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ON CHEBYSHEV'S INEQUALITIES 
FOR BEURLING'S GENERALIZED PRIMES 

EUGENIO P . BALANZARIO 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. In this article we give continuous versions of generalized primes 
considered by R. S. Hall (see [HALL, R. S.: Beurling generalized prime number 
systems in which the Chebyshev inequalities fail, Proc. Amer. Math . Soc. 4 0 
(1973), 79-82]). 

We provide an explicit calculation of the associated zeta function. This allows 
us to obtain an expression for the counting function for the generated generalized 
integers with several terms rather than just an O-term for the error. Our gener­
alized number systems show tha t , in the context of Beurling's theory, the Pr ime 
Number Theorem is not equivalent to the s ta tement M(x) = o(x), where M(x) 
is the sum of the generalized Mobius function. 

§1. Introduction 

Let P = {p1, p2, . . . } be a set of real numbers satisfying the three conditions 

1 < Pi , Pk < Pk+i i l i m Pk = °° • 

Let N = {n1 = 1 < n2 < n 3 < . . . } be a set of generalized integers with P as 
its set of generalized primes. Thus, each n • is a finite product of elements of P. 
Let 

N(x)= Y^ 1, 
Uj<X 

be the counting function of the set N. Assume that N(x) satisfies, for some 7 
and positive c, 

" ( * ) = ~. + 0 ( j ^ ) . (1) 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11N80. 
K e y w o r d s : Beurling generalized prime numbers, Chebyshev type estimates. 
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EUGENIO P. BALANZARIO 

Under this hypothesis A. B e u r 1 i n g (see [2]) proved that if 7 > 3/2, then the 
counting function P(x) of the set P, satisfies 

P{x)~-?-. (2) 
logx 

This, of course, is the Prime Number Theorem for P. Beurling also gave an 
example in which (1) holds with 7 = 3/2 but (2) is not true. 

In [4], H. G. D i a m o n d proved that if (1) is satisfied with 7 G (1 ,3/2) , 
then there are positive numbers a and b such that for all x > x0 

X <P(x)<b-^. (3) 
log x log X 

These are Chebyshev's inequalities for P. D i a m o n d did not provide any 
examples for which (1) is true with 7 > 1 but (2) fails. One would expect that 
such examples exist. In fact, it was proved by R. S. H a l 1 (see [6]) that for each 
triplet (a, /?, 7) with a G [0,1], ft G [1, +00] and 7 G [0,1) there is a generalized 
number system N such that 

(i) N(x) = cx + 0(j^), 

(ii) l i m i n f r ^ L ^ a , 

:r-»+oo & ' 

In this article we will give continuous analogs of H a 1 l 's examples as well as 
examples for which (1) and (3) are true (but (2) fails) with 7 G [1/2,1)U(1, 3/2]. 
All these examples allow us to conclude that the statements (2) and 

] T fi(nj) = o(x), (4) 
rij<x 

are not equivalent in general, where /z(n •) is the generalized Mobius function 
defined in §7. More precisely, the examples of this article provide us with general­
ized number systems for which (2) is false while (4) is true. In [7], W.-B. Z h a n g 
proved that (2) and (4) are not in general equivalent. He used more difficult 
methods. 

To achieve his goal, H a l l alters the distribution of ordinary primes by 
eliminating all the primes in large intervals in such a way that condition 
(ii) above is satisfied. The addition of primes with large multiplicity ensures 
(iii). We will apply the same idea to the continuous prime distribution r(x) = 

](l-t-l)\og-lt&t. 
1 

The examples of B e u r l i n g generalized numbers in this article are related 
to the example constructed in [1]. 
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§2. Analogs of Hall's examples 

We start by defining our "set" of continuous generalized primes. It is enough 
to define the cumulative distribution function of this "set". We let P(x) be given 
by 

P{x) = jl—±fK(logt)dt, (5) 

whcre K(t) = Kn(t) is the Fejer kernel, i.e., 

n - 1 
/ť(í) = l + 2 £ ( l - - L ) c o s j í , (6) 

i=i 

and p is a positive constant which we might choose suitably, if need arises. 
This constant p will determine the position of some singular points of our zeta 
function, and it will always be in the range 0 < p < 1/2. We also remark that 
the parameter n > 2 in equation (6) will remain fixed. 

LEMMA 1. The Fejer kernel satisfies 

K{t) = -
s'mnt/2 

s'mt/2 
and 

+ 7Г 

í K(t) dt = 2ҡ. 

From this lemma it follows that P(x) is increasing. With the aid of the next 
lemma we will prove that P(x) satisfies the Chebyshev inequalities (3). 

LEMMA 2. If K(t) = Kn(t) is the Fejer kernel (n being a fixed natural num­
ber), and \t\ < l/n, then K(t) > 4n/9. 

P r o o f . If |0| < TT/2 and 0 ^ 0 , then 

Hence 

i + И 
< 

siш 

K(t) = n 

> n 

sin ft/ft 
sm\t/\t 

1 

1 + \nt/2\ 

>n 

> n 

< 1. 

s'mnt/2 

nt/2 

1 

1 + 1/2 
4 

= 9П' 

П 
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THEOREM 3. If P(x) is as in (5), then there are positive numbers a and b 
such thai for x >x0 

<P(x) < b: 
logx logx 

Remark. P(x) as defined in (5) depends on n . It can be shown that the 
constants a, b and x0 are independent of n . 

P r o o f of P r o p o s i t i o n 3 . Since 

/ 1 ~ t PK(\ogt) dt - 0(1) and / l—K(\ogt) dt < 2nx1~p , 
J log. J logt 
1 e 

we have 
j ' w = / ^ f i d t + o ( i 1 " ' ) - m 

e 
We will estimate the last integral, first from below. 

log x log X 

/ _ í _ i _ d í _ 1 ___. e. d t > ___ fm<ŕét 
J logi J t ~ logx J K ' 
e 1 1 

j 2тгj + l/n 

3~ 2-KJ-l/n 

where J > 1 is such that the interval [l,log„] contains J intervals of length 
2/n centered around 27T, 47T, . . . , e.g., J = [log„/27r] — 1. By Lemma 2, we get 

j 2irj + l/n 

dt ÍÏM1(>J_Ѓ< [„, 
J loga: l o g x ^ Э J 
e ^ - 1 2ҡj-l/n 

>í n J_y , 2 e 2 .M/« 
_ 9 loex -—'n 9 logx ._ 

3 e - 1 / n
 e27r(J+1) _ e 2 " 4 e - l / n e27r[log x/2n] 

9 logx e27r - 1 ~ 9 logx e27r - 1 
4 e _ 2 - _ l / n x 

~ 9 e27r - 1 logx ' 
From this and (7) we get the lower bound for P(x). Let us now prove the upper 
bound. Recall that 0 < p < 1/2. From equation (7) we get 

PW = /^i!ld(+0<^',)• (8) 
y/x 
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ON CHEBYSHEV'S INEQUALITIES FOR BEURLING'S GENERALIZED PRIMES 

+ 7T 

Let J' = [logx/27r] + 1 and assume that x > e2n. Recall that J K(t) dt 
— 7T 

= 2~. Then 

logx 

f ^ 0 àt < - - - /" A-(logt) d* < --—- / iY(*)e* dt 
j log* - log* J K B J ~ logs j v y 

j , 27rj + 7T j , 

_E /*(orf*<-|;E«,"+- /*» 
j / 2ҡj+ҡ j , 2ҡj+ҡ 

< r ^ - V / i í W e 1 d í < ^ ^ > 'e^J+n I K(ť) dt 
l o g : . - i - ~ , - i -

2 e ^ e 2 ^ ( J ' + l ) _ e 2 x 2 e3n 

2lx . < 2TT, - 2 " 1 7 

logx e2 7 r — 1 ~" logxe 2 7 r —1 
2 e5 7 r x 

— e2;r _ 1 l o g x ' 

From this and (8) we obtain the upper bound for P(x). • 

§3. Towards an expression for N(x) 

In this section we perform the calculations necessary to obtain an expression 
for the counting function N{x), of the "set" of generated integers N. To this 
end, let us assume that we have a function 

n - l 

G(x) = 1 + 2 5 ^ . cos(jx), (9) 
j=i 

such that G(x) > 0 for all x. We will also assume that the a • 's are nonzero real 
numbers with absolute value less than one (by integrating ( l ± cos(jx))G(x) 
over (—7r,7r) one gets that | a- | < 1 if G(x) is to be non-negative). For such a 
function G(x) we let (cf. (5)) 

X 

P(x) = fl-^f-G{\ogt)dt. 

Because G(x) > 0, we see that P(x) is an increasing function which we take 
as the cumulative distribution function associated with our set P of generalized 
primes. The distribution function for N is given by 

X X 

N{x) = f dN = f edP. 

1 -
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where 

e d P = 6 + d P + 1 d P * d P + i dP*3 + • • • , 
Zi. o . 

5 being the Dirac measure at the point 1, * the multiplicative convolution of 
measures, and the convergence is in total variation in each finite interval. A 
detailed description of these notions can be found in [3]. The above procedure 
for obtaining N from P works when P is continuous as well as when it is a 
discrete distribution. 

We can also determine N(x) by using Perron's inversion formula: 

6+ioo 

N(x) = ^-. fc{s)-ds, b>l, (10) 
Z7T1 J S 

b—ioo 

where ((s) is defined for s = o + i£, with o > 1, as 

OO CO f oo 

C(a)= (x~s dN(x)= (x~sedP(x) = exvl (x~s dP(x)\ . (11) 

PROPOSITION 4. 7/ £(s) zs as defined above, i.e., if 

{ oo i 

/ r'1 io V I1 + 2 ?-> a J c o s ( j log *v di 

i/zen, /or cr > 1, 

C(S)=i± î n (i—-v)""- (i2) 

0<|j |<n v j r / 

where we have set a • = a •. 
-j 3 

To prove this we need a lemma. 

LEMMA 5. Let j be an integer. Let o > 1. Then the following formula holds. 

oo 

r 4~^i7r c o s ( i l o s t ) d* 
i 

>{(.- 1 -
s -ij -1 + pj \ s + ij -1 + p 
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P r o o f . Put cos(j logt) = \ [p* + t~ {i). Then 

oo 

1 
oo 

= /.-(i -r^fi 
1 

oo 

= i f{r s + i j -t-p-s+{j +t" s " i j -t-p-s-[j} &t 
1 

= i r i i i i i 

2 \ s — i j — 1 s — ij — 1 + p s + i j — 1 s + i j — 1 + p J 

~ 2 c b ° g \ V1 " s - ij - 1 + p ) V1 " s + ij - 1 + p ) J ' Hence 
oo 

/ r s ^i r c o s ( j l o g t ) d t 

I 

= - i log ( ( 1 ^— ) ( 1 r-^— ) \ + Constant. 
2 b \ V s-ij-l + pj\ s + ij-l + pj) 

By taking the limit as Re(s) tends to infinity we see that the constant of inte­
gration is zero. • 

P r o o f of P r o p o s i t i o n 4. We use the preceding lemma with 0 < j 
< n. For CT > 1 we have 

oo 

log<(*) = / r ' - - j ^ G ( l o g i ) d t 
1 

oo n —1 

= / *"'SoiT I1 + 2 ? a i C ° S ( J l 0 g t ) } d* 

- • M ^ n ( - 5 — i j — 1 + p 
0 < | j | < n x J P 
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Since 0 < | a- | < 1, the finite product on the right hand side of (12) has 

branch points at 1 + i j and 1 — p + ij, for 0 < \j\ <n. Let C. be the horizontal 
line segments joining the pairs of points 1 — p + ij and 1 + ij. If we remove 
these branch cuts C, from the complex plane and denote the resulting set by 
T> — VG, then the product on the right hand side of (12) is a single valued 
analytic function with V as its domain of definition. Thus, equation (12) gives 
an analytic continuation of ((s) to V. • 

гз 
b+iT b+iT 

т \ im -

c 
m 

• < ^ ) 

Л 
0 

-im 

. - P 1 

- <S 
c 
-m 

) 

b 

Г l 
b-iT 

FIGURE 2.L 

1+im 

FIGURE 2.2. 

Let us consider the contour of integration in Figure 2.1. In this figure we 
have used Cm to denote a closed contour as shown in Figure 2.2, where e is the 
radius of the small circle and r is the radius of the large one. For every piere T 
of the contour in Figure 2.1, we write 

inij 0 . , ф)-ds. 
2ҡi J s 

г 
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We also let cxx and c 0 be the residues of ((s)xs/s at, respectively, 5 = 1 and 
5 = 0. Suppose that T > n. From Cauchy's Theorem we have 

6+iT 
I f xs -A 

2^\ J tts)—ds = c i x + co + Ir1+
Ir2+

Ir3+ J2 J c m • 
b-\T 0<\m\<n 

From equation (12) it is clear that |C( 5 ) | -> 1 as |-s| -> oo. Therefore 

-TT/2 -TT/2 

/ I r T e x p ( i 0 ) /» 
M < / 7F T ^ i e 1 ' d 0 < xTcos9d9->0 as T - > o o . 
1 r 2> y Texp i0) - y -37T/2 - 3 7 T / 2 

JP and Ir also tend to zero: 
M 1 3 

6 ^ 

ІГ| ~" " T 
- т= do- < ^ -> 0 as T -> оо. 
|cг -+- ІJ 

(The same estimate holds for IT .) 

The above considerations together with (10) imply that 

N(x) = Clx + c0+ Y.Tcm' ( 1 3 ) 
0<\m\<n 

PROPOSITION 6. Let C(s) be as in (12). For m G (0,n) set 

Ic = - L /"CW— d5, c™ 2?ri y 5 
Cm 

ivz£/i C m 6emg tte contour in Figure 2.2. Then for every such m, there is a real 
number Am distinct from zero such that 

( 1 \ 1 - a m ^ / x l o g l o g x \ 
In +In = A x cos(m\o&x) + 0 — 5 - — . 

P r o o f . Consider the contour C m in Figure 2.2. It is easy to see that the 
integral 

é>> X-Лs 
5 

over the circle of radius r is 0(xl~p+r). Also, the integral over the circle of 
radius e tends to zero as e —J> 0 (because the "pole" of Q(s) at 5 = 1 + ira is 
of order less than one). Therefore, if C m and Cm are the line segments lying 
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respectively above and below the branch cut Cm and joining the points 1 — p • 
r + im and 1 + im, then 

=ŁIЧ C(s)— ds + Olx1-^). 
s ' 

(14) 

Writing 

s = 1 + im + t é , -тг < < тг. 

and letting 6 = -7r, and t run from 0 to p - r , we obtain a parametrization of 
C" with its direction reversed: 

-C" : < 

ŕ 0 = - т г , 

s = 1 + im — t. 

ds = — åt, 

l 0<t<p-r. 

Before we use this parametrization of Cm, let us rewrite the integrand in (14): 

P ґ( ҳx
s xs s + p - 1 

C s — = 
s s s 

0 < | j | < n 
r II (i-TTíFT + P 

X5 s + /? — 1 

s s — 1 
(i ^ v - п л £ y 
V s - \m - 1 + p) | | V s - iJ - 1 + p / 0< | j |<n 

= (s — 1 — im)" 

11 I 1 s-i j-1 + pJ 
5 L 0 < | j | < n V PJ 

Xs S + /9 - 1 j ^ m  

s s — 1 (s — im — 1 + p)~arn 

Let 

(s + p-1) п /, P 
Ő(S — l )(s — \m — 1 + p) 

- T T i f~-
l + ö ) - ° - 1 J - V S - І 7 - 1 0 < | j | < n 

jфm 

\J - 1 + p 

Notice that / m ( s ) is an analytic function at s = 1 + im. As a power series it 
has radius of convergence equal to p. Also notice that / m ( l + î ri) =̂  0. Let us 
wrrite 

oo 

/m(S) = 5 Z a m , j ( s - 1 - i m ) ' -
j = 0 

424 



ON CHEBYSHEV'S INEQUALITIES FOR BEURLING'S GENERALIZED PRIMES 

Then we have 
1 

2TH 
L f C ( 5 ) _ ! ds = ^ - f xs(s - 1 - im)-«"fm(s) ds 
7T 1 J S Z7T 1 f 

C'r'n C m 

i r °° 
= 2~-\ / X° Y.amAS - l - i m r ) 3 ~ a r n ds 

Jn 3=0 

OO If 

c m 

p—r 
0 0 1 r 

- - ^ m ' ^ 2TTI j v ' 

i=° o 
p—r 

1 °° f 
- - — : x 1 - i m e i 7 r a - ^ ( - l ) j a m J / x ~ V - a m d t . 

^~ 1 n J 
j=° o 

Similarly, one obtains, replacing Cm by Cm 
p—r 

l- J CWy d, = ̂ ^ - " " e - ' - " E(-l)jamJ J x-V-» d«. 
2тг.rf 

c Ј=° 
From (14) we now get 

p—r 
„1-im ^ 1 — І 771 ^ ^ ŕ 

X—— sin(тгan) ^ ( - l ) Ј a m ) • / x - ¥ - в - dí + O ^ 1 - ^ ) . (15) 
„ • _ Ґ . •! 

' - - „ • -
i=° o 

We consider now the last sum: 
p—r 

At 
3=0 J

0 

(p—r) logs 

j=o J

0 

(p—r) logя 
°° Г ( t \ Ј _ ö m àt 

= 5 ( " 1 ) Ј a m , i •/ v~^/ ïõî  
3-v o 

. ( p - r ) logж 

= fe) §вmjлtol-0 / e_íí'"a 

= (ío^) K-° / 
^ n 

3=0 v ° ' Q 

( p - r ) log a: 

e~t t-*m dt + Il\ . 

0 
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It will be convenient to take r — p — 3 log log x/ log x . Now since _C am ->j 
converges whenever \z\ < p, it follows that \amj\ 5 MJ for some M > 1/^, 
Hence 

3 log log X 

1*1 < > > - . . ! ( i ™ T . / e - ' f — dt 

Зloglogз; 

ÍÊKXEЬ)' íe~н"° 
J - l 0 

^T,\am,Ą^j (^OgìOgxУ I Є-H-"~ àt 
j=l 0 

y л / З l o g l o g g y З l o g l o g s ^ / З M l o g l o g s V 
.2_Ja™,jil І 0 I l o g x _>_, 
.7=1 i = o 

log log X 

logx 

Since x 1 _ p + r = x / l o g 3 x and 

3 log log X 

/>'Г«»dt = Г(l-aJ + of-*_££) 
J V log X / 0 

we can write (15) as 

Ic =x--^S[n{ ! O a m _ a f_M ~Qľ" /xloglogx 
_ a m i 0 l ( l « m j ^ l 0 g x y ) + 0 ^ i o g 2 - a m x Vlog^ 

Finally, since Ic_ is the complex conjugate of Ic , we have 

/ 1 M / 1 Y~arn ^fx\og\ogx\ I + / = 4 xcos(ralogx) : + 0 — 5 - — — , 
C-n C _ m m V * >\\Qgx) ^ Vlog2"amx/ 

where Am -- 27r~1 s in(7ra m )a m 0 T(l — am), which is distinct from zero because 

a
m , o = / m ( l + *™) ± ° a n d 0 < \aj < 1 -=> s i n ( - a m ) + 0. 

This finishes the proof of Proposition 6. • 

§4. Hall's examples again 

T H E O R E M 7. Let 

X 

P(x) = J^fK(\ogt)dt, 
1 
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where K(x) = Kn(x) is the Fejer kernel (cf. equation (6)). Let 

X 

N{x) = f e d P 

Then there exist nonzero constants A • such that 

n- l f ^j/n 

Җx) = Clx + І2Aŕ co<i l0sx) ( i ^ ) + ° ( i ^ ) • (16) 

The constant cx is positive: 

rt2\ i-j/n 

*='.!LA1+?) > 0 
C x 

0<|j l<n 

P r o o f . In §3 we can take G(x) = K(x) and get from equation (13) 

n-l 

iV(x) = c 1x + c 0 - F ^ J c . + J c _ . . 
j = i 

From Proposition 6, since a- = 1 — -^-, (cf. (5), (6) and (9)), we have 

Ic, + Ic_, = V c o s ( j logx) ( ^ ) 3 ' n + O (JL.) , A^O. 

Remark . In addition to (16) we showed in §2 that Chebyshev's inequalities 
hold: 

X < P(_.) < - J L - . (17) 
log x log X 

This finishes our discussion of continuous analogs of Hall's examples. 

§5. More examples 

We also have the following proposition. 

T H E O R E M 8. Let 
X 

/

l — t~p 

——— G(logt) dt with G(x) = l + 2a cos(x), 
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where a is a fixed real number such that 0 < \a\ < 1/2. (Note that G(x) > 0.) 
Let 

i -

Then 
7 x log log X 

N(x) = c±x + A[x cos(\ogx) ( j + O Í 
log2"" X 

P r o o f . This follows from equation (13) and Proposition 6. • 

Thus, for every 7 G [1/2,1) U (1, 3/2] we have a continuous number system 
for which 

and for which the Chebyshev inequalities (17) are true. (7 G [1/2,1) when 
0 < a < 1/2, and 7 G (1,3/2] when - 1 / 2 < a < 0.) 

§6. Discrete examples 

In this section we construct discrete versions of the examples considered 
above; that is, we construct generalized primes p 1 5 p 2 , . . . whose counting func­
tion 

p*(x) = £ 1 
Pj<X 

is close to 

X 

p(x) = J^rG(\ogt)dt, 
1 

with G(x) as in (9). 
Let x0 be such that P(x0) > 1. We define, for j = 1, 2 , . . . , our j t h prime 

to be 

p.=P~l(x0+j). 

We also let 1 

p*(x) = Y,-p^xl'n)-
As in earlier sections, we define 

N 

428 
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and 
oo ( oo ^ 

«•)-/—»-{/--«}• ™ 
PROPOSITION 9. Let C(s) be as in equation (18) and £(s) as in (11). There 
exists a function ip(s) analytic in Re(s) > 1/2 such that 

0<\j\<n X J H/ 

The following lemma is needed. 

L E M M A 10. P(x) - P*(x) = 0(y/x). 

P r o o f . We first notice that P*(x) — p*(x) = 0(y/x ) . The lemma follows 
from 

*•(*)= £-= £i= £ i 
Pi<x P-l(x0+j)<x x0+j<P(x) 

= P(x) + 0(l). 

П 

P r o o f of P r o p o s i t i o n 9 . For a > 1 we have 

CM •"{,/--•""<*)} 
C ^ e x p ( / a . - * dP(x) |/x--dP(x)} 

= expi íx-s(àP*(x)-dP(x)) 
. 1 -

OO 

/ P*(x) e x p W — x ^ 
P*(x)-P(x)_d , = ; e ^ , _ 

From the preceding lemma, it follows that 

oo 
P*(x)-P(x) fP*(x)-l^, A 

V(S) = SJ ^7Ti d x 

1 -

is as stated in the proposition. • 
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LEMMA 1 1 . Let C*(s) be as in Proposition 9. There exist constants B and K 
such that for all s — a + it satisfying 

1 
< ° < 2, log( |í |+8) 

the following inequalities hold: 

a) \C(v + it)\<B\ogK(\t\ + 3), 

b) |l/C*(a + i * ) | < £ l o g * ( | t | + 3) . 

P r o o f . Let (p(s) be as in Proposition 9. It is enough to show that there is 
a constant K such that \(p(a + it)\ < Inoglog(|£| + 8) , when a and t are as 
stated in the lemma. For such a and t we have 

x- = *f- 1«P{(1-.)•,.> S l e x p l ^ J ^ } « I , 

whenever 1 < x < t2. Now, by Lemma 10 

<p(s 

OO 

) = Jx-°d(P*-P)(x) 
1-

= /* x~s d(P* - P)(x) + í x~s d(P* - P)(x) 
1 - t2 

P*(ť)-P(ť) t ^ f P*(x)-P(x) ^ = /х-а,Р--Р)М-^Ь^1 + а / 
1 - 4-

* 2 оо 

< /" я-* а(р* + р)(ж) + щ + И /" х-^-1/2 ах 

1 - * 2 

*2 

= [х-° а(Р*+Р)(х) + 0(1). 

i -

To justify the 0(1) term in the last expression notice that 

| i | . | * | 2 ( 5 - ) < |£| - |t|-l+2/lot5(l-H-8) ^ ]_ _ 
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Because of Proposition 3 we now have 

г г 

/ * - d P ( l ) « / x - d P W 

t2 

I 
1 - 1 -

_ P{t2) f P{x) 
í2 

1 

+ / -^dx 

i r dx 
<iog{\i\ + s) + y xiogx 

i 

<loglog(|*| + 8). 

By Lemma 10 the same estimate holds for P*(x) in place of P(x). This finishes 
the proof of the lemma. • 

The following proposition gives an asymptotic evaluation of N*(x). We state 
it without proof. 

PROPOSITION 12. Let N* be as defined at the beginning of §6. Then there 
exists a constant c* > 0 such that 

N*(x)~c*x. (19) 

§7. The Mobius sum function 

Once we have a discrete number system (as constructed in Section §6) we are 
in a position to define analogs of the Mobius function. Thus, if n • = p^ • • -pa-^ , 
we let 

1 if n = 1, i.e., all ak = 0 , 

V(nj)= I (-l)k if a, = . . . = a/b = l , 

^ 0 otherwise. 

We also let M(x) = __̂  /x(nj)-
7lj<X 

In this section, we use Helson's Method (see [5]) to show that the relation 
M(x) = o(x) holds for these examples and in the next section, we obtain an 
asymptotic expression for P*(x). 

More specifically, wre will prove that M(x) = o(x), for the discrete versions 
of the analogs of Hall's examples as well as the discrete version of the examples 

431 



EUGENIO P. BALANZARIO 

considered in §5. However, for the latter, we will require that 0 < \a\ < 1/2; for 
technical reasons we exclude the case a = —1/2. 

We start with the identity 
oo 

The usual integration by parts yields 
oo 

±-j = fx-s-lM(x)dx 
< * 

OO 

• / 
e~sxM(ex)dx 

0 

+ oo 

-ł-oo 

• / • 
e-°xM(ex)e-ìtx àx 

I = / F(x)e • \tx dx, 

where we have set Fa(x) = e ax M(ex). From Plancherel's theorem we get 

-foo 

/ 
1 

(a + it)C((r + it)\ 
dť 

-foo 

= 2n I \Fc(x) dx. (20) 

Our job now is to show that the integral on the right hand side is finite when 
a = 1. Since | F a ( x ) | increases as a —•> 1 + , it suffices to show that the integral 
on the left hand side of (20) is finite whenever a > 1. That this is the case 
will follow from the fact that the singularities of C*(5) o n ^ n e l m e 0" = 1 are of 
sufficiently small order: —a- < 1/2. 

Let a = 1. From Proposition 9 we see that 

CҶi + iŕ) 
a-¥>(l+ií) 

t — \p п 
0 < | j | < n 

t-j 

t-j-Іp 

Recall from Lemma 11 that there is a constant K such that 
1 

« l o g к ( | í | + 3 ) . 
10(1 +it) I 

Because of the factor (1 + i£ ) - 2 on the left hand side of (20) and because 
oo 2K 

J 0%t2
 l dt converges, we have only to show that 

+ П 

I C ( I + ІЃ) 
dí 

+ n 

« / n \t-j\2ai^t< oo . 

_ n 0 < | i | < n 
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Since 2a, > - 1 , the last integral is indeed finite. Therefore, by the Monotone 
Convergence Theorem, we conclude that the right hand side of (20) is finite when 
( 7 = 1 , i.e., 

+00 

/ ' 
e~xM(ex)\z dx - / « ( x)\ dx < co . 

Let g(x) = M(x)/x. From the fact / g2(x)^- = J g2(ex) dx < oo, we would 
1 o 

like to conclude that g(x) = o(l). To show this, we take advantage of the fact 
that g(x) varies in a slow fashion. Indeed, assume for a generalized integer n •, 
that | g ( n ) | > 7/ > 0. Then we will show that 

9(Пj+k) > 2 for 0 < к < c 
-n. 4 " " " - " - 2 c + 77 •?' 

where c = c* is as in (19). To prove (21), we need two lemmas. 

(21) 

LEMMA 13. Consider the set N* of discrete generalized integers: N* = 
{ n 1 , n 2 , . . . } . Assume that the counting function N*(x) satisfies N*(x) = 
ex + o(x). Let k > 0 . Then for j -* 00. 

nj+k = nj + k/c+o(nj+k). 

P r o o f . 

k = N*(nj+k) - N*{Пj) = cnj+k - CПj + o(nj+k). 

LEMMA 14. We have \M(y) - M(x)\ < \N*(y) - N*(x)\. 

P r o o f . Assume x < y. Then 

y . y 

\M(y) - M(x)\ = /V d H< íedP' =N*(y)-N*(x). 

D 

Now we prove (21). Assume n- is large and that | g ( n ) | > 77. Then 

. . „ \M(nj+k)\ |M(n-) | - k T/TI- - k 1 nn- - k 
\g(n,, ,. )| = > > — > Lз+k) 

vj+k j+k j+k 
2 Пj + к/c 

> 
1 VПj c 

2c+r,Пj 

2 П • + тт^-n • 3 2c+r) 3 
2 1-1 П— 
Z L ^ 2c+ 

2c+ _ V 

4 

D 
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If g(x) = o(l) is false, then we can assume that | g ( n ) | > 77 is true for 
an infinity of indices j and take a subsequence n'k = n - , k = 1, 2 , . . . , such 
that the above inequality holds for every n'k. We can assume that n'k+l > 
n'k (l + cr)/(2c + 77)). From all this we get a contradiction: 

«i(1+5f¥-)2 
n U.JU X. \ / / / . L,ll \ 

= +00. f^x)=>y f f.^ = yn-iog(i + ^L_ 
J * ~f=! J 16 x £ í 1 6 V 2c + r) 
1 fc-1 „ ' k-1 

Hence we conclude that g(x) = o(l). 

THEOREM 15. Let jN* be the set of generalized integers as defined in §6. Let 
M(x) be as defined at the beginning of §7. Then 

,. M(x) „ 
lim — — = 0 . 

x—>oo x 

§8. Asymptotics of P*(x) 

In this section we investigate the distribution of the set of generalized primes 
constructed in §6. 

THEOREM 16. Let 

if ^ r A M h At ^ / l 0 g ^ if nj=Paki PkeP* 1 
V>0*0 '- = V A(n) , luftere A(n •) = <! J . 

^—' J I 0 otherwise. 
Uj<X 

nj£N* 

Then 

n~l 2a-
iþ(x) = x + Æ ^ ^2 [cos(,7 logx) + j s in( j logx)] + 0(xl~p) 

7 
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P r o o f . From Lemma 10 and because 0 < p < 1/2 we have 

X 

ip(x) = flogtdP*(t) 

I 

= flogt dP(t) + (P*(x) - P(x)) \ogx- f P * f f l " P W dt 

1 1 
X 

= f "log* dP(t) + 0(x1/2\ogx) 

I 
x 

= I "log* dP(t) + 0(x1~p). 

But 

i i 

X X 

fìogt dP(t) = f(l - Гp)G(\ogt) dt 

ì 
X 

= ÍG(logt) dt + 0(x1~p) 

ì 

= / ( l + 2^a j C os( j logí ) ) dt + 0(xl~p) 
i ^ з=i ' 

л X 

= x + 2 ̂ 2 aá / cos(j\ogť) dt + 0(xx~p) . 
3=1 ! 

We consider now the above integrals: 
X X 

/ cos(jlogí) dt = xcos(jlogx) — 1+j / sin(jlogí) dt 
ì ì 

x 

= x cos(j log x) — 1 + jx sin(3 log x) — j 2 / cos(3 log t) dt. 

Hence, 
x 

/

X 1 

cos(j log t) dt = .2 [cos(j log x) + j sin(j log x)] - 1 + .2 . 
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2a 
ф(x) = x + x"^2 Ţ—^[cos(j logx)+jsin(jlogа:)] +0(x1 p) . 

D 
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