = ( k t , . . . , kd), £ is a random field and Z is an orthogonal random measure. 
The volume dx = dx1 ... dxd emphasizes that the right hand side of (4) is 
the density of an orthogonal random measure with respect to the ordinary Eu
clidean measure living on subsets of (—oo, oo)d . If we consider the derivatives as 
variables of a polynomial V6(d) then we may write (4) in the equivalent form 

Ve(d)£(x)dx = oZ(dx). (5) 
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The polynomial Ve(d) is called a formal linear partial differential operator with 
constant coefficients. One reason for using the word formal is that the trajec
tories of £ are usually not integrable. The functional (or distribution) valued 
equation (1) is obtained from (5) as follows. We multiply both sides of (5) by a 
"test" function (j) which is sufficiently smooth and integrable. We integrate over 
md — (-co, oo)^ (by parts on the left side) and obtain the equation 

J £(x)V'e(d)<l>(x) dx = aj (j>(x) Z(dx), (6) 

Rd Rd 

where V'e(d) is called the formal adjoint operator to Ve(d). The operator V'e(d) 
is obtained from Ve(d) by integration by parts. 

DEFINITION 1. Let <S be the set of infinitely differentiable functions with 
compact support in Rd. A process £ that satisfies (6) for all <j> £ <S almost 
surely is called a solution to equation (5). 

Definition 1 removes any differentiability assumptions on £. For mathematical 
operations it is convenient to introduce random elements c and e defined by the 
relations c(<j>) = f £(x)</)(x) dx and e((j>) = J (f)(x)Z(dx), respectively, and to 

Rd Rd 

write (6) in the form 
c{V'e(d)4>) = ae(<t>). (7) 

If c and e admit a modification to a generalized random field then (7) serves 
as the definition of (1). For more details see [5] ( I t o , 1984) or [16] ( W a l s h , 
1986). 

Equation (6) is often considered in the more general form 

] T ak(6)dkZ(x)dx = aj^ bk(6)dkZ(dx), (8) 
\k\<p \k\<q 

where ^2 bk(9)dk = Qe(d) is also a formal linear partial differential operator 
l*l<9 

with constant coefficients. In this case we can identify (8) with the relation 

j Z(x)V'0(d)<t>(x) dx = a j Q'e(d)<j>(x) Z(dx) (9) 
Rd Rd 

and write briefly 
Ve(d)i(x) dx = aQe(d)Z(dx). (10) 

If the left and right hand side of (10) admit modification to a generalized random 
field we may again describe (10) by (1), where we set, say, e = Qe(d)W. We 
can use a suitable class <S of test functions to extend Definition 1 of a solution 
to (9) accordingly. 
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A solution of (9) is usually assumed to be an ordinary stochastic process with 
the rational spectral density function 

f (x) j 2 l^( i A) l2
 (n) 

It is natural to consider such a process by analogy with discrete ARM A pro
cesses. The following theorem describes a class of solutions to the equation (8). 

T H E O R E M 1. If 

J J J fe,*Wel{x-y'X) dAdxdy < oo (12) 
Rd Rd Rd 

and Z is an orthogonal measure with E[Z(dx)) = dx then the process 

«x) = < T j e » < ^ > | M ^ e - , < ^ > Z(dy)dX (13) 
Rd Rd 

satisfies (9) for every § with compact support in Rd almost surely. 

P r o o f . Using (12) and the well-known Plancherel theorem proved e.g. in 
[19] ( Y o s i d a , 1974) we can verify that £ is a well defined stochastic pro
cess with finite variance and spectral density (11). Trajectories of the process 
may be considered integrable. If we substitute (13) into the right hand side of 
(9) and use the stochastic version of Fubini's theorem in [7] ( L i p t s e r and 
S h i r y a y e v , 1977) then we arrive to the stochastic integral a J g(y)Z(dy), 

Rd 

where g(y) denotes the expression 

Ie'i{v'X) rj$j/eiW1^^W d*dA 

Rd Rd 

= fe~ [{y>x) Qd(i A) J el{x'x) <j>(x) dx dX = Q'e{d)<l>(y). (14) 
Rd Rd 

Thus (9) is satisfied. • 

The commonly used process 

ax)=aIvMeix,x) z{dx) (15) 
Rd 

does not satisfy (9). However, it is easy to verify that if Z is a Gaussian white 
noise orthogonal measure, i.e. Z(dx) ~ JV(0, dx), and the trajectories of (15) 
are integrable over compact subsets of Rd then, for a given </>, the random 
variable obtained by substitution of (15) into the left hand side of (9) has the 
same probability distribution as the random variable on the right. This can be 
utilized for the analysis of residuals. It is also important because processes used 
in statistics rather rarely satisfy condition (12). 
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3. Schwartz distributions 

The class of SPDE's with solution f in the sense of Definition 1 is fairly 
narrow. But if we give up the requirement that c(<j)) = J 4>(x)£(x) dx and look 

Rd 

only for a random linear functional c that satisfies (7) (i.e. (1)) for all <j> G S 
then we can derive the following. 

THEOREM 2. Let S consist of rapidly decreasing functions with Schwartz 
topology and let S' be the topological dual of S. Then for each linear partial 
differential operator Ve(d) with constant coefficients and for each S'-valued 
random element e, there exists an S'-valued random element c such that 
Ve(d)c = as almost surely. 

P r o o f . If Ve(d) is a linear partial differential operator with constant coef
ficients then, according to the Malgrange-Ehrenpreis Theorem in [19] (Y o s i d a, 
1974), for each value of e in S' there is an element c G S' such that Ve(d)c = e. 
Hence, Ve(d) is a one to one mapping from S' onto Sr with inverse VQ1(8). 

The operator Ve(d) is continuous in the topology of S' and therefore, it is Borel 
measurable. By [14; Corollary 24.25] ( P a r t h a s a r a t h y , 1978), there exists 
a set of probability one in S' such that Ve(d) restricted to this set becomes 
bimeasurable and the relation c = VQ1(8)S defines the desired random element. 

• 
Notice that Theorem 2 assumes only that e has values in S' almost surely 

but there are no restrictions on the probability distribution of the process. 

DEFINITION 2. We call the element c in Theorem 2 the distribution-valued 
solution of (1). 

In this context, distribution means a Schwartz distribution. For its definition 
and properties see e.g. [19] ( Y o s i d a , 1974). In statistical literature, c is more 
usually referred to as a generalized random field. The part played by the process 
c is comparable to that of complex numbers in algebra. Only a limited number of 
algebraic equations have roots in the real domain but each of them has complex 
roots. These, however, may not be observable if only real-valued measurements 
are sampled. Similarly, at this stage, values of c may be reconstructed from £ 
only if the representation c(<t>) = f (j)(x)£(x) dx is valid for each test function (j). 

Rd 

By definition, a distribution valued random element TV is a white noise if 
EW'(<f>)W'(ip) = f (f)(x)ip(x) dx for each pair 0,-0 G <S. The element W is called 

Rd 

Gaussian if the vector ( W ( 0 I ) J • • •, ^ ( 0 / v ) ) has a normal distribution for each 
N-tuple ^ ..., 4>N G 5 . The next proposition is proved in several papers and 
monographs. See for example [5] ( I t o , 1984) or [16] ( W a l s h , 1986). 
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PROPOSITION 1. Let S consist of the rapidly decreasing functions with 
Schwartz topology. Each stochastic orthogonal measure Z such that EZ(dx) = 0 
and E(Z(dx)) = dx defines, by the relation (j) i-> J (j)(x) Z(dx), an S' valued 
random element W((j>) with the properties EW((j)) = 0 and EW((f))W(ip) = 
f (/)(x)ip(x) dx for each pair (j) and ip in S. 

COROLLARY 1. / / Z is the orthogonal measure from Proposition 1 then equa
tions (4) and (8) may be considered as equalities between distributions and they 
have at least one distribution-valued solution c. 

Corollary 1 is a direct consequence of Theorem 2 and Proposition 1. It also 
justifies the effort we spent in the previous section by describing equations (4) 
and (8) using differential operators an linear forms defined by integrals. See 
equations (1) and (10). 

The relation 0 i-> Ee Gc((j)) defines a distribution called the mean of c If 
there is a continuous linear operator Te G from S into S' such that (Te a4>)(ip) — 
Ee a(c((f)) — Ee ac((j))) (c(ip) - EQ ac(^))) for each possible (j) and ip in <5, then 
Te G is called the covariance operator of c . If the operator Ve(d) has an inverse 
VQ1(3) for each 6 and TV is a Gaussian white noise then c is also Gaussian 
with covariance 

re,<, = °2(W)Ve(d)r\ (16) 
where —1 denotes the inverse operator. The covariance structure of c obviously 
resembles the structure we would obtain in the case of an ordinary autoregression 
model. More generally, if c is the distribution-valued process determined by the 
equation (10) then its covariance operator is 

- V = ^n\d)Q9{d)Q'e{d)V'e-\d). (17) 

DEFINITION 3. Let Te G be a covariance operator of a generalized random 
field c. If there is a symmetric non-negative definite function RQ G such that 

TeJ(x) = j Re,a(x,y)(j)(y)dy (18) 
Rd 

and 

(rfli»ty) = JIRgjx,y)4>(yW{x) dy (19) 
Rd Rd 

for all test functions (j) and if; then Re G is called the covariance function of c. 

If c is a solution of (1) then existence of the covariance function is obviously 
linked to existence of a process £ which represents c in the sense that c(<j>) = 
f £(x)(/)(x) dx for every test function (/>. 
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THEOREM 3. Let Z be a Gaussian orthogonal random measure with E(Z(dx))2 

= dx and let Re a(x) be a covariance function with rational spectral density (11). 
Denote by c the distribution-valued solution of (8). Then we can find a distribu
tion-valued Gaussian process c and a stationary Gaussian process f with spectral 
density (11) such that c has the same probability distribution as c and for every 
test function c((j>) = / ^(x)(j)(x) dx. 

Rd 

P r o o f . The process c exists by Theorem 1. Let us define £ by (15), which 
guarantees that £ has covariance function R6a(x). As in the case of ordinary 
Gaussian processes, the theorem will be proved if we show that c and c have 
the same covariance operator. For each pair 0, ip of test functions 

Jret<Jv'e(d)4>(x)ve(d)^(x) dx = E^cwmwvom) 
Rd 

= E6^W(V'9(d)<t>)W(V'e(d)i>) (20) 

= v2 f Q'o(d) <t>(x)Q'9(d) rp(x) dx = Eg^c(V'e(d)<l>)c(V'e(d)^) , 

md 

where W is the S' -valued white noise. The last equality follows from the Fourier 
transform representation of Re a and proves the assertion. • 

Theorem 3 says that every covariance function on Rd with a rational spectral 
density can be associated with a distribution-valued solution of a SPDE with a 
Gaussian white noise right hand side. As a direct consequence of Theorem 3 we 
have: 

COROLLARY 2. Let Re a be a covariance function of a stationary random field 
with spectral density f0a(X) — &2 l\Pe(\)\

2, where VQ is a polynomial whose 
coefficients are functions of 6. Then for every 9 and a our Re a satisfies the 
equation 

V'd(d)Ve(d)R6ta = aH, (21) 

where S is the Dirac distribution. 

In the case of a so called evolution equation one can obtain a more detailed 
result: 

PROPOSITION 2. Consider the distribution-valued solution of the equation 

(dt- Ae(dx))^(t,x)dtdx = aBe(dx)Z(dt,dx), (22) 

101 



JAROSLAV MOHAPL 

where Z is an orthogonal measure with E(Z(dt,dx)) = dtdx and Ae(dx) and 
Bo(dx) are linear differential operators acting only on the variable x. x G Rd . 
Let Ae have the property: 

i) there is a negative constant M such that ^ ( i A ) < M for all X G Rd 

and 9 in the parameter set, 

and let 

ii) —\Be(dx)\
2/Ae(\ X) be a valid spectral function. 

Then the covariance function of c exists and for t > 0 satisfies the equation 

(dt-A9(dx))Re^(t,x)=0, Re,AO,x) = p0Jx) (23) 

with the initial condition 

p ^ ( x ) = _ ^ / " e i ( „ A ) I M ^ ! d A . (24) 

R' d 

P r o o f . The fundamental solution Tt x of the equation (22) satisfies the 
relation Ve(d)Ttx = 5t® 5X with the initial condition T0 x = 5X, where the 
symbol 5t 0 5X denotes the direct product of two Dirac distributions acting on 
the variables t and x, respectively, and 

V9(d) = dt-Ae(dx). (25) 

It is a distribution defined for t > 0 by means of the function 

T(t,x) = H(t)(2ir)-d [j(*^)+^e(i\) d A ? (26) 

Rd 

where H(t) denotes the Heaviside function. The integral converges for every 
t > 0 because 

I fj(x,\)+tAe(i\) d A | < fetAe(i\) d A < - / / dA < OO (27) 
17 | " 7 " 7 tAe(iX) 
Rd K d Rd 

according to the assumption ii). If the covariance function of the stationary 
solution exists then it satisfies the equation 

IV</>(*, x)= I Rda(t -s,x- y)(j)(s, y) ds dy (28) 

Rd 

for every rapidly decreasing function <fi G S. Therefore 

Ve(d)Te^(t, x) = J J Ve(d)Rd>a(t -s,x- y)4>(s, y) ds dy (29) 

Rd Rd 
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and since TQa = {Ve{d)V0{d))~l, we have V6{d)Te<J = V'e~
l{d). The operator 

V'e~
l{d) is defined by the relation 

V'e~
l {d)cf>{t, x) = f JT{t-s,x- y)4>{s, y) As dy, (30) 

where T' is the fundamental solution of (5) considered with the adjoint operator 
V'0(d). One can verify that if t > 0 then T'(t,x) = 0. Thus combining (29) and 
(30) we conclude that Re a satisfies the equation 

Ve{d)R0i(T{t,x) = O (31) 

for all t > 0 and x G l d . The function Re a must be symmetric around zero. 
Hence Re a(t, x) = Re a(-t, x) if t < 0. The value Re a(0, x) = pQ a(x) follows 
from the requirement of stationarity. See [12] ( M o h a p l , 1994). The above 
argument can be reversed. That is, if Re a satisfies (23) and (24) then it satisfies 
(28) and serves as a proper representation of Ye a. Under our assumptions 

R (t x)~ — / l ^ ( i A ) l 2
e i ( x , A ) + M 0 ( i A ) d A fo2N K°^X)- (2TTW Ae(i\)

 G dA [6Z) 

Rd 

is a well defined solution of (23) and (24). The proposition is thus proved. • 

There is an obvious resemblance between (23) and the Yule-Walker equations 
for an ordinary AR time series. 

4. Estimation of 9 and a 

If we know the covariance operator of the process and consider, for example, 
normally distributed observations, then it is not difficult to construct the like
lihood function for 6 and a. Assume that c is a zero mean Gaussian random 
element and that we observe the values of 

c ( 0 i ) , . . . , c ( ^ ) 

for {<p1,..., cj)N} C S. Then (1) can be used to determine the covariance matrix 

^ ^ „ ) c ( U - ( r « > n ) ( 0 . (33) 
rn, n = 1 , . . . , JV, and the parameters 6 and a may be estimated via maximum 
likelihood or other known methods. The procedure outlined raises the question 
how to obtain an observation c((/>) for a given </>. When (5) has a solution in the 
sense of Definition 1 and continuous observations of £ over an area l l cR 1 1 are 
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available then c(<j>) may be determined from the definition: c(<f>) = f (f)(x)£(x) dx 
n 

for every test function with support in £). Recall that the support of 0 consists 
of all x eRd such that (j)(x) ^ 0. 

If 9 and a are the maximum likelihood estimates and 

</>i = VoWi»• -AN = veid)^N 

belong to S then we can use (6) to analyse the residuals 

c(4>n) = aW(cj>n), 

n = 1 , . . . ,1V. The example below suggests that a suitable choice of test func
tions may substantially simplify the model and data analysis and leads to an 
interesting modification of the outlined method. 

E X A M P L E 1. Consider the equation 

(dt - 6d2
x)Z(t, x) dt dx = Z(dt, dx), (34) 

where x G M. To estimate 9 G (0, oo) take an arbitrary <j> G S which depends 
only on x so that the support of 0 and of its derivatives is contained in (0,1). 
If we multiply both sides of (34) by </> and integrate over x then (34) may be 
rewritten in the form 

t 

ct(<t>) ~ %{<t>) =0Jcs(d
2

x<t>) ds + Wt(</>), (35) 
0 

1 t 1 

where ct((/>) = f (f>(x)£(t, x) dx and Wt((f>) = f f 4>(x) Z(ds ,dx) . Here Z is a 
o oo 

Gaussian orthogonal measure with E(Z(dt,dx)) = dtdx. 

Suppose we fix t > 0 and observe £(£,x) for all x G (0,1). Then 6 can 
be determined almost surely. This is because ct(<t>) can be computed for every 
integrable function </> with support in (0,1). In particular, for every function 
en defined by the relation en(x) = \/2sinn7rx, n = 1, 2 , . . . , for x G (0,1) and 
en(x) = 0 otherwise. The random processes wn(t) = Wt(en), n = 1,2, . . . , are 
independent standard Wiener processes and the processes cn(en) = ct(en) are 
ordinary independent Ornstein-Uhlenbeck processes determined by the equa
tions 

cn(t) - cn(0) = - n2ҡ2 I cn(s) ds + wn(t). (36) 

0 

The independent Gaussian observations cn(en) determine an asymptotically un
biased strongly consistent and efficient MLE estimate of 9. 
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The next theorem specifies the class of parabolic type equations that admit 
a determination of the parameter 9 almost surely given space-continuous obser
vations of the process £. The white noise Wt, t > 0, is a distribution valued 
Gaussian stochastic process generalizing ordinary Brownian motion in the sense 
that EWt((j))Ws(^) = (tAs) J (j)(x)ijj(x) dx for every pair t, s > 0 and (f),ip G S. 

Rd 

THEOREM 4. ([4] H u e b n e r , R o z o v s k i i , 1995) Suppose that equation (1) 
may be represented in the form 

t 

<>M) = / ( W x ) + MMaJkte) d* + wt{4>), (37) 
0 

where V0(dx) and Vx(dx) are commuting self-adjoint differential operators of 
order m0 and m1, respectively, and max(ra0,ra1) = 2ra for some natural num
ber m. The notation dx emphasizes that the operators do not act on the temporal 
variable t. Let the operators Ve(dx) = V0(dx) + 9Vl(dx) be strongly elliptic with 
a complete orthonormal system of eigenvectors en . Then the following conditions 
are equivalent: 

i) Order ofV1(dx) > (order ofVe(dx) — d)/2, where d is the dimension 
of the x domain. 

ii) The MLE 's of 6 are strongly consistent. 
iii) The probability distributions of c for different 9 are mutually singular. 

The previous theorem requires only space-continuous observations sampled 
at only one fixed time point. The spatial domain on which the process evolves is 
bounded. For the case of continuous temporal-spatial observations the parabolic 
type equations exhibit a more regular behavior. 

THEOREM 5. ([12] M o h a p l , 1994) Let (1) have the form 

t 

ct{4>) = f-Pe{dx)cs{<t>) ds + Wt{<t>), (38) 
0 

where the linear operator Ve(dx) is defined by 

-Pe(dx)=T,°A- W 
\k\<P 

The last relation defines operator (4) with ak(9) =-. 0k for all k. Suppose that 
Wt is as in the previous theorem and Ve(dx) is invertible. Set 

Re=Wdx) + Ve{dx))-
1 (40) 

105 



JAROSLAV MOHAPL 

and consider test functions <J>X, • • •, <I>N which depend only on the spatial variable 
x e Rd . If 0O is the true value of 6 and the matrix M with components mkl = 
-C / 9k(/>n(x)Re dt(l)n(x) dx is invertible then for sufficiently large t > 0, the 
n ]Rd 

maximum likelihood estimators 9(t) of 60 are well defined, 

lim (t) = 0 a.s. 
ť->co 

and 

in distribution. 

lim Vt( (ť) - 0) = N^O^M-1) 
t—>oo 

Details of the construction of likelihood functions used in the above theorems 
are provided in the corresponding papers. For further generalizations see [15] 
( P i t e r b a r g and R o z o v s k i i , 1996). 

The rest of this section deals with parameter estimation when only discrete 
observations are available. Suppose we have the heuristic model (8) leading to a 
generalized solution c. According to Theorem 3 we can identify our observations 
with values of a process £ with covariance function determined by the covariance 
operator of c. Discretely observed values of the process £ are not enough for 
calculation of any value c((j>), where <j> is a prescribed test function. Thus we 
must rely only on the covariance function determined by c and specified up to 
some unknown parameters. The standard methods for estimation of these pa
rameters are the maximum likelihood, quasi-likelihood, smoothed periodogram 
estimating equations e t c Their application is outlined in the following examples. 

E X A M P L E 2. The parabolic stochastic differential equation 

(dt -0^1 + 02)£(t, x) dt dx = aZ(dt, dx) (41) 

with a one dimensional spatial variable is used to describe transport through a 
medium, the propagation of heat e t c If Z is the Gaussian orthogonal white noise 
measure then its space-time stationary solution can be represented for t > s > 0 
by the process 

oo t oo 

^(t,x)= J T(t-s,x- y)t(s,y)dy + a J J' T(t-u,x-y) Z(du,dy), (42) 

— oo s —oo 

where the function T is defined by the relation 

T(t, x) = i e-*
2/Wi*) e-*-< (43) 
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if t > 0 and is zero otherwise. The process (£(t,x))x t ^ x is an Ornstein-
Uhlenbeck for every s > 0. The covariance function of £ is, according to Propo
sition 2, 

oo 

mx) = Jm I ^ { - ^ f }-p{-̂ My) dy (44) 
— oo 

for all t > 0, where 

p(y) = i ^ = ; e x p { - ^ \ / ^ i } ' (45) 

£ is the time and x the space variable. For fixed x, equation (42) is an ordinary 
ltd process. Hence the parameters may be estimated by means of methods de
veloped for ordinary Ito equations. See for example [3] ( F l o r e n s - Z m i r o u , 
1993). 

Another possibility is to use the representation (42) directly. Suppose we 
have observations {£(tk, xn), k = 1 , . . . , K, n = 1 , . . . , jV} . Denote by 

£(tk,-) the column vector ( ^ , x 1 ) , . . . , ( ( t f c , a ; i V ) ) and by TT(9,cr) the matrix 
/ x N 

(^0 a (£( r ' xn)£(0> xm))) • The ^ r s^ integral m (42) denotes the conditional 
V ' / n , 7 n = l 

expectation of the value £(£, x) conditioned on the continuously observed path 
{£(s, y) : y € ( -00, 00)}. Since only discrete observations are available, we must 
replace it by the conditional expectation based on the pointwise observations: 

(Ee,Mtk>*n) \tth-w)])N
n_l =^tk-u_1(^)ToH0,<r)atk-1,-)- (46) 

The ltd integral in (42) provides the conditional variance of what we observe at 
time t conditioned on what we have seen in time s < t. The conditional variance 
may be evaluated: 

™e,Atttk,-)\t(tk_1,-))=ro(9,a)-T2(tk_tk_l){0,a). (47) 

Hence, for the true values of 0 and a, the vectors 

(ro^^-r^^^^a))-1/2^,^-^,^^^-1^^^,.)), 
(48) 

k = 2, . . . ,_V, are approximately multivariate normal with zero mean and 
unit covariance. This can be successfully used for construction of a quasi-
likelihood function and subsequent estimation of 6 and a. For details see [9], 
[10] ( M o h a p l , 1998). 
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EXAMPLE 3. The elliptic stochastic differential equation with a two dimensional 
spatial variable is given by the relation 

(d2

Xl+d2

X2-e2)i(x)dx = aZ(dx). (49) 

It describes, among other things, the displacement of a membrane of a homoge
neous isotropic material, stationary heat conduction e t c The stationary solution 
can be represented in the form 

ax) = -^JK0(-\x-y\e)Z(dy), (50) 
R 2 

where K0 is the modified Bessel function of second type and order zero, and |x| 
is the Euclidean norm of x. The covariance function of the process (50) is 

R(x) = ^\x\K1(\x\6), (51) 

where K1 is the modified Bessel function of second type and order one. A direct 
likelihood analysis of random fields like this one is in detail e.g. in [6] ( J o n e s 
and V e c c h i a , 1993). 

Another possibility is suggested in [9], [10] ( M o h a p l , 1998). We assume 
availability of continuous observations, derive a conditional likelihood func
tion for the continuously observed trajectory and then discretize. The result
ing quasi-likelihood estimating equations for 8 and a > 0 based on a set 
{^(xj),..., £(xN)} of discrete observations are 

1 N 

^ E ^ ( ^ n ) - ^ 2 ^ ( 0 ) = 0, (52) 
N , 

n = l 
ŻV IV 

E E kK>xJ{axnMxJ - v'ReK - *J) = 0, (53) 
n = l 7 n = l 

where k is a smoothing kernel. An optimal k may, for example, minimize the 
asymptotic variance of the estimators 9 and a. Reasonable results are obtained 
for example by choosing k(x, y) = Rx(x — y). To obtain an idea about variability 
of the resulting estimator we can use for example independent simulations. 

EXAMPLE 4. The hyperbolic equation with one dimensional time and space 
variables is given by 

dtxc + e2dtc + eidxc + V 2
C = a W • ( 5 4 ) 

If W = 0 then its canonical form describes, for example, propagation of a wave 
along a water surface. For t > 0 and x > 0 we can represent the stationary 
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solution of equation (54) as 

x y 

^(t, x) = qt e-0it +q2 e~e*x +q3 e-
0^-0'x +a f f e-W-')-°2(*-v) Z(ds, dy), 

o o 
(55) 

where the g's are independent, identically distributed (i.i.d.) random variables 
with zero mean and variance a2/A6l62. The representation (55) of the solution 
to (54) has covariance function 

ReA^) = ^ - 9 l W ~ e 2 l x ] • (5 6) 

Two cases may be considered when dealing with discrete observations from 
time-space continuous processes. We may either keep equal spacing between the 
observations and increase their number by broadening the monitored area, or we 
may keep the area fixed but increase density of our observations. The following 
theorem investigates these two possibilities for the process (55). 

Let (£(£ n ,£ m ) ) n : l 0 m=Q be observations of the process (55) with true par
ameters 0Ql and 9Q2. We take tn = tQ + n/i, xm — xQ + mk so that the points 
(tn,xm) form a rectangular net with nodes at a fixed distance h = a/N and 
k = b/M. We can estimate the parameters either using the likelihood obtained 
by conditioning on the boundary elements or by the unconditional likelihood 
function. 

THEOREM 6. 7/ 6X, 62 are obtained either by the maximization of the condi
tional or unconditional likelihood function then the estimators are strongly con
sistent. 

i) For an unbounded area, the vector \/NM{9Ql — #-_, 9Q2 — 92)
T is asymp

totically normal with zero mean and covariance matrix 

r = d i a g ( ( e 2 ^ - l ) / / i 2 , ( e « - l ) / k 2 ) . 

ii) For a bounded area, the conditional likelihood provides estimators such 
that the vector (y/M{61 —9Q1)j y/N{02 — 0Q2)) is, for increasing N and 
M, asymptotically normal with covariance matrix 

r = 2dmg(601/a,902/b). 

iii) For a bounded area, the unconditional likelihood yields estimators such 
that the vector (v /M(^1 — 0Ql),\fN{62 — 0Q2)) has, for increasing N 
and M, an asymptotic normal distribution with covariance matrix 

r = 2 diag(^0
2

1/(l + a601), 92
02/(l + b602)) . 
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P r o o f . 

i) The observations form a doubly geometric series. The result is thus a 
consequence of the proposition in [8; Section 3] ( M a r t i n , 1990). 

For the proof of ii) and iii) see [11] (M o h a p 1, 1997), • 

5. Representation of c 

The results outlined in Section 4 required the existence of an observable 
representation of the generalized random field c solving equation (5). We have 
already mentioned that the class of SPDE's with the representation c(<j>) = 
J (f)(x)£(x) dx, i.e., with a solution in the sense of Definition 1, is fairly narrow. 

Rd 

THEOREM 7. For every distribution-valued random element c there exists a 
random field rj with one and only one spectral measure F such that 

c(cj>) = j cj>(x)r}(x)F(dx) (57) 

Rd 

for every rapidly decreasing (j) G S. 

P r o o f . See [18] ( Y a g l o m , 1957). • 

A spectral measure F is slowly growing if / (l + | x | 2 ) _ m F(dx) < oo for some 
Rd 

natural number m and the measure is a -finite. We use Theorem 7 as follows. 
We start with the model (5), derive the abstract equation (1) and compute the 
generalized random field c. Then we apply Theorem 7 and obtain the process 
r/ satisfying (57). If F(dx) = dx then £ = 77 is the desired solution to (5). 
Otherwise we have to modify the model (5) and replace it by 

Vd(d)rj(x)F(dx) = aZ(dx). (58) 

In the case when F(dx) = p(x) dx, where p is a strictly positive "slowly grow
ing" function on Rd, it is possible to divide both sides of (58) by p. Measure 
Z(dx) in equation (5) is thus replaced by p~x(x)Z(dx). This means that we 
impose a new assumption on the covariance structure of the noise in the model 
(5). 

The abstract theory of SPDE's introduces the above mentioned change in 
covariance structure in a less obvious manner through the choice of a system 
of inner products on the space of test functions and their duals. Since the im
portance of the choice of the inner-product for the interpretation of the original 
model (5) is not very often emphasized in the literature, we demonstrate it by 
the following example. 
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EXAMPLE 5. Let us consider the heat equation 

(d t ~_\ldlk+
62^)f(*>x)dtdx = z(dt>dx) > (59) 

^ k=i ' 

where Z is a Gaussian orthogonal measure, E(Z(dt, dx)) = dtdx, and 9 > 0 . 
We formalize the equation which leads to the problem 

t 

ct(<t>) - cQ(<t>) = I cs(Ve(dx)cj>) ds + Wt(<f>) (60) 
0 

where Ve(dx) = £ d2
Xk -9

2 and Wt((j)) = J J (j)(x) Z(ds,dx) if t > 0. We con-
k=l 0 Rd 

sider 0 in the space S of rapidly decreasing functions on Rd with the Schwartz 
topology. The space S becomes a nuclear space using the system of inner prod
ucts 

tovom = J kor(0(\c\2 + ir dc (6i) 
Rd 

m = 0 , 1 , . . . . The hat denotes the Fourier transform of the original function. 
Using the rath product we can complete S into a Hilbert space Hm, (•, - ) m . For 
m = 0 the index is usually omitted. Details of the construction, the properties 
and the use of such spaces are given, for example, in [5] ( I t o , 1984). 

If ra is sufficiently large then Wt may be thought of as an H_m valued 
random element possessing an Hm-valued representation ut. We will seek ct in 
the form ct((j)) = (<fp0)m, where ft is an Hm-valued random process. In other 
words, we wish to solve the equation 

t 

(^<l>)m-(^<t')m = l(^re(dx)(f>)mds + (ut,<j>)m. (62) 
0 

Notice that ra must not only be large enough to admit W to have an Hm 

valued modification but that we also need <f) in the domain of Ve(dx) and 
Ve(dx)(f> G Hm for every (f> G Hm. Its solution £t is supposed to satisfy (60) 
(hence (62)) almost surely for each 0 G Hm. The process ut admits a modifi
cation with almost surely continuous trajectories with respect to t (see e.g. [16] 
( W a l s h , 1986)) and has a nuclear covariance operator, because 

E(OJV <f>)(ut, VO = min(t, s)J(fldlk-
 X) " W w * ) d* . 

R d * = i 
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If the process £t is well defined then the equation (62) can be rewritten as 

ji(okOpm(o dc-ji(okOpjo dc 
Rd Rd 

t (63) 

= J Ji(oL(K\2+o2)Pm(o d<:ds + jut(okOpm(o dc 
0 R<~ Rd 

arising by substitution from (61). The weight function pm is given by pm(() = 
(|(|2 + l) . However, this means that £t satisfies the equation 

t 

4(0 - 4(0 = (ICI2 + e2) /4(C) ds + wt(0 (64) 
0 

almost surely for almost each (. The last equation has solution 
t 

4 ( 0 = e - ( l ^ 2 ) ' 4 ( C ) + / e - ( l ^ 2 ) ^ ) d*t(C). (65) 

0 

The desired solution £t(x) can be obtained by the inverse Fourier transformation 
°-? £*(()• However, it remains to be proved that the expression obtained in this 
way is an Hm valued process. The existence of £t is proved for a much more 
general class of parabolic equations in [2] ( C u r t a i n and F a 1 b , 1971). 

If £t is stationary in t then the initial value £0(x) can be obtained as follows. 
Combining the left hand side of (63) with (65) one may derive for large t and 
5, t > s, the approximate equality 

E^m.,*) 
= / 2 ( | C | 2

1
+ , 2 ) ( e - C ^ t ' - ) - e - « C I ^ ) ( ^ ) ) k 0 k 0 p m H 0 dC-

Rd 

(66) 
For t = s and t approaching infinity 

-sttoo.flttoo.i0 = \ j {K]2
1
+e2)kOi>(OPm

1(0 dc- (67) 
Rd 

Consequently, the random field £0(x) has the same Gauss distribution as the 
element rj(x) = J e~[^x^ M(d() defined by the Gauss orthogonal measure M 

Rd 

with spectral density 

^ 4 / ( ¥ T W T I F d c - (68) 
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As outlined in [12] ( M o h a p l , 1994), 

Ec^UM*) = \j (ifla + ̂ &OftC) dC • (69) 
Rd 

This means that the covariance of £t is damped by the weight pm implementing 
the nuclearity into our calculations. 

At first glance, application of Hilbert spaces seems to be a convenient way to 
well behaved representations. The trouble is that processes with differentiable 
trajectories and a prescribed rate of decay when the argument approaches in
finity are not of much interest. If such a process is simulated, the trajectories 
often appear as deterministic functions. If the experimenter has only one such 
trajectory, and this is often the case, he or she will reach rather for deterministic 
methods of data analysis. 

Suppose that we derive the heuristic model (59) with Z(dt,dx) replaced 
by dujt(x)dx (the differential applies to the variable t). Then (62) may be 
understood as the mathematical definition of (59). This fits well the procedure in 
Section 3. We just use the inner product (•, -)m instead of the ordinary Lebesgue 
integral. However, the assumption that the noise has such smooth trajectories 
(in Hm) does not seem realistic. The abstract solution ct((j)) = (£ t ,0)m> whose 
existence was proved by finding £ t , can still be interpreted in terms of Theorem 7 
above. 

6. Summary 

The Schwartz distribution approach to the SPDE provides: 

1) A mathematically exact definition of the SPDE and its solution. 
2) A precise relation between the equation, its solution and observations 

which therefore contributes to the correct interpretation of data. 
3) Criteria for the choice of an orthogonal measure Z with covariance struc

ture that makes solution of the equation mathematically feasible. 
4) Methods for computation of the solution. 
5) Tools for determining the covariance structure of the solution. 
6) The use of the SPDE for estimation and goodness-of-fit assessment. 
7) A certain degree of caution is needed when interpreting the resulting 

process. 
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