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DIRECT PRODUCT DECOMPOSITIONS 
OF PSEUDO EFFECT ALGEBRAS 

JÁN JAKUBÍK 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. In this paper we deal with internal direct product decompositions 
of a pseudo effect algebra satisfying a certain interpolation property This property 
was investigated by Dvurecenskij and Vetterlein. 

1. Introduction 

Pseudo effect algebras were introduced and studied by D v u r e c e n s k i j 
and V e t t e r l e i n [2], [3], [4]. 

Some interpolation properties for pseudo effect algebras were dealt with in 
the mentioned papers. It was shown that each pseudo effect algebra A satisfy
ing the interpolation property RDP X can be represented as the interval [0, u] 
of some partially ordered group G with a strong unit u (for detailed defini
tions cf. Section 2 below). The notation A = T(G,u) is applied in this situa
tion. The analogous notation has been used for ilFV-algebras; cf. C i g n o l i , 
D ' O t t a v i a n o and M u n d i c i [1]. 

We denote by V the class of all pseudo M"V-algebras satisfying the interpo
lation property R D P j . 

Let A € V. Similarly as in the case of groups (cf. e.g., K u r o s . l i [12]) we 
introduce the notion of an internal direct product decomposition of A; we apply 
the notation A = (int) f7 ^4 i, or 4̂. = (int)^41 x • • • x An if the set I is finite (in 

iei 
this case we speak about a finite internal direct product decomposition). For the 
notion of an internal direct product decomposition of an ordered group cf. [8], 
[9]. Analogously we can introduce this notion for partially ordered sets having 
the least element. 
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Let G be as above, i.e., A = T(G,u). The case u = 0 being trivial for our 
purposes, we assume that u > 0 . Then without loss of generality it suffices to 
suppose that all Ai (under the notation as above) are non-zero. 

We investigate the relations between internal direct product decompositions 
of A and those of t(A), where t(A) is the underlying partially ordered set of A. 
We generalize some results on direct product decompositions of MV-algebras 
and pseudo MF-algebras; cf. [10], [11]. We prove that there exists a one-to-one 
correspondence between finite internal direct product decompositions of A and 
internal direct product decomposition of G. (In general, A can have infinite 
internal direct product decompositions; on the other hand, each internal direct 
product decomposition of G is finite.) 

Namely, let IDf(A) be the set of all finite internal direct product decomposi
tions of A and let ID(G) be the set of all internal direct product decomposition 
of G. Let a G IDf(*4), where a has the form 

A = ( i n t ) ^ x • • • x An . (a) 

For i G / , let ui be the greatest element of Ai. Put 

Gi= U[-nunnui\' 
nGN 

Then Gi is an ^-subgroup of G; moreover, we have 

G = (int)G1 x • • • x Gn . (P) 

The mapping a i-> (3 is a bijection between IDf(*4) and ID(G). 
For the notion of pseudo MV -algebra, cf. G e o r g e s c u and I o r g u l e s c u 

[5], [6] and R a c h u n e k [13] (in [13], the term "generalized MV-algebra" was 
applied). 

2. Preliminaries 

An element u of a partially ordered group G is a strong unit of G if for each 
g G G there exists a positive integer n such that g ^ nu. A partially ordered 
group with a fixed strong unit is called unital. 

A partial algebra A = (A; + , 0,1), where + is a partial binary operation and 
0 and 1 are constants is called a pseudo effect algebra if for all a,b,c G A the 
following conditions are satisfied (cf. [2]): 

(i) a + b and (a + b) + c exist if and only if b + c and a + (b + c) exist, and 
in this case (a + b) + c = a + (b + c); 

(ii) there is exactly one d G A and exactly one e G / 4 such that a + d = 
e + a = 1; 
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(iii) if a + b exists, then there are elements d, e G A such that a + b = d + a = 
b + e; 

(iv) if 1 + a or a + 1 exists, then a = 0 . 

We put a = b if and only if there exists c G A such that a + c = b. Then ^ 
is a relation of a partial order on A and 0 ^ a ^ 1 for each a £ A. Also, a = b 
if and only if there exists d G A with d + a = b. 

In what follows, we always consider i a s a partially ordered algebraic struc
ture with the partial order ^ defined as above; i.e., we have A = (A\ + , 0 ,1 , =). 

For the further definitions and for the results formulated in the present section 
cf. [2], [3], [4]. 

The group operation in a partially ordered group will be written additively, 
the commutativity of this operation is not assumed. 

Let G be a partially ordered group and let 0 < u G G. Let A be the interval 
[0,it] of G. Consider the partial binary operation + on A which is defined by 
restricting the group operation + on the set A. Put 

r ( G » = (A;+,0,u). 

Then T(G,u) is a pseudo effect algebra. 

We will deal with the following condition for a pseudo effect algebra A: 

(RDPX) For any a 1 , a 2 , 6 1 , 6 2 € -4 such that ax + a2 = bx + b2 there are 
d1,d2,d3,d4 G A such that 

(i) d1 + d2 = ax, d2 + d4 = a2, dx + ds = b1, d3 + d4 = b2; 

(ii) for each cK,,^ G A with cK, = ^2 > ^3 = ^3 w e n a v e ^2 "*" ̂ 3 = 

4+4. 
THEOREM 2 .1 . (Cf. [3].) Let A be a pseudo effect algebra satisfying the con
dition (RDP-J . Then there exists a partially ordered group G with a strong unit 
u such that A is isomorphic to T(G: u). Moreover, the unital partially ordered 
group (G, u) is determined uniquely, up to isomorphisms. 

Therefore, when dealing with a pseudo effect algebra satisfying (RDPX) we 
can assume without loss of generality, that A = T(G, u) for some unital partially 
ordered group (G,u). 

THEOREM 2.2. (Cf. [4].) Let A be as in 2.F Then A satisfies the following 
conditions: 

(RDP0) for every a,b1,b2 G A with a ^ b1 + b2 there are dx,d2 G A such that 
dl?-bl, d2 _ b2 and a = dx + d2; 

(RIP) for any a 1 , a 2 ,6 1 ,6 2 G A with a1,a2 = b1,b2 there is c G A such that 
ax, a2 = c ^ bx, b2 . 
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3. Direct produc t decompositions 

In this section there is introduced the notion of internal direct product de
composition of a pseudo effect algebra. 

Let I be a nonempty set of indices and for each i G / let A{ = (A{\ + , 0i5 l j 
be a pseudo effect algebra. Let S be the set of all indexed systems x = (xi)i^I 

where xi G Ai for each i e I. Assume that a = ( a i ) i G / and b = (b{)ieI are 
elements of S. If a{ + b{ exists for each i G / , then we put a + b = (a{ + b^)iG/; 
otherwise, a + b is not defined in 5 . Further, we put 

- = (-.).e/> o = (o.) i 6 / . 
It is clear that the algebraic structure (5; +, 0,1) is a pseudo effect algebra; we 
denote 

(5;+,0,l) = n A 
iei 

and we call this algebraic structure a direct product of the system (At)ieI. If 
i" = {1, 2 , . . . , n } , then we write also Ax x • • • x An. 

Let j G / . Further, let 5- be the set of all elements a = (a{)ieI of S such 
that a{ = 0 whenever i / j . We denote by V the element of 5 such that 

(1J); = V 
If a, b G Sj and if a + b exists in (5; + , 0,1), then clearly a + b belongs to 

Sj . Hence the algebraic structure 

^ = (5,.,+.0,1^) 

is a pseudo effect algebra. 
For a j G A • let a? be the element of .S • such that (aj'). = aj. Then 

the mapping cp •: 5 • —r A • defined by (/? • (a^) = aj is an isomorphism of Aj 
onto Aj. 

Let A be a pseudo effect algebra and let 

V-A-tllAi (1) 
iei 

be an isomorphism. Then we say that ip determines a direct product decomposi
tion of A. For a £ A and i G / we put (ip(a)). = a{ and we say that a{ is the 
component of a in Ai. 

Further, for each a G A we set ^(a) = (a* )^ 7 . In view of the upper men
tioned properties of <p. (j € I) we conclude that the mapping 

?>:.4->Ipi (2) 
i€ / 
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also determines a direct product decomposition of A; this direct product de
composition is called internal. 

Recall that for each i G i", the underlying set of A{ (i.e., the set S{) is a 
subset of A. Hence internal direct product decompositions of A form a set; on 
the other hand, there is a proper class of direct product decompositions of A. 

In view of (1) and (2), to each direct product decomposition tp of A there 
corresponds an internal direct product decomposition Tp of A such that, up to 
isomorphism, Tp does not differ from (p. 

If (2) is valid, then we write 

>l=(int)Ipi. (3) 
iei 

In view of the above definitions, we conclude that if (1) is valid, then tp 
determines an internal direct product decomposition of A if and only if the 
following conditions are satisfied: 

(i) for each i G 7, the underlying partially ordered set £(At) of A{ is an 
interval of £(A); 

(ii) if i G I and x G £(A{), then x{ = x and x- = 0 for each j G / , j / i. 

In the same way we introduce the notion of internal direct product decompo
sition of a partially ordered group G, of the partially ordered semigroup G + or 
of a lattice L possessing the least element 0. We omit the detailed definitions. 

If (3) holds, then the pseudo effect algebras Ai are called internal direct 
factors of A. 

Assume that 
A = (int)A1 x A2 

and that this internal direct decomposition is determined by an isomorphism (p. 
Let a G A and ip(a) = (a1,a2). Then 

(p(ax) = ( a l 5 0 ) , <p(a2) = ( 0 , a 2 ) . 

In the direct product Ax x A2 we have 

(ax,a2) = (a1 ,0) + ( a 2 , 0 ) . 

Hence in view of the isomorphism cp, the relation a = a1 + a2 is valid in A. By 
induction we obtain: 

Assume that 
A = (int)A1 x • • • x An ; 

for a G A and i G {1,2, . . . , n } let a{ be the component of a in A{. Then 
a = ax + • • • + an. 

Let L be a directed partially ordered set with the least element 0. If 
x,y,P,Q G L such that p is the infimum of {x, y}, then we write x A y = p ; the 
meaning of x V y = q is analogous. 
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LEMMA 3 .1 . Assume that L = (int)Lx x L2. 

(i) If x G Lx and y G L2, then x A y = 0. 
(ii) Let z G L and let zi be the component of z in L{ (i = 1,2). Then 

zx\l z2 = z. 

P r o o f . Assume that the internal direct product decomposition under con
sideration is determined by an isomorphism ip. 

Let x G Lx and y G L2. Then ip(x) = (x, 0), (p(y) = (0, y). If z G L, z _ x, 
z ^ H, (/?(z) = (zx, z2) , we obtain (p(z) = (0, 0) = 0. Thus x A y = 0. 

Let 2 G F, <^(z) = ( z ! , ^ ) . Since </>(̂ 1) = (z^O), ip(z2) = (0, z2)j
 w e § e t 

zx,z2 _ 2:. Let t E L , ^ _ t and z2 _ £, (/?(t) = ( t 1 ,^ 2 ) . We get zx _ tx and 
2:2 _ ^2 , yielding z _ £. Hence zx V z2 = £. • 

4. Relations between internal direct 
produc t decompositions of A and £(A) 

In this section we assume that A is a pseudo effect algebra belonging to the 
class V. Hence, without loss of generality we can suppose that A = T(G,u) 
for some unital partially ordered group (G, it). It suffices to deal with the case 
G^ {0}, i.e., u>0. 

A directed group is called a Riesz group if it satisfies the condition analogous 
to the condition (RIP) from 2.2. 

LEMMA 4 .1 . The partially ordered group G is a Riesz group. 

P r o o f . Since G possesses a strong unit it is directed. From A G V and 
from 2.2 it follows that A satisfies the condition (RIP). Therefore in view of [4] 
we conclude that G is a Riesz group. • 

Let ux e A, where A is the underlying set of A. We denote by Gx the convex 
subgroup of G generated by ux. Hence Gx = (J \—nux,nux\. The element H1 

is a strong unit of Gx.
 n G N 

Put Ax = [0,1/J. For x,y G A1 consider x + y to be defined in Ax if 
x + y € Ax. Then Ax = (Ax\ +, 0, ux) is a pseudo effect algebra and we have 

. 4 1 = r ( G 1 , « 1 ) . 

Thus AX^V. We call Ax an interval subalgebra of A (generated by ux). 

LEMMA 4.2. Let A = ( i n t ) ^ x *42. Put ui = u(A{) (i = 1,2). Then Ai is 
an interval subalgebra of A generated by the element u{. 

P r o o f . This is an immediate consequence of the definition of the internal 
direct product decomposition and of the relation A EV. • 
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Also, since the partial order in A is defined by means of the partial operation 
+ , we get: 

LEMMA 4.3 . Assume that A = (mt)A1 x A2. Let i(A{) be the underlying 
partially ordered set of Ai (i = 1,2). Then £(A) = (int)£(4x) x i(A2) and for 
z £ A, i £ {1,2} we have z(A{) = z(i(At)) . 

From 4.3 we obtain by induction: 

LEMMA 4 .3 .1 . Assume that A = (int)A1x- - -xAn. Then i(A) = (int)(i(Ax)x 
• • • x i(An)). For each z £ A and i £ {1, 2 , . . . , n}, z(A{) = z(i(A{)) . 

LEMMA 4.4. Assume that i(A) = (mt)Lx x L2 . Put u{ = u(L{) (i = 1, 2) and 
let A be the interval subalgebra of A generated by u{. Then 

(i) £(Ai) = Ll (i = l , 2 ) ; 
(ii) A = ( i n t ) ^ x A2; 

(iii) for each z£ A, z(A{) = z(L{) (i = 1,2). 

P r o o f . 
a) Let z £ [0,u-J. Put zx = z(Lx), z2 = z(L2). In view of 3.1 (ii), z = 

zx\l z2. Since zx £ Lx and z2 £ L2, from 3.1 (i) we obtain z2 = z A z2 = 0, thus 
z = zx. Hence [0 ,^^ C Lx. Conversely, let z e Lx. Then z(Lx) = z. In view 
of z = u we get z(Lx) ^ u(Lx) = ux, thus z = ux and Lx C [0, iz1]. Therefore 
£(AX) = Lx. Similarly, i(A2) = L2. 

b) Let a G Lx, b G L2, ax G A, ax = a + b. We prove that ax G Lx. In 
fact, there exist a2 ,b2 G A such that a2 = a, b2 = b and ax — a2 + b2. Then 
0 = ax A b2 = b2, whence al= a. Thus according to a) we have ax e Lx. 

c) Let a £ Lx, b £ L2. Then a V b = a + b. We verify this assertion as 
follows. There exists z G A with z(Lx) = a, ^(L2) = b. Hence in view of 3.1, 
z = a V b; thus a V b exists in L. We obviously have a V b ^ a + b. Thus there 
exist ax, bx £ A such that ax = a, bx ^ b and a V b = ax + bx. In view of a) we 
obtain ax £ Lx, a2 £ L2. Further, a = al+bl. According to b), a = ax. Thus 
a = ax. Analogously, b = bx. Therefore a V b = a + b. 

d) Let a and b be as in c). From c) we infer a + b = b + a. 
e) Let a, ax £ Lx and b, bx £ L2. Assume that a + b = ax + bx. Then 

a = ax+bx, whence b) yields a = ax. Similarly we obtain ax = a, hence 
ax = a. Analogously, bx = b. In view of 3.1 we conclude that each element 
z £ A can be uniquely expressed in the form z = a + b with a £ Lx, b £ L2. 

f) Let a, a' £ Lx and suppose that a + a' exists in A. Then a + a' £ Lx. 
In fact, in view of e), a + a' can be written in the form a + a' = ax + b with 

ax £ Lx and b £ L2. Hence b *— a + a'. Thus there are bl5b2 G A such that 
b = bx + b2, bx = a and b2 = a'. Further, bx = bx A a = 0 and similarly b2 = 0 . 
Thus b = 0 and a + a' = ax £ Lx. 
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Analogously, if b, b' G L2 and if b + b' exists in A, then b + b' G L2 . 
g) Let z,z' G A. First suppose that z + z' exists in A. We express z and 

z' as in e); we get z = a + 0, 2/ = a' + b'. Put z + z' = t. Then in view of d), 

z + z' = a + b + a' + b' = (a + a') + (b + b'). 

According to f), a + a' G Lx and b + b' G L2. Hence we have (cf. e)) 

z(Lx) = a , z'(Lx) = a7, £(£1) = a + o!, 

z(L2) = b, z'(L2) = &', t(L2) = b + b'. 

Therefore t(Lx) = z(Lx) + z'(Lx), t(L2) = z(L2) + z'(L2). 
Secondly, suppose that z + z' does not exist in A. We show that either a + a' 

or b + b' does not exist in A. By way of contradiction, suppose that both these 
elements exist in A. In view of f), we have a + a' G Lx and b + b' G L2. Thus 
(a + a') V (b + b') exists in A and according to b), 

(a + a') y(b + b') = (a + a') + (b + b'). 

Since a' + b = b + a', we obtain (a + a') V (b + b') = z + z'. Hence z + z' G A, 
which is a contradiction. 

h) In view of g) we conclude that the mapping tp: _4 -* Lx x i 2 determines 
an isomorphism of A onto Ax x A2. 

Further, if z G L1, then zx= z and z2 = 0; similarly, if z G L2, then z2 = z 
and zx = 0 . (We denote by zi the component of z in L-, i = 1, 2.) Therefore 
we obtain 

.4 = (int),y4-_ x A2 . 

In view of the definition of (/?, for each z G -4 we have z(*4-) = z(LJ for i = 1, 2. 

• 
From 4.4 we obtain by a straightforward induction: 

THEOREM 4.5 . Assume that A is a pseudo effect algebra belonging to the 
class V. Let t(A) = (int)L1 x • • • x Ln. Put u{ = u(L{) and let Ai be the 
interval subalgebra of A generated by u{ (i = 1,2, . . . , n ) . Then 

(i) t(Ai)=Li / o r t € { l , 2 , . . . , n } ; 
(ii) A = ( in t )^ ! x • • • x An; 

(iii) for each z G A and i G {1, 2 , . . . , n} . z(Ai) — z(L{). 

Let A G V. In view of 4.1 and 4.5, there is a one-to-one correspondence 
between finite internal direct product decompositions of A and those of t(A). 

Now we will apply to above results for investigating internal direct decompo
sitions which can be infinite. We need some auxiliary results. 
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Assume that an internal direct decomposition 

A = (mt)l[Ai (1) 
i<E1 

is defined by a mapping ip. For a G A we put cp(a) = (o>i)iei-
Let Ix and J2 be nonempty subsets of J such that Jx Pi J2 = 0, Jx U J2 = J . 

Given a G A, let a1 and a2 be elements of A such that 

{a\ = la* l f i € / l ' (A = (°* i f i G / 2 ' 
^ 0 otherwise, t 0 otherwise. 

We denote 
Ax = {a1 : ae A} , A2 = {a2 : a G A} . 

Then u1 is the greatest element of Al and u2 is the greatest element of A2. 
Hence there exists an interval subalgebra A1 with t(Al) = Ax . The meaning of 
^42 is analogous. 

For each a G A we put </>*(a) = (a1 ^a2). By a simple argument we can verify: 

LEMMA 4.6. The mapping ip* determines an internal direct product decompo
sition 

A = (int)^1 x A2 . 

For j G {1,2}, the partial mapping ipi = ip\T determines an internal direct 
product decomposition 

.4'" = (int) J ! A -
keij 

LEMMA 4.7. Let ip be as above and let (1) be valid. Then cp determines, at 
the same time, an internal direct product decomposition 

*(Л) = ( int)П'(A)-
i£l 

P r o o f . It suffices to apply the same argument as in 4.3.1. • 

Further, consider the case when instead of (1) we have the relation 

^ ) = ( i n t ) H ^ (2) 
iei 

which is defined by a mapping <p with tp(a) = ( ^ ) i E / for a G A. 
Under an analogous notation as above we obtain that Al and A2 are sub-

lattices of £(A). Similarly as in 4.6 we have: 
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LEMMA 4.8. The mapping cp* determines an internal direct product decompo
sition 

£(A) = (mt)A1 x A2 ; 

for j G {1 ,2} . the partial mapping (p3 = ip\T determines an internal direct 

product decomposition 

A3 = (int) [ J Lk . 
keij 

Let i be a fixed element of I. Put I1 = {i}, I2 = I\I1. Suppose that I2 7-= 0. 
Hence Ax = L{. 

LEMMA 4.9. Under the assumptions as above, there are internal direct factors 
Ai and A\ of A such that 

(i) l(At) = Li,l(A'l) = A2; 
(ii) A = (int)A • x A[; 

(iii) for each a £ A, a(A{) = a{ and 

M4», = {° Mľ'' 
3 l a j гf j Є I, : 

P r o o f . This is a consequence of 4.8 and 4.4. • 

LEMMA 4.10. Let (2) be valid and let Lp be as above. Let a € A. Then a = 

iei 

P r o o f . In view of 4.9 and 3.1 we have 

a = a(At) V a(A[). 

Since a(*4-) = a^, ai — a. 
Let t G A and suppose that a• — t for each i G / . Hence (ai)i = ti.ln view 

of (2) we have (ai)i = ai, thus a- = ti for each i e i " . Therefore a = t. This 
yields a = \/ ai. • 

i G / 

LEMMA 4.10 .1 . Assume that (2) is valid. Let y G A. For each i G I, let 
a1 G F^ and let \J a1 = y. Then y{ = a1 for each i G I. 

i e / 

P r o o f . In view of 4.10 we have y = \J yi. Further, according to (2), 
iei 

a2 A ?/-(1) = 0 whenever i and i(l) are distinct elements of I. Hence for each 
i G / , 

yi = yi^y = yi^\J aj = \Z(yiA a3) = y{ A a1, 
je/ je/ 

thus y{^al. Analogously we obtain a1
 = y-. Therefore yi = a1. • 
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LEMMA 4 .11 . Under the assumptions as in 4.9. let i(l) e I, i(l) ^ i and 
0 <ae A{, 0 <be A - (1 ). Then a\/b = a + b. 

P r o o f . From b e A{^ it follows b e A2 . Then from 4.9 (ii) and from 4.4 c) 
wre obtain a V b = a + b. D 

LEMMA 4.12. We apply the notation as above. Let x,H e A. Then the follow
ing conditions are equivalent: 

(i) x + y exists in A; 
(ii) for each i e I, x{ + y{ exists in A{. 

P r o o f . First we remark that if i e / , then in view of 2.9(h) and of 4.4 f), 
x{ + y{ exists in A if and only if it exists in A{. 

Assume that (i) holds. In view of 4.10, x = \J x{ and y = \j y{. Let i e I. 
iei iei 

Hence x{ ^ x and yi ^ y. Thus x{ + y{ ^ x + y. Then x{ + y{ exists in A. 
Therefore x{ + y{ exists in A{. 

Now let (ii) be valid. In G we have 

x + y = \fxi + \Jyj = \f\/(Xi + yj)-
iei jei ieijej 

If i / j , then according to 4.11, x{ + y- = x{ V y-, whence 

Xi+Vj ^ (xi+yi)y(xj+yj). 

Therefore 
\/\/(xi + yj) = \/(xi + yi). 
ieijeJ iei 

In view of the assumption, xi + yi e A for each i e i . Thus xi+yi ^u for each 
i e i and then V (x{ + yi) ^u. Hence V (xi + y{) belongs to A. Therefore (i) 
is valid. ieI ieI D 

LEMMA 4.13. Let x,y e A and suppose that x+y exists in A. Then (x+y){ = 
xi + y% for each i € I • 

P r o o f . The assertion follows from 4.12 and 4.10.1. D 

LEMMA 4.14. Let (2) be valid. Then ip determines an internal direct product 
decomposition 

A=(mt)Y[Ai. 
iei 

P r o o f . This is a consequence of 4.12 and 4.13. • 
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THEOREM 4.15. Let A be a pseudo effect algebra belonging to the class V. 
Let {A^^j be a system of interval subalgebras of A. Put L% = £(A2) for each 
i G I. Assume that 

ip:A-,1[[Ll 

iei 

is a bijection. Then the following conditions are equivalent: 

(i) if determines an internal direct product decomposition 

lA = (mt)\[Al-
iei 

(ii) (p determines an internal direct product decomposition 

l(A) = {mt)1[[e(Ai). 
iei 

P r o o f . It suffices to apply 4.7 and 4.14. • 

This generalizes some results of [10] and [11]. From the result of H a s h i 
m o t o [7] it follows that any two internal direct product decompositions of the 
partially ordered set £(A) have a common refinement; from this and from 4.15 it 
can be deduced that any two internal direct product decompositions of a pseudo 
effect algebra belonging to V have a common refinement. 

5. The pseudo effect algebra T(G, 2u) 

Again, we suppose that A G V and that A = T(G,u). In this section we 
investigate the pseudo effect algebra A0 = T(G, 2u). 

LEMMA 5.1 . We have A0eV. 

P r o o f . This is a consequence of the relation A G V and of [4; Theorem 2.3]. 
• 

Assume that 
A = (int)•/-!-_ x A2. (1) 

We will apply the notation as in the previous section. Hence for z G A we put 

zi = z(A{) (i = 1,2). Thus we have 

2u = (ux + u2) + (ux + u2) = 2ux + 2u2 , 

since u2 A ux = 0 . 
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L E M M A 5.2. 2ux A 2^2 = 0. 

P r o o f . By way of contradiction, assume that there exists 0 < t £ G with 
t _ 2u1 and t _ 2^ 2 . Hence there are t1,t2 G G with 0 _ ti _ ux for i G {1, 2} 
such that t = t1+t2. Without loss of generality we can suppose that tx > 0. We 
have tx _ 2^ 2 , hence tx = tlx +112, where tu G G, 0 _ t ^ _ ^2 for z = 1,2. 
Again, without loss of generality we can suppose that txx > 0. Then £ n _ I/J , 
£ n _ w2, which is a contradiction. D 

We denote A0 = [0, 2u]. 

LEMMA 5.3. Let z G A0. Then z can be expressed uniquely in the form z = 
t1 +t2 with tx G [0,2^-J, t2 G [0,2u2]. 

P r o o f . Since z _ 2^ , there are p,q G -4 such that z = p + r/. According 
to (1) there are p1,q1 G A1, p 2 , r/2 G A2 such that p = p1 +p2 and q = qx + q2. 
In view of p2 A qx = 0 we have p2 + qx = qx+p2, whence z = px+p2 + qx+ q2. 
Put tx = P1+P2i

 l2 = #i + % • Then £ = tx +12 and ^ G [0, 2^/J, t2 G [0, 2?x2]. 
Let t[ G [0, 2I/-J, t2 G [0, 2u2], z = t[ +t2 . In view of 5.2 we have t1At2=0 

and £'-_ A t2 = 0. From this we obtain by a simple calculation that the relations 
t[ = tx and t2 = t2 are valid. D 

Put A® = T(G12ui) (i = 1,2). Consider the mapping 

(f0: A0 —> Ax x .y42 

defined by (p0(z) = (tx,t2), where tx and t2 are as in 5.3. 

LEMMA 5.4. ie£ tx,t[ G [0, 2^*1]. Assume that tx + t[ exists in A0. Then 
tx + t[ G [0, 2ux]. An analogous result holds for t2,t2 G [0, 2u 2 ] . 

P r o o f . In view of 5.3 there are p G [0, 2ux] and q G [0, 2u2] with tx +1[ = 
p + q. We have to verify that q = 0 . By way of contradiction, suppose that 
q > 0 . Then q = r + s such that 0 _ r _ ^ , 0 _ 5 _ £'-_ and either r > 0 or 
«s > 0. Let, e.g., r > 0. We obtain r _ 2^ 1 , r _ 2^ 2 . In view of 5.2 we arrived 
at a contradiction. For t2,t2 G [0, 2u2], the situation is analogous. D 

LEMMA 5.5. Let z,z' G A0, (f0(z) = (tx,t2), (f0(z
f) = (t[,t2). Assume that 

z + z' exists. Then tx + t[ exists in Ax, t2 + t2 exists in A2 and 

cp0(z + zf) = (tx +t[,t2 +t2). 

P r o o f . We have 
Z =1 ti + %2 , Z — Zx "T" l>2 . 

Further, z + z' _ 2u = 2ux + 2u2. Then tx +1[ _ 2ux + 2u2. Hence there are 
v1,v2e A0 such that tx +1[ =vx+v2, vx= 2ux, v2 _ 2u2. Then v2=tx+1[, 
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thus in view of 5.4, v2 = 2ux. This yields v2 ^ 2ux A 2H2 = 0 (cf. 5.2), therefore 
v2 = 0. Thus tx + t[ = 2ux; hence tx + t[ exists in A\. Analogously, t2 + t2 

exists in A2. Further, since t2 A t[ = 0 we get t2 + t[ = t[ + t2, whence 

z + z' = (tx+ t[) + (t2 + t2) = 2ux + 2u2 = 2H. 

In view of 5.3 and 5.4 we obtain 

(f(z + z
f) = (t1+t[,t2 + t2). 

• 

LEMMA 5.6. We apply the notation as in 5.5. Assume that tx +t[ and t2 + t2 

exist in A0 . Then z + z' exists in A0 . 

P r o o f . We have t1,t[ G [0,2ux]. Hence in view of 5.4, tx + t[ <E [0, 2HJ. 
Analogously, t2 + t'2 e [0,2u2]. Then (tx + t[) + (t2 + t'2) = 2ux + 2u2 = 2u. 
Therefore (tY + t[) + (t2 + t2) exists in A0. Since t[ + t2 = t2 + t[, wre obtain 
that z + z' exists in A0. • 

From 5.3-5.6 we conclude: 

LEMMA 5.7. The mapping cp0 determines a direct product decomposition 
of A0. 

Recall that A\ and A2 are interval subalgebras of A0. Further, from the 
definition of tp0 it follows that if z G [0, 2ul], then (p0(z) = (^,0); similarly, if 
z £ [0, 2u2], then (p0(z) = (0, z). Hence we have: 

PROPOSITION 5.8. The mapping cp0 determines an internal direct product 
decomposition of A0; i.e., A0 = ( i n t ) ^ x A2. 

In view of definition of (p0 we also obtain that for each z £ A, 

z(A1) = z(A°), z(A2) - z(A°2). 

6. Internal direct produc t decompositions of G 

We apply the assumptions and the notation as in the previous section with 
the exception that instead of A0 we write A2; similarly, instead of A® and A2 

we now write A?x or A2, respectively. 

Let n G N and m = 2n. Put Am = T(G,mu). Further, let Am and Am be 
interval subalgebras of Am generated by mul or mu2, respectively. 

By applying 5.8 and the induction we obtain: 
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PROPOSITION 6 .1 . Let m be as above. Then Am = (int).4™ x Am. If n > 1 
and m1 = 2 n _ 1 . then for z G [0, m ^ ] we have 

z{AT)=z{AD (i = l,2). 

We denote 

.41 = U[°>2rx]> A2 = Ut0-2"^]-
nGN nGN 

LEMMA 6.2. Both A\ and A2 are closed with respect to the operation +. 

P r o o f . Let z, z' G A\. Since u is a strong unit of G, there exists n G N 
such that z + z' ^ 2nu. Put m = 2 n and consider the direct product decompo
sition of Am from 6.1. We have z(Am) = z, z'(Am) = z', thus (z + z')(Am) = 
z + z'. Therefore z + z' G [0, rawj C A\. Analogously we verify the assertion 
concerning A2. D 

LEMMA 6.2 .1 . For each z G G + there exist uniquely determined elements 
zx G A\ and z2 G A2 such that z = zx+ z2. 

P r o o f . There is n G N such that for m = 2n we have z ^ mu. Put 
zx = z(Am), z2 = z(Am). In view of 6.1, z = zx + z2. If z[ G A\, z'2 G A* and 
z = z[ + z'2, then z[ + z'2 — mu. This yields z[ ^ mu1 and z'2 ^ m^ 2 j whence 
z'2(A

m) = 0 and 

zx = z(Am) = z[(A?) + z'2(AT) = z[(Am) = z[. 

Analogously, z2 = z'2. D 

Under the notation as in 6.2 we put z\ = zx and z2 = z2. 

LEMMA 6.3. Let z,t e G+. Then 

(z + tyl=z* + t* (1 = 1,2). 

P r o o f . There is n G N such that for m = 2 n , both z and t belong to the 
interval [0, mu]; then we have 

(z + t)(Am) = z(Am)+t(Am). 

According to the definitions of z\,t\ and (z +1)\ we obtain 

(z + t)\ = z{+t\, 

and analogously for (z + t)2. D 
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LEMMA 6.4. Let z,t G G + . Then z _ £ if and only if z* _ t\ and z2 —t2. 

P r o o f . Let m be as in the proof of 6.3. The assertion of the lemma is an 
immediate consequence of the validity of the corresponding assertion concerning 
the components of z and t in A™ and A™. • 

For z G G+ we denote ip*(z) = (z*> ^2) • I n v * e w °f 6.1-6.4 we have: 

LEMMA 6.5. The mapping ip* determines a direct product decomposition of 
the partially ordered semigroup G + with the direct factors A\ = (A\\ + , _ ) and 
A*2 = (A*2;+,=). 

Also, if z G A\, then <p*(z) = (z, 0); similarly if z G A* , then (p*(z) = (0, z). 
From this and from 6.5 we get: 

LEMMA 6.6. G+ = (mt)A{ x ^ . 

Now, let us deal with the situation when instead of considering a two factor 
internal direct product decomposition of A we consider a relation of the form 

A = (int)A1 x • • • x An . (a) 

For each i G { 1 , 2 , . . . , n} we construct A* and A* analogously as we did above 
for A\ and A\. By using induction, from 6.6 we obtain 

PROPOSITION 6.7. Assume that (a) is valid. For i € { 1 , 2 , . . . ,71} let A\ be 
as above. Then 

G + - ( i n t M * x---xA*n. (a-_) 

Consider the relation (cY1). For each i G { l , 2 , . . . , n } let Bi be the set of 
all q G G such that there exists a- G A* with —a- _ q _ a-. The set B is 
partially ordered by the relation = induced from G. It is easy to verify that 
Bi is closed with respect to the operation + . Moreover, according to a result 
of S h i m b i r e v a [14] (cf. also the author [9]), the partially ordered structure 
Bi = (B{-, + , _ ) is an internal direct factor of G and we have: 

PROPOSITION 6.8. Under the assumptions as above, 

G = (mt)B1x-..xBn. ((3) 

Let IDf(.4) and ID(C) be as in Section 1. Put 

Hence ip1 is a mapping of IDf(*4) into ID(G). 
Now assume that 

G = ( i n t ) B i x - . - x * 5 ; (/J.) 
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is any internal direct product decomposition of G. For i G {1,2, ...,n} let 
B\ be the underlying set of B\. Suppose that (/3\) is defined by a mapping 
if': G -* B[ x • • • x B'n. For z G G we denote 

ip'(z) = « , . . . , < ) . 

Since ((3X) is internal, whenever i G {1, 2 , . . . , n} and z e B\, then ^ = z and 
^ • = 0 f o r J G { l , 2 , . . . , n } , i ^ i . 

Under our notation, (p'(u) = (u[,... ,u'n). Put A\ = [0,u\] and let A be as 
above, i.e., A = [0, u]. It is easy to verify that for z G G we have z e A if and 
only if z\ G [0, i^] for i G 1, 2 , . . . , n. Hence the partial mapping 

^ ! = ^ | A : A - > JJ[0,tiJ] 
iGI 

is a bijection. We denote by A\ the interval subalgebra of A generated by the 
element u\. 

The idea of the proof of the following assertion (+) is the same as in the 
proof of 4.12. 

(+) Let z,t G A. Then z + t is defined in A if and only if, for each i G 

{1, 2 , . . . , n}, z\ + t\ is defined in A\. 

From the above facts we conclude that the relation 

A = ( i n t ) ^ x • • • x A'n (ax) 

is valid. 
Let us denote by IDf (G) the set of all finite internal direct product decom

positions of G. We put 

^ 2 ( ^ 1 ) = ai • 

Thus ip2 is a mapping of IDf (G) into IDf (.4). 
Our aim is to verify that IDf(G) = ID(G) and that ip2 = ^f1 • This will be 

performed in the following section. 

7. Components in an internal direct factor 

Let A and G be as above. Again, let 

A = ( i n t ) ^ x • • • x An (a) 

be an internal direct product decomposition of A. For i G {1,2, . . . , n } , the 
underlying set of Ai is denoted by A{. Suppose that (a) is determined by a 
mapping </?; for z G A we have (f(z) = (z11 z2,..., zn). Then Ai is the interval 
[0,U j] . 
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PROPOSITION 7 .1 . For each i G {1, 2 , . . . , n} and each z G A we have zi = 
zAu{. 

P r o o f . Let i G I. We have z = zx + • • • + zn. Further, z{ G A{, whence 
z i ^ u i -

Let t G A, t ^ z and t ^ ui. Then ti=^z{. Next, t G Ai and hence t- = 0 
for each j G {1, 2 , . . . , n} with j ^ i. Thus t ^ z. Therefore z{ = z l\u{. • 

We conclude that the mapping cp is uniquely determined by the system 
{ _ - _ , . . . , _ „ } . 

Let /? = ^ ( a ) be as in Section 6. Then for each i G I we have w(*4*) = w?-
and hence u(B{) = u-. Further, let a 1 = ip2(/3). From the definition of V2 w e 

then obtain u'i = ui, hence A!{ = Ai and in view of 4.1, al is equal to a. Thus 
ip2(tp1 (a)) = a . This yields: 

LEMMA 7.2. JTie mapping ip is a monomorphism. 

Now let us assume that the internal direct product decomposition f5x is valid 
and let us apply the corresponding notation for f3x as above. 

PROPOSITION 7.3. Let z G G+ and i G {1,2, . . . , n } . Let n0 be the first 
positive integer with z = n0u. Then z[ = z A n0u'{ . 

P r o o f . We have z = z[ + • • • + z'n and z[,..., zn G G+. Hence z\ ^ z. 
From z = n0u we obtain z[ ^n0u'{. 

Let p e G, p = z and p ^ n0u\. Then p2- ^ zz'. Let j G {1, 2 , . . . , n } , j ' ^ i. 
Then ( u ^ . = 0, thus (n0u'i)j = 0. Also, p'- = (n0u'i)j, hence L/. ^ 0. Therefore 
p'. — z, whence p'- ^ z'-. This yields p ^ z'. Summarizing, we verified that the 
relation z[ = z A n0?^ is valid. • 

We remark that in 7.3 we can apply any n1 > n0 instead of n 0 . From the 
fact that G is directed it follows 

(*) for each z G G there exist x,y e G + with z = x — y. 

In view of 7.3 and (*), the mapping ipf yielding the internal direct product 
decomposition /?x is uniquely determined by the system {u[,..., u'n}. 

From the construction of cY1 in Section 6 it follows that for each i G / , 
u(A[) = u\. This yields that in /ip1(a1) we have again the direct factors 
A[,...,An. Therefore ^ i ( a i ) = / V Hence ip1(ip2({31)) = fix. From this we 
obtain that the mapping tp1 is surjective. Thus, in view of 7.2, we have: 

PROPOSITION 7.4. The mapping rip1 is a bijection of IDf(.4) onto ID f(G) 
and tp2 = (f^1. 
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PROPOSITION 7.5. Let (G,u) be a unital partially ordered group. Then each 
its direct product decomposition with nonzero direct factors is finite. 

P r o o f . It suffices to apply the same argument as in the proof of [10; Propo
sition 2.2] (we correct a misprint in this proof: instead of n w L it should be 

li(n)^ "«?....)• D 

Therefore, in 7.4, IDf(G) can be replaced by ID(G). Thus we have proved 
the assertion concerning the internal direct product decompositions a and (3 
which was formulated in Section 1. 
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