
Mathematica Slovaca

Svatoslav Staněk
Asymptotic and oscillatory behaviour of solutions of certain second order neutral
differential equations with forcing term

Mathematica Slovaca, Vol. 42 (1992), No. 4, 485--495

Persistent URL: http://dml.cz/dmlcz/131333

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/131333
http://project.dml.cz


rVtalherncitica 
Slovaca 

©1992 
... i /-i ...i / - J ^ ^ « \ »i _ _.-.-- .Ar Mathematical Institute 
Math. Slovaca, 42 (1992), NO. 4, 485-495 Slovák Academy of Sciences 

ASYMPTOTIC AND OSCILLATORY BEHAVIOUR 
OF SOLUTIONS OF CERTAIN SECOND ORDER 

NEUTRAL DIFFERENTIAL EQUATIONS 
WITH FORCING TERM 

SVATOSLAV STANEK 

ABSTRACT. Sufficient conditions are obtained for the oscillatory and asymp­
totic behaviour of solutions of the equation 

[a(t)(x'(h(t)) -p(t)9(x
/(t)))],^f(t)x(ao(t)),xf(al(t)))=e(t), 

where - 1 < lim p(t) < 1 and h(t) > t. 
t—KX> 

1. Introduction 

Consider the second order neutral delay differential equation (R + = (0, oo)) 

a(t)(x'(h(t)) -p(t)g(x'(t)))}\ f(t,x(a0(t)),x'(a1(t))) = e(t), (1) 

in which a, p, e e C°(R+; R), g G C°(R; R), / G C°(R+ x R2; R), 

h, a,- G C°(R+; R + ) , - 1 < lim p(t) =: 7 < 1, h(t) > t on R + , 
t—+00 

lim a,(r) = 00 ( i = 0,1). 
t—•oo 

By a solution x of (1) we mean a function x G C 1((T x ,co) ; R) for some 
Tx G R + such that a(t)(x'(h(t)) — p(t)g(x'(t))) is continuously differentiable 
on the interval (Tx, 00) and such that (1) is satisfied for all r _ Tx , a ,( t) ^ Tx , 
( . = 0,1) . 

As it is customary, a solution x of (1) is called oscillatory, if it has arbitrarily 
large zeros; otherwise it is called non-oscillatory. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34K15, 34C10. 
K e y w o r d s : Neutral delay differential equation, Oscillatory solution. 
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This paper was motivated by recent papers [3] and [5], where the authors 
give some criteria for the asymptotic and oscillatory behaviour of solutions of 
the delay differential equation 

*"(*) + q(t)f(x(a1(t)))g(x'(a2(t))) = e(t) 

and the neutral delay differential equation 

[a(t)(x(t) - px(t - T))']' + q(t)f(x(t - < - ) ) = 0 , 

where 0 — p < 1 is a constant, respectively. The purpose of this paper is to 
present a new criterion for the oscillatory and asymptotic behaviour of solutions 
of (1), which extends results in [3]. 

We observe that the oscillatory and asymptotic behaviour of solutions for sec­
ond order and higher order neutral and non-neutral delay differential equations 
has been studied in many papers, e.g. [1] — [14], [17]-[19]. 

2. Notation, lemmas 

We denote by /Jnl for any integer n ( — 0) the function defined inductively 
by h^(t) = t and bM(r) = hoh\n~l\t) for n > 0 and t G R+ . One can readily 
check that lim /Jn '(r) = oo for all t G R+ (see e.g. [15]) and for each to G R+ , 

(t*o,oo) = U < A N ( ť ° ) ' A І B + 1 ] ( M > -
n=0 

We shall assume that the functions a,g,f,e satisfy some of the following 
assumptions: 

(Hi) There exists lim a(t) = : A > 0; 
t—•CO 

(H 2) g(z) — z is bounded on R and ——- — - > I7I for all z\,z2 G R, 

21 ^ 22 ; 

(H 3 ) f(t,y,z)y = 0 for all (t,y,z) G R+ x R 2 , and f(t,-,z) is non-
decreasing on R for each fixed (t, z) G R+ x R; 
0 0 

(H4) fe(s)ds is convergent. 
0 

LEMMA 1. Let to G R+ be a number, z: {to, 00) —• R be a function such that 
lim (z(h(t)) — p(t)g(z(t))) ( =: b) exists. If assumption (H2) is fulfilled and z 

is locally bounded on (to,oo)y then lim z(t) exists. 
t—•00 

P r o o f . Let assumption (H2) be fulfilled and let z be locally bounded 
on (£0,00). First we will prove z is bounded on (£0,00). Setting u(t) : = 
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z(h(t)) -p(t)g(z(t)) and r(t) := u(t) + p(t)(g(z(t)) - z(t)) for t G ( t 0 ,oo) , 
then lim u(t) = 6 and since (cf. (H2)) g(z(t)) — z(t) is bounded on (*0,oo), 

t—•oo 

we have \r(t)\ _ L for t = to with a positive constant L. Let \p(t)\ _ £ for 
t = t\ (— to), where I7I < e < 1. Using the equality 

z(hW(t)) = r(h(t)) +p(h(t))r(t)+p(h(t))p(t)z(t) 

we deduce 

z(ti2n\t)) = r ( ^ 2 n - 1 ' ( t ) ) +p(h^2n-1\t))r(h^2n-2\t)) 

+ E(r(^k+1]w)+p(^l2fc+11(0)K^l2tlw)) a f f P(hU](t)) 
fc=0 j=2fc+2 

+ z(t)2]J p(h^(t)) (2) 
fc=0 

for t = t0 and n G N, n = 2 . Hence 

K>> l2n l(')) I _ (1 + e)L + (1 + e)L]T e ^ " * " 1 ) + me 2 " _ ^ - + m 
fc=o 

for t G (ti,fe[2](*i)>, n _ 2 , where m = sup{|z(t) | ; U = t = /i[2](*1)} and 
consequently, 2 is bounded on ( t 0 ,oo) . 

If 7 _ 0, then lim .*(&(*)) = lim (u(t) + p(t)g(z(t)))\ = lim u(*) = 6 and 

lim z(r) exists. 
<—>oo 

Let 77-O and let {rn} and {t'n} be sequences of points in ( t 0 ,oo) , lim tn = 

00 = lim t'n such that 
n—>oo 

a := limsup,z(t) = lim z(h}2*(tn)) , 
(->oo n-»oo 

j 9 : = l i m i n f z ( t ) = lim z(h[2](t'n)) . 
t—>oo n—>oo 

Using the equality z(hW(t)) = u(h(t)) + p(h(t))g(u(t) + p(t)g(z(t))) and the 

fact that (cf. (H2)) g is increasing on R (and then also 7 • g(b + 7 • g(t)) is 

increasing on R ) we obtain the following inequalities 

a<b + lg(b + rg(a)), /3^b + fg(b + 7 j(/5)). 
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T h e n 
a-ßй l{9{Ь + 79(a)) - g(b + -yg(ß))) 

Ф ß , 

(cf. (H2)) 

a- f3 
and if a ^ 3, , / t — - T j- , NXX < 1 which contradicts 

7(g(^ + 7 g H ) - g ( & + 7g(/?))) " 

0 - / 0 

7( 5 (ò + 7 5 ( a ) ) - 5 ( Ь + 7í7(/9))) 

6 + 7ff(oQ - Ь - jg(ß) a - ß ^ 

l(g(b + 19(a)) - g(b + 19(P))) j(g(a) - g(fi)) 

Whence a = /3 that is lim z(t) exists. 
t—»-oo 

R e m a r k 1. From our Lemma 1 follow Lemma 1 in [16] and Lemma 1 in 
[20] (with n = 1). 

LEMMA 2. Assume to G R+ , c: (£o,co) —> R is a bounded function and 
z: (tfo,co)—>R is such a function that (u(t) :=) a(t)(z(h(t))—p(t)g(z(t)))+c(t) 

is non-increasing on (to,oo) and lim u(t) = —oo. If assumptions (H i ) . (H2) 
t—•00 

are fulfilled and z is locally bounded on (t0,oo), then lim z(t) = —00. 
t—*oo 

P r o o f . Let assumptions (H i ) , (H2) be fulfilled and let z be locally 
bounded on (to, 00). Assume a(t) > 0 for t = t\ ( — t0) and for this t define 
r by r(t) = (l/a(t)) (u(t) - b(t)) , where b(t) = c(t) - a(t)p(t)(g(z(t)) - z(t)) . 
Then z(h(t)) = r(t) + p(t)z(t), b is bounded on (*i,oo), say \b(t)\ = B for 
t ^ ti , and lim r(t) = —00. Choose numbers e, t2 , \y\ < e < I, t2 = ti so 

t—*oo 

that \p(t)\ = e , u(t) + B < 0 and 

(1 + 3g)4 < (3 + ^M 
2 ( 1 + e ) = l j = 2(1 + 5) 

for < ^ 2 . Then 

|i^W«)-B)^W£|^(««) + B ) 
and 

^(A[ 2 f c + 1 l (0)+p(^ [ 2 t + 1 1 (<))r(h [ 2 t l ( ř ) ) 

s | Ш ( " ( Л ' " + " ( í ) ) + i î)-£(ГШÌ(''<ЛІ" l (' ) )-ß) (3) 
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for t ^ t2 and k = 0,1,2, Setting m = sup{|z(*) |; t2 ^ t ^ lit2l(r2)} we 
have (cf. (2), (3)) 

z(h™(t)) = tlT^MlP"11®) + 2B/A + n~Z(l~/A)e2(n-k-V + m 
(6 + e)A

 k=0 

= (3T^4 u ( / t [ 2 n "" 1 1 W ) + (W/A(1 _ £ 2 ) ) + m 

for £ G (*2,^'2'(*2)) and n ^ 2. Consequently, lim z(t) =•• - c o . 

3. Results 

THEOREM 1. Suppose (Hi)-(HA) hold and for each e G R, e ^ 0 

oo 

signs / f(s, eao(s), z • signs) d-s = oo (4) 

o 

uniformly on ( \e\, 2\e\) ttntfA respect to z. Then every solution x of (1) is 

either oscillatory or lim x'(t) = 0. 
t-+oo 

P r o o f . Let x be a non-oscillatory solution of (1), say x(t) > 0 for 
t = h ( = 0) and let a.-(t) = *i for t = t2 (= h), i = 0 , 1 . Then 

f(t1x(a0(t)),x
,(a1(t)))=0 for t = t2 , 

hence 

[a(0(x'(ft(<)) - P (%(* ' ( r ) ) ) ] ' - e(r) ^ 0 for tZ t2 

and 
t 

a(t)(x'(h(t)) -p(t)g(x'(t)))-Je(s)ds 

0 

is a non-increasing function on (t2,oo). Consequently, either 

t 

lim [a(t)(x'(h(t)) -p(t)g(x'(t)))-Je(s)dsj = - OO 
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or lim a(t)(x'(h(t)) —p(t)g(xl(t))) is finite. From Lemma 1 and Lemma 2 (with 

t 
z = x', c(t) = — f e(s)ds) we infer either lim x'(t) = - c o which contradicts 

v ' jj t—»oo 

x ( * ) > 0 for " t ^ * i (5) 

or lim x'(t) is finite, say d. " \ 
t—oo v 7 

If d < 0, then lim x(t) = —oo which contradicts (5). Let d > 0. Then there 
' t—>oo v ' 

exists a t3 ( = t2) so that 

3d/4 ^ *'(*) ^ 5d/4 for * ^ *3 

and x(t) = x(t3) + U{t - *3)/4 for t ^ *3 . Hence x(i) _ et for < ̂  *4 ( = t3) 

and e = 5d/8, which implies x(ao(*)) _ ea0(t) for t = t5 ( = t±), where t5 is 
a number with a,(tf) _ *4 for, tf ^ tf5 ( i = 0j 1). Then 

f{t, x(ao(t)), x'(ai(t))) = f(t, ea0(t),x'(al(t))) and 

a(t)(x'(h(t)) -P(t)g(x'(t)))]' = e(t) - f(t, ea0(t), x'(a,(t))) for t = t5 . 

Since e ^ x '(ai(^)) _ 2e for t ^ t$ using assumption (4) we get 

lim a(t)(x'(h(t)) -p(t)g(x'(t))) = - o o , 
t—•oo 

which contradicts 

Km(x'(h(t))-p(t)g(x'(t))) =d--yg(d) and (Hi). 

For the case x(t) < 0 on a ray the proof is similar and therefore it is omitted. 

R e m a r k 2. Let f(t,y,z) = q(t)k(y)m(z) for (t,y,z) £ R+ x R2 with 
continuous functions q,k,m. If q(t) = 0 on R+ , k(y)y = 0 for y £ R , k is 
non-decreasing on R, m(z) > 0 for z E R — {0} and 

oo 

signe / q(t)k(ea0(t)) dt = oo 

for each e G R, £ ^ 0, then the statement of Theorem 1 holds. 
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R e m a r k 3. The result of Theorem 1 can be extended to the equation of 
the form 

'a(t)(x'(h(t))-p(t)g{x'(t)))]' 

+ f(t,x(t), x(a0(t)),.. .,x(an(t)), x'(t), *'(/?„(*)),• . . , x'(/3m(t)j) = e(t). 

The following examples show if at least one of the assumptions (H i ) - (H4) , 
(4) and — 1 < 7 < 1 is violated then the conclusion of Theorem 1 is false. 

E x a m p l e 1. Consider the neutral differential equcition 

[,-M« + X , + .-^))], + r ^L i J . r t_ . (6) 

All assumptions of Theorem 1 are fulfilled except (H i)- Equation (6) has a 
solution x(t) = e*. 

E x a m p l e 2. Consider the neutral differential equation 

(x'(t + 1) - 2c 1 " 2 V 3 (* ) ) ' + x(t + 1) =- 0. (7) 

The assumptions of Theorem 1 are fulfilled except (H2) • Equation (7) has a 
solution x(t) = e*. 

E x a m p l e 3. Consider the neutral differential equation 

[ ( 3 / 4 , W < + 2 , ) + ( 1 / 3 K « ) ) ] ' + ( - ( ' > - * + > a + ; " C » _ 0 . ( 8 ) 

The assumptions of Theorem 1 are satisfied except (H3). Equation (8) has a 
solution x(t) = 2 — s'mt. 

E x a m p l e 4. The neutral differential equation 

[(2/3)W,+2,) + (1/2KM)],+ ( a *W ; ; ; ^ 0 =1+s,„, 

fulfils all assumptions of Theorem 1 except (H4) and admits a solution 
x(t) = 2 — sinr. 

E x a m p l e 5. Consider the differential equation 

x(t + 1) 
* 2 ( r+e-<) *"<' + 1> + J x à = '-a + e-'- W 
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All assumptions of Theorem 1 are fulfilled except (4). Equation (9) has a solution 
x(t) =t- 1 + e 1 " * . 

E x a m p l e 6. Consider the neutral differential equation 

(x'(t + In3) - 4x'(t))' + (l/e)x(t + 1) = 0 . (10) 

All assumptions of Theorem 1 are fulfilled except — 1 < 7 < 1. Equation (10) 
has a solution x(t) = e*. 

The following example shows that under the assumptions of Theorem 1 there 
exists an equation having a non-oscillatory solution x with lim xf(t) = 0 and 

t—•00 

lim x(t) 7- 0. 
t—•oo 

E x a m p l e 7. The neutral differential equation 

x"(t + ln2) - (l/2)x"(t) + (l/t2)x(t2) = t~2(l + e" '2) 

admits a solution x(t) = 1 + e~l. 

Our results can be extended to the neutral differential equation of the form 

a ( r ) ( * ' ( r J 2 ^ 

(11) 
where a, h, a0, a\, f, t are as in equation (1) and a,/? E R. 

By a solution (11) we mean a C 1 -function x on an interval (Tx,oo) 

(Tx = 0) , a(t)(x'(hW(t)) +(a + (3)x'(h(t)) +a(3x'(t)) is continuously differen-
tiable on (Tx, 00) and (11) is satisfied for all t = Tx, a{(t) = TX (£ = 0 , 1 ) . 

THEOREM 2. Let assumptions (Hi), (H3), (H4), (4) and \/3\ < 1 be satis­
fied. If 

-1< a = 0 (12) 

or 

0 < a < 1, he C 2 (R+) , h"(t) = 0 on R+ and lim inf h'(t) > 0 , 
t-юo 

(13) 
then every solution x of (11) is either oscillatory or lim x'(r) = 0. 

t—•00 

P r o o f . Let x be anon-oscillatory solution of (11), say x(t) < 0 for 
t = U(=0) and let a{(t) = U,foT t = t2( = U), i =- 0 , 1 . Then 

f(t,x(a0(t)), x'(a!(t))) = 0 on {t2,oo) 
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and setting r(t) := x'(h(t)) + ax'(t) for t ^ t\ we have 

a(t)(r(h(t))+/3r(t))}'-e(t)^0 for t ^ t 2 . 

t 
Therefore u(t) := a(t)(r(h(t)) + fir(t)) — J e(s) ds is a non-decreasing function 

o 
on (^2,00), and consequently either lim u(t) = 00 and then by Lemma 2 

t—t-OO 

lim r(t) = oo or lim u(t) is finite and then by Lemma 1 lim r(t) = : c is 
t—>-oo t—>oo t—»-oo 

finite too. 
Let lim r(t) = lim (x' (h(t)) + ax'(t)) = o o . l f - l < a = 0 , w e have 

n-2 

x'(fcW(t)) = r ( / i t n - 1 l ( t ) ) +Y,r(h[k](t))\a\n'k-1 +x'(t)\a\n 

*=o 

for t _ ti and n ^ 2, hence lim x ' (0 = CXD which contradicts 
t—^00 

x(t) < 0 for t^U. (14) 

If assumption (13) is satisfied and h'(t) > 0 for t ^ t2 , then 

/rWd. = / * W ) ds + aW.) - «„)) S /,•«.)) d. - _«,) 
* 2 <2 

and therefore 

which contradicts 

t 

00 

/ x ;(/i(^)) ds = oo , 

/*•<-»).- = 4-(M0) - -£)*««.» + / í 3g$ Í Í I<-

- * ' ( ł 2 ) 

Let lim r(^) = lim (x'(h(t)) + ax'(t)) = c. By Lemma 1 there exists 

lim .r'(r) = : d. Due to (14), d ^ 0. If d < 0, then there exists a i 3 ( ^ £2) so 
t—+oo 

that 
(5/4)dšx'(t)й(3/4)d for ť ^ ť3 
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and x(t) ^ x(t3) + (3/4)d(t - t3) for t = t3. Hence x(t) = et for e = (5/8)d 
and t ^ £4 ( ̂  t3). If t$ ( = £4) is such a number that a{(t) ^ £4 on (£5, 00) for 
i -= 0 ,1 , then 

f(t,x(a0(t)), x'(a1(t)))=f(t,ea0(t), x'(a1(t))) 

and 

[a(t)(x'(hW(t)) +(a + P)x'(h(t)) + a/3x'(t))]' = e(t) - f(t,ea0(t), x'(ax(t))) 

for t ^ t$ . Since £ = x'(t) = 2e for t = t$ , using assumption (4) we have 

lim a(t)\x'(h[2\t))+(a + {3)x'(h(t)) + a(3x'(t)} = 0 0 , 
t — • 0 0 L J 

which contradicts (Hi) and 

lim [x'(/J2l(t)) + (a + P)x'(h(t)) + a(3x'(t)] = d(l + a + (3 + af3) . 
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