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BARRELLEDNESS OF T H E SPACE OF 
DOBRAKOV INTEGRABLE FUNCTIONS 

C H A R L E S SWARTZ 

(Communicated by Anatolij Dvurečenskij ) 

A B S T R A C T . We use a continuous version of the Gliding H u m p Principle to show 
that the space of Dobrakov integrable functions is barrelled under the assumption 
that the measure is countably additive in the uniform operator topology. 

In [DFP1-2], D r e w n o w s k i , F l o r e n c i o and P a u l established abstract 
Uniform Boundedncss results and then used them to establish the barrelledncss 
of the space of Pettis integrable functions. In [Sw2] we established a somewhat 
similar uniform boundedness result and also used the result to establish the 
barrelledncss of the space of Pettis integrable functions. In [Dl] (and subse
quent papers) I. D o b r a k o v developed a theory for integrating vector-valued 
functions with respect to operator-valued measures which gave an extension of 
the Pettis integral when the measure was scalar valued. In this note we show 
that the uniform boundedness result of [Sw2] can also be used to establish the 
barrelledncss of the space of Dobrakov integrable functions. 

We begin by fixing the notation which will be employed in the sequel; other
wise, our terminology is standard and basically follows [DS]. Let A", Y be (real) 
Banach spaces and L(X,Y) the space of continuous linear operators from X 
into Y. Let S be a <r-algebra of subsets of a set S and let m : S -» L(X,Y) 
be countably additive with respect to the strong operator topology of L(X, Y). 
A function / : S -> X is (strongly) measurable if there exists a sequence of 
A"-valued, S-simple functions {fk} converging to / pointwise on S. A mea
surable function f: S —> X is m-integrable or integrable with respect to m if 
there exists a sequence of AT-valued, m-integrable simple functions {fk} such 
that fk—>f m-a.e. and l i m / / f c dm = *y(E) exists for every F7 E £ ; the in-

E 
tegral of / over E is defined to be *y(E) and is denoted by J f dm = *y(E) 

E 
([Dl]). Moreover, J f dm is a countably additive Y-valued measure and the 
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limit above is uniform for E G E ([Dl; Theorem 7]). Let Ll(m) be the space 
of all m-integrable functions. We define an L1-seminorm on Ll(m) by \\f\\x = 

supj | | / / dm11 : E G E j ; since / / dm is countably additive, \\f\\x < oo ([Dl; 

Theorem 2]). 

E X A M P L E 1. Let \x : E —» K. be a countably additive, positive measure. Define 
an L(X,X)-valued measure ft by fi(E)x = fi(E)x. Then / is kt-integrable 
if and only if / is measurable and Pettis /i-integrable and f f dft = / / d/_t 

E E 

([Dl; Example 3.2]). Moreover, if / is /t-integrable, 2 \\f\\x > supl / \x'f\ dLt : 

Hx'll < 11 = H/llj > H/llj and || ||i is the usual semi-norm defined on the space 

of Pettis integrable functions ([Pe]). 

It is well-known that the space of Pettis integrable functions is not, in general, 
complete under || ||-_ ([Pe], [Th]) so it follows from Example 1 that Lx(m) is, 
in general, not complete under || ||-_. As is the case for the space of Pettis inte
grable functions, we show that Ll(m) is a barrelled space under || \\x when m 
is countably additive in the norm topology of L (X, Y). 

R e m a r k 2. D o b r a k o v defines a semi-norm px on a subspace Cl(m) of 

Ll(m) by setting px(f) = | / | | / ( - ) l l dv(y'm) : \\y'\\ < l } , where v(y'm) is the 

variation of the measure y'm(E) = (y',m(E)) ([D2; Theorem 4]), and defining 
Cl(m) to be all functions / with px(f) < oo. He then shows that Cl(m) is com
plete under px; however, C1 (m) is generally a proper subspace of L1 (m). Indeed, 
in the case of scalar valued measures as in Example 1, px(f) = / ||/(-)ll ^ s o 

s 
Cl(jl) coincides with the subspace of Ll(fi) consisting of the Bochner integrable 
functions which is generally a proper subspace of the space of Pettis integrable 
functions ([D2; p. 688]). 

We next describe the uniform boundedness result which will be employed in 
our proof of the barrelledness of Ll(m). 

Let E be a Hausdorff locally convex space. If E' is the dual of E, we de
note the weak* topology of E' (strong topology of E) by a(E',E) ((3(E,E')). 
Suppose P : E --> L(E,E) and write PA = P(A) for A G E. Let P satisfy. 

(i) P^ = 0 and Ps = L, where / is the identity operator on E, 
(ii) P is finitely additive with PAnB = P^B • 

We impose 2 further conditions on P in order to establish a uniform bound
edness result for E. First, we have a gliding hump condition. 

522 



BARRELLEDNESS OF THE SPACE OF DOBRAKOV INTEGRABLE FUNCTIONS 

We say that P satisfies the strong Gliding Hump Property (strong (GHP)) 
if: 

whenever {x-} is a null sequence in E and {A-} is a pairwise dis

joint sequence from E, there is a subsequence {n-} such that the series 
oo 

-C PA xn ls convergent to an element in E. 
j=i nj 3 

We also consider a decomposition property for P. If y' G E and x G E, we 
write y'Px for the scalar valued set function A -» (y', PAx), A G E, and we let 
\y'Px\ denote the variation of y'Px. We say that P satisfies property (D) if: 

(D) For every e > 0, y' G E', x G E, there exist Ax,... ,Ak G S pairwise 

disjoint such that S — \J A{ and \y'Px\ (A{) < e for i = 1 , . . . , k. 
i=\ 

R e m a r k 3 . If y'Px is non-atomic for every y' G E', x G E, then (D) is satisfied 
([RR; 5.1.6]). In particular, if A is a finite, positive, non-atomic measure on E , 
E is a normed space and lim H-P^H = 0 for every x G E, then this condition 
is satisfied. ^ '"* 

We employ the following uniform boundedness result which was established 
in [Sw2] (this result requires the assumption that PAnB — PA^B)-

THEOREM 4. Suppose P satisfies conditions (D) and strong (GHP). If B C E' 
is a(E',E) bounded and A C E is bounded, then 

sup{|(x / ,x) | : x'e B , x e . 4 } < o o . 

That is, if A C E is bounded, then A is strongly bounded so that E is a Banach-
Mackey space ([Wi; §10.4]). 

R e m a r k 5. A stronger result involving a weaker gliding hump property was 
established in [Sw2], but Theorem 4 will suffice for the application to Ll(m) 
that we require. 

We first consider the strong (GHP) for Ll(m). In this case the mapping P 
is given by PAf = CAf for A G £ , / G Ll(m). 

THEOREM 6. Ll(m) has strong (GHP). 

P r o o f . Let fk -> 0 in Ll(m) and {Ek} C S pairwise disjoint. Pick 
a subsequence satisfying ||/Ufc | |1 < 1/2*. Let / be the pointwise limit of 

oo q q 

E CEfnk. For each E 6 S , if q > p, £ j CEfnk dm < £ l/2 fc so 
k=p E k=p k 1 

V 
lim J ] f C*r /n d m = ^ ( ^ ) exists. By [Dl; Theorem 16] / is m-integrable 

P k ib ^nk k 
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and 

/ / dm = ^2 / CEnk fnk
 d m uniformly for E eE, 

Y. 1—1 J 
(1) 

* = - E 

Now (1) implies that £ Oen / = / in || ||,.. • 
k — \ nfc 

We next consider property (D) and the barrelledness of Ll(m) when the 
measure m is non-atomic 

THEOREM 7. Assume that m is non-atomic and countably additive with re
spect to the norm topology of L(X, Y). Then Lp(m) has (D). 

P r o o f . By [DU; 1.2.6] or [DS; IV.10.5] there exists a control measure A for 
m, i.e., lim m(E) = 0 and m and A have the same null sets. Since m is 

A(E)-»o v ' 

non-atomic, A is also non-atomic Let / e Ll(m). By [Dl; Theorem 3] the set 
function E i-> f f dm is continuous with respect to the scalar semi-variation 

E 

||m|| (•) and, therefore, is continuous with respect to the control measure A. 
Hence, lim | | / / dm|| = 0 and lim HC^/Hj = 0. The result now follows 

A(E)—>0 £ A(E)—>0 
from Remark 3. • 

COROLLARY 8. Let m satisfy the assumptions in Theorem 7. Then Ll(m) is 
barrelled. 

P r o o f . By Theorems 4, 6 and 7, L1(m) is a Banach-Mackey space and, 
hence, is barrelled ([Wi; 10.4.12]). • 

We next consider the case when m may have atoms. We assume henceforth 
that m is countably additive with respect to the norm topology of L(X,Y) 
and A is a control measure for m as in the proof of Theorem 7. Then there 
exist pairwise disjoint {Ak : k > 0} C S such that A restricted to A0 n £ 
is non-atomic and each Ak for k > 1 is an atom for A ([RR; 5.2.13]). In the 
computations below we tacitly assume that {Ak : k > l } is infinite; the case 
when the set is finite is much simpler. Let E0 = A0, Ex = IJ Ak and let m 0 

A;>1 

(A0) be m (A) restricted to E0 n S and mx (\x) be m (A) restricted to Ex n S . 
Now m 0 is non-atomic, mx is purely atomic and ml = m0 + m1. Hence, we 
have Ll(m) = Lx(m0) 0 F1(m1). Since Ll(m0) is barrelled by Corollary 8, to 
show that Ll(m) is barrelled it suffices to show that Ll(mx) is barrelled when 
mx is purely atomic. Since each Ak is a A-atom and m and A have the same 
null sets, m takes on only 2 values, m(Ak) and 0, when restricted to Ak D S , 
i.e., Ak is an atom for m. 

We consider the integrability of a function / over El. For this we first require 
a lemma. 
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LEMMA 9. Let / : 5 —r X be X-measurable. Then f = constant X-a.e. in each 
Ak for k > 1. 

n 
P r o o f . First suppose / is simple with / = 5Z CBkxk, where { B j C S 

/ e = l 

are pairwise disjoint and xk G X. Since Afc is an atom for A, / = constant 
A-a.e. in Ak . In general, if / is A-measurable, there exist simple functions {/•} 
such that / —» / A-a.e. If / • = x- A-a.e. in Ak, then there exists x G X such 
that x- —•> x and / = x A-a.e. in .A^. • 

PROPOSITION 10. Let f:S->X be X-measurable and suppose f — xk 

X-a.e. in Ak (Lemma 9) for k > 1. Then f is m-integrable over Ex if and 
onh if zCm(^/c)xA- Z5 subseries convergent. In this case, 

P r o o f. If / is m-integrable over Ex, then / / dm is countably additive 
so / / dm = £ / / dm = ^m(Ak)xk ( p i ; Theorem 3]). 

Li k Ak k 
n 

For the converse, set fn=^2 ^Ak
xk so fn ~* f ^ ' a e - o n -^1 a n d for every 

B G S , B CEX, 

fndm = Yl m<<Ak n B K ""> S m(Ak n B ^ 
•g fc=l k 

by the subseries convergence of the series (m(AkC\B) is either 0 or m(Ak) since 
AA. is an atom for m). By [Dl; Theorem 16], / is m-integrable over Ex with 
/ f dm = ^2m(Ak)xk. 

Ei k 

We now define a vector-valued sequence space which is isometric to L1(??i1). 

Let £l(mx) = \x = {xk} : xk G X and ]Cm(^/c)xfc is subseries convergent > 
^ k J 

and define a semi-norm on ^ ( m j by qx(x) = sup< || ]T m(.Aife)xjfe|| : <r C N> . 

Then L1^^ and £1(m1) are linearly isometric under the correspondence x = 
{xk} ^ f = Y1CA xk given by Proposition 10. • 

We show that £l(mx) (and, hence, Lx(mx)) is barrelled by using results 
for vector sequence spaces established in [LS] and [Swl]. Let ek be the scalar 
sequence with a 1 in the kth coordinate and 0 elsewhere; if z G X , let ek eg) z 
be the Ar-valued sequence with z in the kth coordinate and 0 elsewhere. 
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PROPOSITION 1 1 . If x r= {xk} e ^ ( m - J , then x = J^ek®xk (i.e., ^(m^) 
k 

is an AK-space ([Sw3])). 

P r o o f . Set xn = £ efc ® x. . Then 
/ c = l ^ 

r/^x-x") =sup{|| Em^JxJ : o-C { n + 1 , . . . } ) -» 0 

by the subseries convergence of the series T,m(Ak)xk . • 

Let cQ(X') be all A"7-valued sequences which are norm convergent to 0. 

PROPOSITION 12. Let / G ^(mj. Then there exists x' = {x'k} G c0(X') 

such that (/, x) = J2(x'k'xk) for everV x = {xk} G ^ ( m j . 

P r o o f . Define 4 : X -> K by (zj,,*) = (f,ek ®z). Then x^ G A ' and 

I K I I < ll/ll I M ^ ) I I since 

1(4, *>| < 11/11 II** ® *ll = 11/11 \\m(Ak)z\\ < ||/||||m(^)||P||. 

Since m(Ak) —> 0, x' = {x'k} G c0(A r '), and by Proposition 11 

</^> = E</>efc®^> = EK>*A->-
k k 

The /3-dual of an X-valued sequence space E is defined to be E13 = 

< x' = {x'k} : x'̂ , G A"7, Y^(xkixk) converges for all x = {x^.} e E> ([LS]). 

Thus, Proposition 12 asserts that f1 (m1) / C i1 (m x )^ . We next want to show that 
^ ( m j = ^(m^. For this we employ a result of [LS]. Let E be an A'-valued 
sequence space which has a vector topology. If x = {xk} G E and a C N, let 
CGx be the coordinatewise product of x and the characteristic function Ca . B> 
an interval in N we mean a set of the form [m,n] = { j G N : m < j < n}, where 
m,n G N; a sequence of intervals {/•} in N is increasing if max^- < m i n / j + 1 . 
The space E has the zero gliding hump property (0-GHP) if whenever xk -» 0 
in E and {7^} is an increasing sequence of intervals, there exists a subse-

oo 

qucnce {nk} such that x = £ C7 xnk G E, where the series converges 
k=i nfc 

coordinate-wise ([LS]). • 

PROPOSITION 13. ^ ( m j has 0-GHP. 

P r o o f . Let xk = {xk} -> 0 in ^ ( m j and let {7^} be an increasing se

quence of intervals. Pick an increasing sequence {nk} such that q1(x
nk) < 1/2* 
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oo 

and let x = J2 Cj xnk (coordinate-wise sum). We show x G £l(mx). Let 
k=i nfc 

cr C N be infinite and set z- = ]T m (^) a ; z- l j • Since ||z.| | < 1/2-?, the scries 
iGIn no-

OO 

Y m(Ak)xk = Yl zj converges, i.e., the series Y,m(Ak)xk is subseries convcr-
k£(T j=l 
gent. D 

From [LS; Corollary 4] and Proposition 12, we obtain: 

PROPOSITION 14. ^(m^ = £1(m1)
f. 

An A"-valued sequence space E is said to be monotone if CGx G E whenever 
x G E and a C N. ^1(m1) is obviously monotone. Using the results above and 
results from [Swl], we obtain: 

COROLLARY 15. cr(£1 ( m j , i 1 ( m j ' ) is sequentially complete and ^ ( m i ) is 
barrelled. 

P r o o f . Since ^ ( m j is monotone, cr(^1(m1),£1(m1) /3) is sequentially com
plete by [Swl; Theorem 8]. The first statement now follows from Corollary 14. 

Any weakly sequentially complete space is a Banach-Mackey space ([Wi; 
10.4.8]) and since ^ ( m j is normed, ^ ( m j is barrelled ([Wi; 10.4.12]). • 

From Corollaries 8 and 15, we have: 

THEOREM 16. If m is countably additive with respect to the norm topology of 
L(X<Y), then Ll(m) is barrelled. 

PROBLEM. Does the conclusion of Theorem 16 hold if m is countably additive 
in the strong operator topology? 
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