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DENSITIES IN DISJOINT UNIONS 

G E O R G E S G R E K O S 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. Let A, B, C be sets of positive integers such that ArTB = 0 and 
A U B = C. We establish necessary and sufficient conditions satisfied by the lower 
and upper asymptotic densities of the three sets. 

Let A be an infinite subset (sequence) ofN = { l , 2 , 3 , . . . } . The same symbol 
A will denote the counting function of the set; that is, for each integer n , we 
let A(n) be the number of elements of A not exceeding n . We define the lower 
and the upper asymptotic densities of A as 

a ' = dA = liminf------. 
n-»+oo n 

a = dA = hm sup . 
n—>+oo W 

For sets B and C of positive integers we denote by /3' , /3 and 7 ' , 7 the corre­
sponding lower and upper densities, respectively. 

Suppose that A and B are disjoint and let C = A U JB. Then C(n) = 
-4(n) -F -5(n) for all n . It is easy to prove that the following two conditions are 
valid: 

<*' + &' < i < min{a' + /?, a + /?'} , (C.l) 

max{a' + /5\ a + /?'} < 7 < a + /? . (C.2) 

In this note we establish the sufficiency of these conditions. 

THEOREM. Given six real numbers a', a, /?',/?, 7', 7 such that 0 < a' < a < 1. 
0 < / ? / < / 3 < l 7 0 < 7 / < 7 < l 7 satisfying the conditions (C.l) and (C.2). ttere 

AMS Sub jec t C l a s s i f i c a t i o n (1991): Primary 11B05. 
Key words : density, sequence, partition. 
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exist subsets A, B, C of N such that A f l B = 0 ; C = AU B, and dA = a!, 
dA = a, dB = (3', dB = P, dC = i , dC = ^. 

R e m a r k . If N is replaced by the interval [0,1[, the upper density by the exte­
rior Lebesgue measure and the lower density by the interior Lebesgue measure, 
then, as it was pointed out by M a x Sh iff m a n [1], the conditions (C.l) and 
(C.2) are necessary but not sufficient. In that case, in order to obtain a complete 
set of necessary and sufficient conditions, one has to add the following inequality: 

a + / j_7>y - a ' -P'. (C.3) 

P r o o f of t h e t h e o r e m . First we shall define on [0,+oo[ two real 
increasing and continuous functions a and 6, taking values in [0,+oc[, such 
that 

a(x) a(x) 
lim inf = a , lim sup = a , 
Z-+ + 00 X z-» + oo X 

l i m inf
 bM = p> , lim sup ^ = /?, (1) 

z->+oo X z-> + oo X 

y • r ^(X) , C{X) 
lim inf = 7 , lim sup = 7 , 
x-» + oo X Z-++00 X 

where c = a + b. In the second part of the proof, we determine two disjoint sets 
A and B having counting functions neighbouring a and b. 
First part of the proof 

We define sequences of abscissas 

1 = x1 = yx = zx = wx < x2 < y2 < z2 < w2 < ... 

•-<Xn<yn<Zn<Wn< * n + l < 

tending to infinity, and the two functions a and b as follows. 
Firstly, it is easy to find two real numbers a(l) and 6(1), belonging to [0,1] 

such that 

a' < a( l ) < a , /?' < 6(1) < (3 and 7' < a( l ) + 6(1) < 7 . 

To see this, let us observe that when x varies from a' to a and y from (3' to /?, 
then x + y varies from a' +(3' to a + (3. As a' + (3' < 7' < 7 < CY. + /3, it is possible 
to choose a( l ) = x, 6(1) = y such that a( l ) + 6(1) = 2^L-, a( l ) G [a', a] and 
b(l)€\J3',0\. 

Functions a and 6 are defined on [0,1] as linear functions: 

a{t)=ta(l), b(t)=tb(l), 0<t<l. 

These two functions will be continuous on [0, +oo[ and affine on each interval 
[1, x2], [x2, y 2 ] , . . . , [HJn, £ n + 1 ] , •. • and so on. The reader may find it helpful to 
see the slopes at each interval from the following table. 
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T A B L E . 

Slope of the functions 

Between abscissas a b a + b Between abscissas 

a! i-a' І гüfc_j and xk 

i-ß' ß' І xk and yk 

a 7 — 0; 7 Уk a n d zk 

i-ß ß 7 zk and wk 

al І-ol І wk a n d xk+i 

The functions a and b are essentially determined by these slopes, and by 
the relations (2) and (3-1) to (3-4) below. We give full details only for the first 
interval [wk_1,xk]. The functions a and b will satisfy the conditions 

a < - - - < a. 
~ t ~ ' ß'<Ь-Џ<ß, У<f<7, (2) 

for any real number t > 0. In order to satisfy equalities (1), we shall require 
that, for each n > 1, 

0 < _ _ _ _ _ a ' 1 
< -

Xn n 

0 < % n ) 0, 1 
< -

n 

û ( ^ ) 
0 < a 

1 
< -

* n n 
ò(_ ) 

0 < / 3 V n) 

w„ 

1 
< -

n 

o < - - - у < i . 
X П 

n 

0 ^ ^ - У ^ 1 

0 < 7 - _ _ <I. 

cŕг_ ì 1 
0 < 7 _ _ _ _ _ - < - , 

(з-i) 

(3-2) 

(3-3) 

(3-4) 

Conditions (3-1) to (3-4) obviously hold when n = 1. We suppose that they 
hold up to n = k — 1, for some integer k > 2. For wk_1 <t<xk:we define 

a(t) = a{wk_г) + (t - - f c . ! ) - ' 

and 
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b(t) = b(wk_1) + (i-a')(t-wk_1), 

and we choose xk sufficiently large so that conditions (3-1) hold with n = k. We 
prove that the three inequalities in (2) are valid for t belonging to the interval 
K-i.Sfcl- We have 

a(t) a K - i ) , , ,wk-i 

— = —T-+a-a-r 
and 

- K - i < a K - i ) < awk-i • 

Therefore 
a(t) ^ a'wk-i , „,, ,wk-i , 

> \- a — a = a , 
t ~ t t 

and 
<t) Q^fe-i u ; ^ - / wfc-i \ 

a < ha - a a -= (a — a) (1 <U. 
6 t 6 \ L ' 

We also have 
b(t) = b(wk_1) + (i-a')(t-wk_1) 

and, by (Cl ) , 
/?' < i ~ -' < 0. 

It follows that 

(3't < b(wk_1) + (t- wk_x)l3' < b(t) < b(wk_1) + (t - w^/3 < (It, 

and hence 

?<&<!>. 
For t belonging to [wk_l,xk], we have 

c(t) = a(t) + b(t) = a(wk_,) + b(wk_x) + (t - w ^ i 

and the third inequality in (2) is deduced in the same manner as the first one. 
More precisely, we have 

c(t) = c(wk_,) + (t- wk_x)i > iwk_x +(t- wk_x)i = ti 

and also 

c(t) < 7 ^ _ 1 + (t - wk_x)i -jt + -(t = (t- w ^ d - 7) + 7* < 7* • 

For xk < t < yk , we let 

a(t) = a(xk) + (i -/?')(* ~xk), 
b(t) = b(xk) + (t-xk)p'. 
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The real number yk is chosen large enough to satisfy (3-2) with n = k. We have 

Ht) = Kxk) , gi QlXk 
t t P ^ t 

and 
P'xk < b(xk) < f3xk . 

Therefore 

and 
b-f-P<^ + f3'-P'^-f3 = W'-l3)(l-^)<0, 

because xk < t and (3* < (3. The definition of a(t), for t belonging to the 
interval [xk,yk], and the inequality 

a' < i - ff < a, 

which is a consequence of (C.l), give 

at < a(xk) + (t — xk)a' < a(t) < a(xk) + (t — xk)a < at 

and hence 
«' <r a(*) <r rt a < < a 

for xk <t <yk. We also have 

c(t) = a(t) + b(t) = a(xk) + b(xk) + (t- xk)i 

and we get that 
H < c(t) < *7 

for all t in [xk,yk] in the same manner as for t belonging to [wk_1)xk]. 
When yk < t < zk, we define a and b by 

<*(*) =«(2//c) + ( ^ - ^ ) a
) 

W = l W + (7-«)( t -2 / j f e ) , 

choosing 2^ sufficiently large, such that (3-3) with n = k holds. Let us prove 
that inequalities (2) are valid for t E [yk, zk]. We have 

a(t) < ayk + (t - yk)a = ta 

and 
a(t) > a'yk + (t - yk)a = (t - yk)(a - a') + a't > a't. 

Also, by (C.2), 
ff < 7 - a < P 
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and hence 
b(t) < b(yk) + P(t - yk) < Pyk + /3(t - yk) = (3t 

and 
b(t) > b(yk) + f3'(t - yk) > (3'yk +13'(t - yk) = 0't. 

Adding a(t) and b(t), we get 

c(t) = c(yk)+1(t-yk) 

and we easily verify the third inequality of (2). 
Finally, for zk < t < wk, we put 

a(t) = a(zk) + (7 - P)(t - zk), 

b(t) = b(zk) + (t-zk)P, 

and we choose wk sufficiently large enough, so that (3-4) is satisfied with n = k. 
Similarly we prove (2). 

Thus we have defined recurrently the sequences (xn), (yn), (zn), (wn) of ab­
scissas and the two functions a and b verifying relations (1). 

Second part of the proof. 
In the second and last part of the proof, we explain how one can determine 

two disjoint sets A and B such that their counting functions A(n) and B(n), 
n £ N, are close to a and 6, respectively. 

We note C the set defined recurrently as 

C= { n e N ; C(n-l) + l<c(n)}. 

Thus for any integer n > 1, we have that n G C if and only if C(n—1) + 1 < c(n). 
We recall that c = a + b. 

Let us prove by induction that, for each n G N, 

c(n) - 1 < C(n) < c(n). (4) 

The double inequality is valid when n = 1. Because c(l) = :L^L- < 1; if c(l) = 1, 
then 1 E C and C(l) = 1; if c(l) < 1, then 1 £ C and C(l) = 0. Now, suppose 
that (4) is valid up to k belonging to N. We shall prove that (4) is also true for 
n = k + 1. We consider two cases: 

(i) If C(k) + 1 < c(k + 1), then, by the definition of C, k + 1 E C and 
C(k + 1) = C(k) + 1 < c(k + 1). On the other hand, c(k) - 1 < C(k) implies 
c(k) + 1 - 1 < C(k) + 1. Thus 

C(k + 1) = C(k) + 1 > c(k) + 1 - 1 > c(k + 1) - 1. 

The last inequality is equivalent to c(k + 1) — c(k) < 1, which is true because 
the nondecreasing piecewise linear continuous function c, for x < y, satisfies 
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c(y) — c(x) <(y — x)X, where A is the maximal angular coefficient of c on [x, y]; 
here y - = k + l , x = k and A < 7 < 1. 

(ii) If C(k) + 1 > c(k + 1), then k + 1 g C and C(k + 1) = C(fc) < c(fc) < 
c(fc + 1 ) , c being increasing. On the other hand, the first inequality of (4) follows 
directly from the hypothesis C(k) + 1 > c(k + 1) of the present case. 

From (4) follows that 

- C(n) c(n) 
aC = hm sup = lim sup = 7 

n—>+oo 71 n—)--foo 71 
and, similarly, dC = 7 ' , 

The set .4 is defined as a subset of C such that its counting function -4(n) 
is close to a(n). Thus we stipulate that an integer n € N shall be in A if and 
only if n is in C and A(n — 1) + 1 < a(n). We shall prove that, for each n G N, 

a(n) - 2 < A(n) < a(n). (5) 

Then this yields dA = a and dA = a1. Let B = C \ A. It follows that, for each 
n G N, the quantity B(n) = C(n) — A(n) satisfies 

b(n) - 1 < B(n) < b(n) + 2 , 

so that dB = /3 and dB = f3'. 
Now let us prove the inequality (5), It is obvious that A(n) < a(n), so we 

have to prove only the first inequality in (5). There are integers 2/, 0 < y < n , 
such that a(y) — A(y) < 1; for instance, y = 0. Call m the largest one: 

m = max{?/ G NU {0} ; y<n, a(y) - A(y) < 1} . 

If m = n , then a(n) — A(n) < 1 < 2, so that the first inequality in (5) holds. 
Suppose m < n. We have a(y) — A(y) > 1, that is A(y) + 1 < a(y), for 
y = m + l , . . . , n . As A(y - 1) < A(y), it follows that A(y - 1) + 1 < a(y) 
for y = m + 1 , . . . , n . In view of the definition of the set A, this means that 
for y = m + 1 , . . . , n , we have that y G A if and only if 1/ G C. Therefore 
C D ]m, n] = A D ]m, n] and hence A(n) - A(m) = C(n) - C(m). We have 

a(n) - A(n) = a(n) - a(m) + a(m) - A(n) + A(m) - A(m) 

< 1 + a(n) - a(m) - (A(n) - ^4(m)) 

= 1 + a(n) - a(m) - (C(n) - C(m)) . 

The last member is less or equal to 

1 + c(n) - c(m) - C(n) + C(m) 

because c = a-\-b, so that 

c(n) — c(m) — (a(n) — a(m)) = b(n) — b(m) 

and b is increasing. Now, by (4), we conclude that 

a(n) - A(n) < 1 + c(n) - c(m) - C(n) + C(m) < 1 + c(n) - C(n) < 2 . 

This completes the proof of inequality (5) and of the theorem. • 
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